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We examine the problem of keyboard acoustic emanations. We present a novel attack taking as
input a 10-minute sound recording of a user typing English text using a keyboard and recovering up
to 96% of typed characters. There is no need for training recordings labeled with the corresponding
clear text. A recognizer bootstrapped from a 10-minute sound recording can even recognize
random text such as passwords: In our experiments, 90% of 5-character random passwords using
only letters can be generated in fewer than 20 attempts by an adversary; 80% of 10-character
passwords can be generated in fewer than 75 attempts by an adversary. In the attack, we use the
statistical constraints of the underlying content, English language, to reconstruct text from sound
recordings without knowing the corresponding clear text. The attack incorporates a combination
of standard machine learning and speech recognition techniques, including cepstrum features,
Hidden Markov Models, linear classification, and feedback-based incremental learning.
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K.4.1 [Public Policy Issues|: Privacy

General Terms: Security
Additional Key Words and Phrases: Computer Security, Human Factors, Acoustic manations,
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1. INTRODUCTION

This paper reports on recovering keystrokes typed on a keyboard from a sound
recording of the user typing. Emanations produced by electronic devices have long
been a topic of concern in the security and privacy communities [Briol 1991]. Both
electromagnetic and optical emanations have been used as sources for attacks. For
example, Kuhn was able to recover the display on CRT and LCD monitors using
indirectly reflected optical emanations [Kuhn 2002; 2003]. Acoustic emanations are
another source of data for attacks. Researchers have shown that acoustic emana-
tions of matrix printers carry substantial information about the printed text [Briol
1991]. Some researchers suggest it may be possible to discover CPU operations
from acoustic emanations [Shamir and Tromer 2004]. In ground-breaking research,
Asonov and Agrawal showed that it is possible to recover text from the acoustic
emanations from typing on a keyboard [Asonov and Agrawal 2004].

Most emanations, including acoustic keyboard emanations, are not uniform across
different instances, even when the same device model is used; and they are af-
fected by the environment. Different users on a single keyboard or different key-
boards (even of the same model) emit different sounds, making reliable recognition
hard [Asonov and Agrawal 2004]. Asonov and Agrawal achieved relatively high
recognition rate (approximately 80%) when they trained neural networks with text-
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labeled sound samples of the same user typing on the same keyboard. Their attack
is analogous to a known-plaintext attack on a cipher — the cryptanalyst has a sam-
ple of plaintext (the keys typed) and the corresponding ciphertext (the recording of
acoustic emanations). This labeled training sample requirement suggests a limited
attack, because the attacker needs to obtain training samples of significant length.
Presumably these could be obtained from video surveillance or network sniffing.
However, video surveillance in most cases should render the acoustic attack irrel-
evant, because even if passwords are masked on the screen, a video shot of the
keyboard could directly reveal the keys being typed.

In this paper we argue that a labeled training sample requirement is unnecessary
for an attacker. This implies keyboard emanation attacks are more serious than
previous work suggests. The key insight in our work is that the typed text is often
not random. When one types English text, the finite number of mostly used English
words limits possible temporal combinations of keys, and English grammar limits
word combinations. One can first cluster (using unsupervised methods) keystrokes
into a number of acoustic classes based on their sound. Given sufficient (unlabeled)
training samples, a most-likely mapping between these acoustic classes and actual
typed characters can be established using the language constraints.

This task is not trivial. Challenges include: 1) How can one mathematically
model language constraints and mechanically apply them? 2) In the first sound-
based clustering step, how can one address the problem of different keys clustered
in the same acoustic class and a single key clustered in multiple acoustic classes?
3) Can we improve the accuracy of the guesses by the algorithm to match the level
achieved with labeled samples?

Our work answers these challenges, using a combination of machine learning and
speech recognition techniques. We show how to build a keystroke recognizer that
has better recognition rate than labeled sample recognizers in [Asonov and Agrawal
2004]. We only use a sound recording of a user typing.

Our method can be viewed as a machine learning version of classic attacks to
simple substitution ciphers. Assuming the ideal case in which a key produces
exactly the same sound each time it is pressed, each keystroke could be easily given
an acoustic class according to the sound. The acoustic class assignment would be
a permutation of the key labels. This is exactly an instance of substitution cipher.
Early cryptographers developed methods for cryptanalyzing substitution ciphers.
Our attack can be viewed as an extension of these methods — but our problem is
more difficult because the sound of a particular keystroke varies even when it is
produced by the same typist.

We built a prototype that can bootstrap the recognizer from about 10 minutes of
English text typing, using about 30 minutes of computation on a desktop computer
with a Pentium IV 3.0G CPU and 1GB of memory. After the bootstrap step, it
could recognize language-independent keystrokes in real time, including random
keystrokes occurring in passwords, with an accuracy rate of about 90%. When
language-dependent constraints are applied to English text, we achieve a 90-96%
accuracy rate for characters and a 75-90% accuracy rate for words?.

1The accuracy rate for words is counted by number of correctly recognized words over total number
of words typed.
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We posit that our framework also applies to other types of emanations with inher-
ent statistical constraints, such as power consumption or electromagnetic radiation.
One only need adapt the methods of extracting features and modeling constraints.
Our work implies that emanation attacks are far more challenging, serious, and
realistic than previously realized. Emanation attacks deserve greater attention in
the computer security community.

Below, Section 2 briefly reviews previous keyboard emanation attacks. Section 3
presents an informal description of the new attack, followed by additional details
in Section 4. Section 5 presents experiment results. Section 6 discusses issues and
future work. Section 7 concludes the paper.

2. OVERVIEW OF PREVIOUS ATTACKS

We briefly review two related previous research studies examining recovery of key-
strokes, each using a different type of side channel information (See [Bar-El 2003]
for an overview of side channel attacks in general).

To the best of our knowledge, Asonov and Agrawal were the first researchers
to publish a concrete attack exploiting keyboard acoustic emanations [Asonov and
Agrawal 2004]. They note that the sound of keystrokes differ slightly from key
to key. They give a concrete method to recover information about typing on key-
boards, using neural networks as acoustic classifiers. Their approach is to first
“teach” the neural networks about what the different keys sound like. To do this,
each key is typed 100 times. The neural network is trained with the label (the key
being typed) and the corresponding sound. The raw digitalized sound input is too
large for their neural networks, so each keystroke is represented as a vector of Fast
Fourier Transform (FFT) features. The trained neural network then can be used
to recognize subsequent keystrokes.

Based on the supervised learning approach above, Asonov and Agrawal show:

—A wide variety (e.g. different keyboards of the same model, different models,
different brands) of keyboards have keys with distinct acoustic properties.

—Sound recordings from as far away as 15 meters suffice for neural network su-
pervised learning if sophisticated microphones such as parabolic microphones are
used.

—Their neural network supervised learning is sensitive to training errors: if input
label are inaccurate, their recognition rates drop sharply. The effectiveness of the
appraoch also depends a lot on the comprehensiveness of the training samples,
i.e. whether it contains enough samples for each key or not.

Asonov and Agrawal’s work opened a new field. However, there are limitations
in their approach:

—Their attack is for labeled acoustic recordings. Their attack works well only with
the same settings (i.e. the same keyboard, person, recording environment, etc.)
as the training recording, and such training data are hard to obtain in many
cases. Training on one keyboard and recognizing on another keyboard of the
same model yields much lower accuracy rates, at around 25%. Even if we count
all occasions when the correct key is among the top four candidates, the accuracy
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Fig. 1. Recognition rates using FFT and cepstrum features. The Y axis shows the
recognition rate. Three different classification methods are used on the same sets

of FF'T or cepstrum features.

rate is still only about 50%. Lower recognition rates are also observed when the
system is trained for one typist and then applied to another typist.

—The set of acoustic classification techniques used leaves room for improvement.

In our work, we found superior features to FFT and superior acoustic classifiers
to neural networks. Figure 1 compares FFT and cepstrum features and also
compares three classifiers: linear classification, neural networks and Gaussian
mixtures. The classifier is trained on the training set data and is then used to
classify the training set itself and two other data sets. Character recognition rate
using cepstrum features (discussed below) on average is better than character
recognition using FFT. This is true for all data sets and classification methods.
Neural networks perform worse than linear classification on the two test sets. In
this experiment, we could only approximate the experiment settings in [Asonov
and Agrawal 2004]. But the significant performance differences indicate that
there are better alternatives to FFT and neural networks combination.

Timing information is a different type of side channel information related to
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keyboard typing. Timing information includes the time between two keystrokes,
the time between keystroke push to keystroke release, etc. Song, Wagner and Tian
showed how to extract information based on the time between two consecutive
keystrokes [Song et al. 2001]. They considered interactive login shells encrypted
with the SSH protocol. In this scenario, an eavesdropper can detect the time
between consecutive keys. Statistical analysis shows that the distribution of time
between a pair of keys vary for different key pairs. Contributing factors include:
whether keys are typed with alternating hands or the same hand, with different
fingers or the same fingers, etc. The types of pairs defined in their work capture
the physical distances between keys and also the the response time of human beings.
However, many different pairs may belong to the same type, e.g. two letters typed
by alternating hands. Timing information is generally not helpful in distinguishing
different pairs in the same type. Their work gives some analysis of the amount of
information leaked by timing information. In Section 6.1, we give an approach to
combine timing information with our acoustic emanation recognition. However, to
date we have only observed modest improvements by adding timing information. It
remains an open question whether the two methods together can yield substantially
higher recognition rates.

3. THE ATTACK

In this section, we present a survey of our attack. Section 4 presents the attack in
full.

We take a recording of a user typing English text on a keyboard, and produce
a recognizer that can, with high accuracy, determine subsequent keystrokes from
sound recordings if it is typed by the same person, with the same keyboard, under
the same recording conditions. These conditions can easily be satisfied by, for ex-
ample, placing a wireless microphone in the user’s work area or by using parabolic
or laser microphones from a distance. Although we do not necessarily know in ad-
vance whether a user is typing English text, in practice we can record continuously,
try to apply the attack, and see if meaningful text is recovered.

Figure 2 presents a high level overview of the attack.

The first phase (Figure 2(a)) trains the recognizer. It contains the following
steps,

—Feature extraction. We use cepstrum features, a technique developed by re-
searchers in voice recognition [Childers et al. 1977]. As we discuss below, cep-
strum features give better results than FFT.

—Unsupervised key recognition using unlabeled training data. We cluster each
keystroke into one of K acoustic classes, using standard data clustering methods.
K is chosen to be slightly larger than the number of keys on the keyboard. As
discussed in Section 1, if these acoustic clustering classes correspond exactly to
different keys in a one-to-one mapping, we can easily determine the mapping
between keys and acoustic classes. However, clustering algorithms are imprecise.
Keystrokes of the same key are sometimes placed in different acoustic classes and
conversely keystrokes of different keys can be in the same acoustic class. We let
the acoustic class be a random variable conditioned on the actual key typed. A
particular key will be in each acoustic class with a certain probability. In well
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clustered data, probabilities of one or a few acoustic classes will dominate for each
key. Once the conditional distributions of the acoustic classes are determined, we
try to find the most likely sequence of keys given a sequence of acoustic classes
for each keystroke. Naively, one might think picking the letter with highest
probability for each keystroke yields the best estimation and we can declare our
job done. But we can do better. We use a Hidden Markov Model (HMM) [Rabiner
and Juang 1986]. HMMs model a stochastic process with state. They capture the
correlation between keys typed in sequence. For example, if the current key can be
either “h” or “” (e.g. because they are physically close on the keyboard) and we
know the previous key is “t”, then the current key is more likely to be “h” because
“th” is more common than “tj”. Using these correlations in English?, both the
keys and the key-to-class mapping distributions can be efficiently estimated using
standard HMM algorithms. This step yields accuracy rates of slightly over 60%
for characters, which in turn yields accuracy rates of over 20% for words.

—Spelling and grammar checking. We use dictionary-based spelling correction and
a simple statistical model of English grammar. These two approaches, spelling
and grammar, are combined in a single Hidden Markov Model. This increases
the character accuracy rate to over 70%, yielding a word accuracy rate of about
50% or more. At this point, the text is quite readable (see Section 4.3).

—Feedback-based training. Feedback-based training produces a keystroke acoustic
classifier that does not require an English spelling and grammar model, enabling
random text recognition, including password recognition. In this step, we use the
previously obtained corrected results as labeled training samples. Note that our
corrected results are not 100% correct. We use heuristics to select words that
are more likely to be correct. For examples, a word that is not spell-corrected
or one that changes only slightly during correction in the last step is more likely
to be correct than those that had more changes. In our experiments, we pick
out those words with fewer than 1/4 of characters corrected and use them as la-
beled samples to train an acoustic classifier. The recognition phase (Figure 2(b),
described below) recognizes the training samples again.This second recognition
typically yields a higher keystroke accuracy rate. We use the number of correc-
tions made in the spelling and grammar correction step as a quality indicator.
Fewer corrections indicate better results. The same feedback procedure is per-
formed repeatedly until no significant improvement is seen. In our experiments,
we perform three feedback cycles. Our experiments indicate both linear classifi-
cation and Gaussian mixtures perform well as classification algorithms [Jordan
2005], and both are better than neural networks as used in [Asonov and Agrawal
2004]. In our experiments, character accuracy rates (without a final spelling and
grammar correction step) reach up to 92%.

20ther languages than English have different probabalistic distributions of pairs, but the method
still applies.
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The second phase, the recognition phase, uses the trained keystroke acoustic
classifier to recognize new sound recordings. If the text consists of random strings,
such as passwords, the result is output directly. For English text, the above spelling
and grammar language model is used to further correct the result. To distinguish
between two types of input, random or English, we apply the correction and see if
reasonable text is produced. In practice, a human attacker can typically determine
if text is random. An attacker can also identify occasions when the user types user
names and passwords. For example, password entry typically follows a URL for a
password protected website. Meaningful text recovered from the recognition phase
during an attack can also be fedback to the first phase. These new samples along
with existing samples can be used together to increase the accuracy of the keystroke
classifier. Our recognition rate improves over time (see below).

Our experiments include data sets recorded in quiet and noisy environments and
with four different keyboards (See Table II and Table IV). Refer to Appendix A
for an example of recovered text.

4. TECHNICAL DETAILS

Below, we describe in detail the steps of our attack. Some steps (feature extraction
and supervised classification) are used in both the training phase and the recogni-
tion phase.

4.1 Keystroke Feature Extraction

4.1.1 Keystroke Extraction. Typical users can type up to about 300 characters
per minutes. Keystrokes consist of a push and a release. Our experiments confirm
Asonov and Agrawal’s observation that the period from push to release is typically
about 100 milliseconds. That is, there is usually more than 100 milliseconds be-
tween consecutive keystrokes, which is large enough to distinguish the consecutive
keystrokes. Figure 3 shows the acoustic signal of a push peak and a release peak.
We need to detect the start of a keystroke, which is essentially the start of the push
peak in a keystroke acoustic signal.

We distinguish between keystrokes and silence using energy levels in time win-
dows. In particular, we calculate windowed discrete Fourier transform of the signal
and use the sum of all FFT coefficients as energy. We use a threshold to detect the
start of keystrokes. Figure 4 shows an example.

4.1.2 Features: Cepstrum vs. FFT. Given the start of each keystroke (i.e.
wav_position), features of this keystroke are extracted from the audio signal during
the period from wav_position to wav_position+ AT. Our experiments compared
two different types of features. First we used FFT features with AT = 5ms, as
in [Asonov and Agrawal 2004]. This time period roughly corresponds to the touch
peak of the keystroke, which is when the finger touches the key. An alternative
would be to use the hit peak, when the key hits the supporting plate. The hit peak
is harder to pinpoint in the signal, so our experiments used the touch peak.

As shown in Figure 1, the classification results using FFT features were not
satisfactory and we could not achieve the levels reported in [Asonov and Agrawal
2004]. This might be caused by different experimental environment settings, differ-
ent quality of recording devices, etc.
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Fig. 5. The Hidden Markov Model for unsupervised key recognition.

Next, we used cepstrum features. Cepstrum features are widely used in speech
analysis and recognition [Childers et al. 1977]. Cepstrum features have been em-
pirically verified to be more effective than plain FFT coefficients for voice signals.
In particular, we used Mel-Frequency Cepstral Coefficients (MFCCs) [Jurafsky and
Martin 2000]. In our experiments, we set the number of channels in the Mel-Scale
Filter Bank to 32 and used the first 16 MFCCs computed using 10ms windows,
shifting 2.5ms each time. MFCCs of a keystroke were extracted from the period
from wav_position to wav_position+ AT, where AT’ ~ 40ms which covers the
whole push peak. As Figure 1 reports, this yields far better results than from FFT
features.

Asonov and Agrawal’s observation shows that high frequency acoustic data pro-
vides limited value. We ignore data over 12KHz. After feature extraction, each
keystroke is represented as a vector of features (FFT coefficients or MFCCs). For
details of feature extraction, see Appendix B.

4.2 Unsupervised Single Keystroke Recognition

As discussed above, the unsupervised recognition step recognizes keystrokes using
audio recording data only and no training or language data.

The first step is to cluster the feature vectors into K acoustic classes. Possible
algorithms to do this include K-means and Expectation-Maximization (EM) on
Gaussian mixtures [Bilmes 1997]. Our experiments tested values of K from 40 to
55, and K = 50 yielded the best results. We use thirty keys, so K must be equal or
larger than 30. A larger K captures more information from the sound samples, but
it also makes the system more sensitive to noise. It would be interesting to exper-
iment with using Dirichlet processes that might predict K automatically [Jordan
2005].

The second step is to recover text from these classes. For this we use a Hidden
Markov Model (HMM) [Rabiner and Juang 1986]. HMMs are often used to model
finite-state stochastic processes. In a Markov chain, the next state depends only on
the current state. Examples of processes that are close to Markov chains include
sequences of words in a sentence, weather patterns, etc. For processes modeled
with HMM, the true state of the system is unknown and thus is represented with
hidden random variables. What is known are observations that depend on the
state. These are represented with known output variables. One common problem
of interest in an HMM is the inference problem, where the unknown state variables
are inferred from a sequence of observations. This is often solved with the Viterbi
algorithm [Russell and Norvig 2003]. Another problem is the parameter estimation
problem, where the parameters of the conditional distribution of the observations
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are estimated from the sequence of observations. This can be solved with the EM
algorithm.

Figure 5 shows the HMM we used. It is represented as a statistical graphical
model [Jordan 2005]3. Circles represent random variables. Shaded circles (y;) are
observations while unshaded circles (g;) are unknown state variables we wish to
infer. Here, ¢; is the label of the i-th key in the sequence, and y; is the class of
the keystroke we obtained in the clustering step. The arrows from ¢; to g;+1 and
from ¢; to y; indicate that the latter is conditionally dependent on the former;
the value on the arrow is an entry in the probability matrix. So here we have
P(qi+1l¢i) = Ag, ,q;,» Which is the probability of the key ¢;41 appearing after key
gi. The A matrix is another way of representing plaintext bigram distribution
data. The A matrix (called the transition matrix) is determined by the English
language and thus is obtained from a large corpus of English text. We also have
p(yilgi) = Mg, ., Which is the probability of the key g; being clustered into acoustic
class y; in the previous step. Our observations (the y; values) are known. The
output matrix n is unknown. We wish to infer the ¢; values. Note that one set of
values for ¢; and 7 are better than a second set if the likelihood (joint probability)
of the whole set of variables, computed by multiplying all conditional probabilities,
is larger with the first set than the second set. Ideally, we want a set of values
that maximize the likelihood, so we are performing a type of Maximum Likelihood
Estimation [Russell and Norvig 2003].

We use the EM algorithm [Bilmes 1997] for parameter estimation. It goes through
a number of rounds, alternately improving ¢; and 1. The output of this step is the
7 matrix. After that, the Viterbi algorithm [Russell and Norvig 2003] is used to
infer ¢;, i.e. the best sequence of keys.

EM is a randomized algorithm. Good initial values make the chance of getting
satisfactory results better. We found initializing the row in 7 corresponding to the
Space key to an informed guess makes the EM results more stable. This is probably
because spaces delimit words and strongly affect the distribution of keys before and
after the spaces. This task is performed manually. Space keys are easy to distinguish
by ear in the recording because of the key’s distinctive sound and frequency of use.
We marked several dozen space keys, look at the class that the clustering algorithm
assigns to each of them, calculate their estimated probabilities for class membership,
and put these into 7. This approach yields good results for most of the runs.
However, it is not necessary. Even without space keys guessing, running EM with
different random initial values will eventually yield a good set of parameters. All
other keys used in our study, including punctuation keys are initialized to random
values in 7. We believe that initialization of n can be completely automated, and
hope to explore this idea in the future work.

30ne might think that a more generalized Hidden Markov Model, such as one that uses Gaussian
mixture emissions [Jordan 2005], would give better results. However, the HMM with Gaussian
mixture emission has a much larger number of parameters and thus faces the “overfitting” problem.
We found a discrete HMM as presented here gave better results.
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4.3 Error Correction with a Language Model

As we discussed in Section 3, error correction is a crucial step in improving the
results. It is used in unsupervised training, supervised training and also recognition
of English text.

4.3.1 Simple Probabilistic Spelling Correction. Using a spelling checker is one
of the easiest ways to exploit knowledge about the language. We ran spell checks
using Aspell [Atkinson 2005a] on recognized text and found some improvements.
However stock spell checkers are limited in the kinds of spelling errors they can
handle, e.g. at most two letters wrong in a word. They are designed to cope well
with common errors that human typists make, not the kinds of errors that acoustic
emanation classifiers make. It is not surprising that their utility here is limited.

Fortunately, there are patterns in the errors that the acoustic keystroke classifier
makes. For example, it may have difficulty with several keys, often confusing one
with another. Suppose that we knew the correct plaintext. (This is of course
not true, but as we iterate the algorithm, we will predict the correct plaintext
with increasing accuracy. Below, we address the case of unsupervised step, where
we know no plaintext at all.) Under this assumption, we would have a simple
method to exploit these patterns. We act as if this assumption were true, and run
the acoustic keystroke classifier on some training data and record all classification
results, including errors. With this, we calculate a matrix E (sometimes called the
confusion matrix in the machine learning literature),

No=jy=i

N, (1)

Eij=py=ilz=j)=
where p(-) denotes estimated probability, z is the typed key and y is the recognized
key, and Ny—; y—; is the number of times x = j,y = ¢ is observed. Columns of E
give the estimated conditional probability distribution of y given x.

Assume that letters are independent of each other and the same is true for words.
(This is a false assumption because there is much inter-letter dependence in natural
languages, but works well in practice for our experiments.) We compute the condi-
tional probability of the recognized word Y (the corresponding string returned by
the recognizer, not necessarily a correct word) given each dictionary word X.

length of X
p(YX)= [ »(YilXo) =[] Bvre (2)
i=1 i

In the equation above, X; is the i-th character of dictionary word X and Y is
the i-th character of the recognized word. p(Y|X) represents the probability that
the recognition result is Y but the actual user input word is X.

We compute this probability for each dictionary word, which takes only a fraction
of a second. The word list we use is SCOWL [Atkinson 2005b] which ranks words
by complexity. We use words up to level 10 (higher-level words are more obscure),
which covers most commonly used words, giving us 95,997 words in total. By simply
selecting the word with the largest posterior probability as our correction result,
we correct many errors.
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Because of the limited amount of training data, there will be many zeroes in E if
Equation (1) is used directly, that is, the matrix will be sparse. This is undesirable
because the corresponding combination may actually occur in the recognition data.
This problem is similar to the zero-occurrence problem in n-gram models [Jurafsky
and Martin 2000]. We assign an artificial occurrence count (we use 0.1) to each
zero-occurrence event.

In the discussion above we assume the plaintext is known, but we do not even have
an approximate idea of the plaintext in the first round of (unsupervised) training.
We work around this by letting F;; = po where pg is a constant (we use 0.5) and
distribute the remaining 1 — po uniformly over all E;; where j # i. Obviously this
gives suboptimal results, but the feedback mechanism corrects this later.

4.3.2 Adding an n-gram Language Model. The spelling correction scheme above
does not take into account relative word frequency or grammar issues: for example,
some words are more common than others, and there are rules in forming phrases
and sentences. Spelling correction will happily accept “fur example” as a correct
spelling because “fur” is a dictionary word, even though the original phrase is
probably “for example”.

One way to fix this is to use an n-gram language model that models word fre-
quency and relationship between adjacent words probabilistically [Jurafsky and
Martin 2000]. Specifically, we combine trigrams with the spelling correction method
above and model a sentence using the graphical model shown in Figure 6. The
hidden variables w; are words in the original sentence. The observations v; are
recognized words. p(v¢|w;) is calculated using Equation (2) above. Note this is a
second-order HMM, because every hidden variable depends on two prior variables.
The conditional probability p(w|w;—1,w;—2) is determined by a trigram model
obtained by training on a large corpus of English text.

In this model only the w; values are unknown. To infer the most likely sentence,
we again use the Viterbi algorithm. We use a version of the Viterbi algorithm
for second order HMMs, similar to the one in [Thede and Harper 1999]. The
complexity of the algorithm is O(T N?), where T is the length of the sentence and
N is the number of possible values for each hidden variable, that is, the number
of dictionary words of the appropriate length. To reduce complexity, only the top
M candidates from the spelling correction process of each word are considered in
the Viterbi algorithm, lowering the cost to O(T'M?3). That is, for each recognized
word v, we select the top M possible hidden variables (w;) where p(v¢|w;) are the
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largest values among all dictionary words. We start from the first word, and each
word is chosen from the top M candidate dictionary words. We find the path with
the largest:

T

p(vr|wy)p(ws w1 )p(va|w2) | | p(velwe)p(wilws -1, we )
t=3

We used M = 20 in our experiments. Larger M values provide little improvement.

4.4 Supervised Training and Recognition

Supervised training refers to training processes performed with labeled training
data. We apply our feedback-based training processes iteratively, using in each
iteration characters “recognized” in previous iterations as training samples to im-
prove the accuracy of the acoustic keystroke classifier.

Below, we discuss three different methods of supervised training and recognition
we use in our experiments, including the one used in [Asonov and Agrawal 2004].
Like any supervised classification problem, there are two stages:

(1) Training: input feature vectors and corresponding labels (the key pressed) and
output a model to be used in recognition;

(2) Recognition: input feature vectors and the trained classification model and
output the label of each feature vector (keystroke).

4.4.1 Method 1: Neural Networks. The first method is neural networks, also
used by Asonov and Agrawal [Asonov and Agrawal 2004]. Specifically, we use
probabilistic neural networks, which are arguably the best neural networks avail-
able for for classification problems [Wasserman 1993]. We use Matlab’s newpnn ()
function, with spread radius parameter as 1.4 (this gives the best results in our
experiments).

4.4.2  Method 2: Linear Classification (Discriminant). The second method is
simple linear (discriminant) classification [Jordan 2005]. This method assumes the
data to be Gaussian and finds hyperplanes in the space to divide the classes. We
use the classify() function from Matlab.

4.4.3 Method 3: Gaussian Miztures. The third method is more sophisticated
than linear classification (though it gave worse results in our experiments). Instead
of assuming Gaussian distribution of data, it assumes that each class corresponds
to a mizture of Gaussian distributions [Jordan 2005]. A mixture is a distribution
composed of several sub-distributions. For example, a random variable with dis-
tribution of a mixture of two Gaussians could have a probability of 0.6 of being in
one Gaussian distribution and 0.4 of being in the other Gaussian distribution. This
captures the fact that each key may have several slightly different sounds depending
on how the typist hit the key.

We also use the EM algorithm to train the Gaussian mixture model. In our
experiment, we used mixtures of five Gaussian distributions of diagonal covariance
matrices. Mixtures of more Gaussians provide potentially better model accuracy
but need more parameters to be trained, requiring more training data and often
making EM less stable. We find using five components seems to provide a good
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recording length | number of words | number of keys
Set 1 12m17s 409 2514
Set 2 26mb6s 1000 5476
Set 3 21m49s 753 4188
Set 4 23mb4s 732 4300
Table I.  Statistics of each test set.

tradeoff. Using diagonal covariance matrices reduces the number of parameters.
Without this restriction, EM has very little chance of yielding a useful set of pa-
rameters.

5. EXPERIMENTS

Our experiments evaluated the attacks. In our first experiment, we worked with
four recordings of various lengths of news articles being typed. We use a Logitech
Elite cordless keyboard in use for about two years (manufacturer part number:
867223-0100), a $10 generic PC microphone and a Soundblaster Audigy 2 sound-
card. The typist was the same for each recording. The keys typed included “a”-“z”,
comma, period, space and enter. The article was typed entirely in lower case so
the shift key was never used. Typists were told to continue typing without using
backspace key for error correction. (We discuss these issues in Section 6.) Note
that our experiments are preliminary. To validate the applicability of the work in
more complicated environment and settings, a more complete set of experiments,
in particular with more than a couple typists, would be necessary.

Table I shows the statistics of each test set. Sets 1 and 2 are from quiet environ-
ments, while sets 3 and 4 are from noisy environments. Our algorithm for detecting
the start of a keystroke sometime fails. We manually corrected the results of the
algorithm for sets 1, 2 and 3, requiring ten to twenty minutes of human time per
data set. (Sets 1 and 2 needed about 10 corrections; set 3 required about 20 correc-
tions.) For comparison purposes, set 4 (which has about 50 errors in determining
the start of keystrokes) was not corrected.

In our second experiment, we recorded keystrokes from three additional models
of keyboards (see Section 5.1.2). The same keystroke recognition experiments were
run on these recordings and results compared. We used identical texts in this
experiments on all these keyboards.
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Set 2

Set 3

Set 4

words | chars

words | chars

words | chars

words | chars
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unsupervised | keystrokes || 34.72 | 76.17 | 38.50 | 79.60 31.61 | 72.99 | 23.22 | 67.67
learning language 74.57 | 87.19 | 71.30 | 87.05 56.57 | 80.37 | 51.23 | 75.07
1st supervised | keystrokes || 58.19 | 89.02 | 58.20 | 89.86 51.53 | 87.37 | 37.84 | 82.02
feedback language 89.73 | 95.94 | 88.10 | 95.64 || 78.75 | 92.55 | 73.22 | 88.60
2nd supervised | keystrokes || 65.28 | 91.81 | 62.80 | 91.07 || 61.75 | 90.76 | 45.36 | 85.98
feedback language 90.95 | 96.46 | 88.70 | 95.93 | 82.74 | 94.48 | 78.42 | 91.49
3rd supervised | keystrokes || 66.01 | 92.04 | 62.70 | 91.20 || 63.35 | 91.21 | 48.22 | 86.58
feedback language || 90.46 | 96.34 | 89.30 | 96.09 || 83.13 | 94.72 | 79.51 | 92.49

Table II. Text recovery rate at each step. All numbers are percentages. The outputs denoted as “keystroke” are recovery rates
before language model correction. The bold face numbers in the “keystroke” row represent recovery rates that could be achieved
for random sequences of characters. The outputs denoted as “language” are recovery rates after language model correction. The
bold face numbers in the “language” row represent recovery rates that could be achieved for non-random sequences of characters,
such as English text.
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5.1 English Text Recognition

5.1.1 A Single Keyboard. In our experiments, we used linear classification to
train the keystroke classifier. Table II shows the result after each step. First, the
unsupervised learning step (Figure 2(a)) was run. In this unsupervised step, the
HMM model shown in Figure 5 was trained using EM algorithm described above?.
The output from this step is the recovered text from HMM/Viterbi unsupervised
learning, and the text after language model correction. These two are denoted as
keystrokes and language respectively in the table. Then the first round of feedback
supervised training produces a new classifier. The iterated corrected text from this
classifier (and corresponding text corrected by the language model) are shown in
the row marked “Ist supervised feedback”. We perform three rounds of feedback
supervised learning. The bold numbers show our final results. The bold numbers
in the “language” row are the final recognition rate we achieve for each test set.
The bold numbers in the “keystroke” row are the recognition rates of the keystroke
classifier, without using the language model. These are the recognition rates for
random or non-English text.

The results show that:

—The language model correction greatly improved the correct recovery rate for
words.

—The recovery rates in quiet environments (sets 1 and 2) were slightly better that
those in noisy environments (sets 3 and 4). But the difference became smaller
after several rounds of feedback.

—Correctness of the keystroke position detection affected the results. The recovery
rate in set 3 was better than set 4 because of keystroke location mistakes included
in set 4.

—Wohen keystroke positions have been corrected after several rounds of feedback,
we achieved an average recovery rate of 87.6% for words and 95.7% for characters.

To understand how different classification methods in the supervised training
step affected the results, we reran the same experiment on set 1, using different
supervised classification methods. Table IIT shows our results. The methods in
order of quality are is linear classification, then Gaussian mixtures, and then neural
networks. Experiments with other data sets gave similar results.

In the experiments above, we used recordings longer than 10 minutes. To discover
the minimal amount of training data needed for reasonable results, we took the first
data set (i.e. “Set 1”7 above) and used only the first 4, 5, 7 and 10 minutes of the
12-minute recording for training and recognition. Figure 7 shows the recognition
results we get. This figure suggests that at least 5 minutes of recording data are
necessary to get good results for this particular recording®.

4Since the EM algorithm is a randomized algorithm, it might sometimes get stuck in local optima.
To avoid this, in each of these experiments, we run the same training process eight times and used
results from the run with the highest log-likelihood.

5The dip in the solid curve probably occuried because of noise during the 2-minute recording
window (between minute 5 and minute 7).
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NN LC MC

words | chars | words [ chars | words | chars

1st supervised | keystrokes | 59.17 | 87.07 | 58.19 | 89.02 | 59.66 | 87.03
feedback language | 80.20 | 90.85 | 89.73 | 95.94 | 78.97 | 90.45
2nd supervised | keystrokes | 70.42 | 90.33 | 65.28 | 91.81 | 66.99 | 90.25
feedback language | 81.17 | 91.21 | 90.95 | 96.46 | 80.20 | 90.73
3rd supervised | keystrokes | 71.39 | 90.81 | 66.01 | 92.04 | 69.68 | 91.57
feedback language | 81.42 | 91.93 | 90.46 | 96.34 | 83.86 | 93.60

Table III. Recognition rates of classification methods in supervised learning. All
numbers are percentages. The outputs denoted as “keystroke” are recovery rates
before language model correction. The bold face numbers in the “keystroke” row
represent recovery rates that could be achieved for random sequences of characters.
The outputs denoted as “language” are recovery rates after language model correc-
tion. The bold face numbers in the “language” row represent recovery rates that
could be achieved for non-random sequences of characters, such as English text.
(NN:Neural Network; LC:Linear Classification; MC:Gaussian Mixtures)

Keyboard 1 Keyboard 2 Keyboard 3
words | chars | words [ chars | words | chars
unsupervised | keystrokes | 30.99 | 71.67 | 20.05 | 62.40 | 22.77 | 63.71
learning language | 61.50 | 80.04 | 47.66 | 73.09 | 49.21 | 72.63
1st supervised | keystrokes | 44.37 | 84.16 | 34.90 | 76.42 | 33.51 | 75.04
feedback language | 73.00 | 89.57 | 66.41 | 85.22 | 63.61 | 81.24
2nd supervised | keystrokes | 56.34 | 88.66 | 54.69 | 86.94 | 42.15 | 81.59
feedback language | 80.28 | 92.97 | 76.56 | 91.78 | 70.42 | 86.12
Final keystrokes | 60.09 | 89.85 | 61.72 | 90.24 | 51.05 | 86.16
result language | 82.63 | 93.56 | 82.29 | 94.42 | 74.87 | 89.81

Table IV. Text recovery rate at each step. With different keyboards. All numbers
are percentages. The outputs denoted as “keystroke” are recovery rates before
language model correction. The bold face numbers in the “keystroke” row represent
recovery rates that could be achieved for random sequences of characters. The
outputs denoted as “language” are recovery rates after language model correction.
The bold face numbers in the “language” row represent recovery rates that could
be achieved for non-random sequences of characters, such as English text.

5.1.2  Multiple Keyboards. To verify that our approach applies to different mod-
els of keyboards, we performed the keystroke recognition experiment on different
keyboards, using linear classification in the supervised training step. The models
of the keyboards we used are:

—Keyboard 1: Dell™ Quietkey® PS/2 keyboard, manufacturer part number
2P121, in use for about 6 months.

—Keyboard 2: Dell™ Quietkey® PS/2 keyboard, manufacturer part number
035KKW, in use for more than 5 years.
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Fig. 7. Length of recording vs. recognition rate.

—Keyboard 3: Dell™ Wireless keyboard, manufacturer part number W0147, new.

The same document (2273 characters) was typed on all three keyboards and we
recorded keystroke sounds. Each recording lasted about 12 minutes. In these
recordings, the background machine fan noise was noticeable. While recording from
the third keyboard, we got several seconds of unexpected noise from a cellphone
nearby. Table IV shows our results. Results in the table show that the first and
the second keyboards achieve higher recognition rate than the third one. But in
general, all keyboards are vulnerable to the attacks we present in this paper.

5.2 Random Text Recognition and Password Stealing

We used the keystroke classifier trained by set 1 to mount password stealing attacks.
All password input recorded in our experiment were randomly generated sequences,
not user names or dictionary words. The output of the keystroke classifier for each
keystroke is a set of posterior probabilities:

p(this keystroke has label i|observed-sound), i=1,2,...,30.

Given these conditional probabilities, one can calculate probabilities for all se-
quences of keys being the real password. We sorted these sequences by their prob-
abilities from the largest to the smallest. This produced a candidate list and the
attacker can try one-by-one from the top to the bottom. To measure the efficacy
of the attack, we used the position of the real password in this list. A user inputed
500 random passwords each of length 5, 8 and 10. Figure 8 shows the cumulative
distribution function of the position of the real password. For example, with twenty
trials, 90% of 5-character passwords, 77% of 8-character passwords and 69% of 10-
character passwords are recovered. As Figure 8 also shows, after seventy-five trials,
we can recover 80% of 10-character passwords.
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Fig. 8. Password stealing: distribution of the number of trials required by the attacker.

6. DISCUSSION
6.1 Timing Information

We discuss above how to use acoustic information of keystrokes to recover typed
keys. Our experiments show high keystroke recovery rates using only acoustic in-
formation. As mentioned above, Song, Wagner and Tian point out that the time
between consecutive keys also carries information about typed keys [Song et al.
2001]. It may be possible to further improve the recovery rate with timing infor-
mation. Here we give one way to combine timing features with acoustic features,
however our results show only a modest improvement in recovery rate.

The time between a pair of consecutive keys is related to many factors, such
as the location of the two keys on the keyboard, typing style, whether the keys
are typed by alternating hands or the same hands, whether the keys are typed
by different fingers or the same finger, etc. We recorded a typist at normal pace,
without intentional stops between keys. Figure 9 shows the distribution of time
between “a” and subsequent keys is significantly different from “h” and subsequent
keys. The key “a” is located near the border of a keyboard and touch typists use
the small finger of the left hand to type it; while the key “h” is located in the middle
of a keyboard and touch typists use the index finger of the right hand to type it.
Figure 9 suggests the time between a key and a subsequent key carries information
about the location of the key on the keyboard, that is, information related to the
label of the key.

In the discussion above we represent acoustic information as a vector of features.
If we assume the length of the time interval between a key and its next key carries
information (as shown in Figure 9), we can add time as an additional dimension
in the feature vector. We can then apply new feature vectors with time as one of
the dimensions in our supervised training step. We experimented with the sets 1,
2, and 3, using training approaches as above. Table V shows that initial and final
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Fig. 9. Cumulative Distribution Function (CDF) of time: a pair of keys starting with “a”(“a*”)

vs. a pair of keys starting with “h” (“h*”).

recognition rates in supervised training.

without time with time
word | char | word char
initial | keystroke | 58.19 | 89.02 | 57.95 | 88.94
set language | 89.73 | 95.94 | 89.00 | 95.31
1 final | keystroke | 66.01 | 92.04 | 65.77 | 92.12
language | 90.46 | 96.34 | 91.20 | 96.50
initial | keystroke | 58.20 | 89.86 | 58.20 | 89.83
set language | 88.10 | 95.64 | 87.7 95.28
2 final | keystroke | 62.70 | 91.20 | 62.70 | 91.09
language | 89.30 | 96.09 | 89.2 96.00
initial | keystroke | 51.53 | 87.37 | 51.39 | 87.32
set language | 78.75 | 92.55 | 77.56 | 92.09
3 final | keystroke | 63.35 | 91.21 | 62.55 | 91.07
language | 83.13 | 94.72 | 82.20 | 94.44

Table V. Recognition rate in supervised training: with timing information vs. with-
out timing information.

The recognition rates in Table V suggest that time between consecutive keys does
not substantially improve the supervised learning in the feedback based training.
The results are not as good as the results reported by Song, Wagner and Tian.
Reasons for this discrepancy may include:

—Song et al. used the length of the time interval between consecutive keys in a
very short phase, such as a password. The pace of typing when a user types his
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password is probably more consistent than the pace of typing when a user types
an article. In our test sets, the typist sometimes stopped in the middle of typing
an article. Also typing speed for some words are much faster than others even if
those words share common pairs of characters. The newly introduced timing in-
formation (“signal”) comes along with random variations (“noise”) above. When
we add the timing information with acoustic information, the training methods
do not receive a sufficient number of samples with consistent timing information
to improve recovery rates.

—Acoustic information alone yields a high recognition rate. The acoustic informa-
tion has a higher “signal-to-noise” ratio compared to timing information. More-
over, spelling and grammar correction makes the effects of timing information
less visible too.

Finding good ways to combine inter-keystroke time interval information with
acoustic key recovery merits further research.

6.2 Why Keys Sound Different

We are interested in finding out why keystrokes of different keys sound different.
There are at least two contributing factors:

—Keyboard layout. Keys are located at different locations on the support plate of
a keyboard. Just as striking a drum at different locations yields different sounds,
the keys on a keyplate yield different sounds.

— Typing patterns. The sound of keystroke is related to how the key is typed; for
example, the direction that a key is hit.

To verify the hypotheses above, we performed an experiment.

In the experiment, each key was repeatedly struck 50 times. The sound samples
of 50 hits for each key were used to train acoustic classifiers using different classifica-
tion methods (i.e. linear classification, neural networks and mixture of Gaussians).
Then, the acoustic classifiers trained in this way were used to recognize the training
set and two different sets of new sound samples. The first test set was composed of
sound samples from 30 repeated hits of each key. The second test set is composed
of sound samples from a typist typing an article. Table VI shows our recognition
rates.

repeat50 (training) || repeat30 | article

Linear Classification 95.67% 88.05% | 53.49%
Neural Network 100% 81.84% | 51.21%
Mixture of Gaussians 98.87% 81.15% | 47.44%

Table VI. Recognition rate of repeat key hits and article input using classifier trained
by repeat key hits.

When a key was repeatedly struck, all keystrokes are made with the similar
strength by a single finger and using almost the same gesture. There is no difference
in typing style between different keys. Table VI shows that the recognition rates
of test samples from keys typed repeatedly are over 80%, which suggests that the
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sound differences may come from the physical properties of a keyboard: location
of keys, physical difference between keys, etc. This observation supports our first
assumption that keyboard layout contributes to different sound from keys.

If the keyboard layout was the only reason for different sound of keys, the classifier
trained by sound of repeatedly typing the same key should also work for normal
typing. However, this model was not very effective in classifying normal English
text. One reason for this is that typing normal English text uses a variety of
paces, gestures, and key press strengths. Repeated typing only teaches the acoustic
classifiers a portion of sounds that a key could make. This experiment suggests that
keys sound different because of both the keyboard layout and typing style such as
paces, gestures and hitting strengths, etc.

6.3 Special Keys

The current attack does not take into account special keys such as the Shift key,
the Control key, the Backspace key and the Caps Lock key. There are two issues
here. One is whether keystrokes of special keys are separable from other keystrokes
at signal processing time. Our preliminary experiments suggest this is possible;
push peaks of keystrokes are easily separable in the recordings we looked at. The
other issue is how modifier keys such as the Shift key fit into spelling correction
scheme. We hypothesize ad hoc solutions such as replacing the Shift key or the
Caps Lock key with spaces will work. The Shift key often appears before the first
letter of a word. If it is recognized incorrectly, the following word will be one letter
longer. In spelling and grammar correction, we can take this into account by not
only considering words of the same lengths, but also those with one fewer letter.
For example, if we get “atje” after initial recognition, the word “the” will also be
considered as a candidate word for correction because we might misrecognize the
Shift key as “a”. These keys can be much more reliably recognized by training a
classifier specifically for the Shift key and the Caps Lock key. Note that we do not
need to distinguish between uppercase and lowercase in the recovered text, so it is
not necessary to detect when the Shift key is released.

The Backspace key is also important. The ideal solution would be to figure
out what the final text is after applying the backspaces. But that probably will
complicate the error correction algorithms. So one could just recognize these keys
and leave the “word” before and after out of error-correction because they are
probably not full words. An interesting fact about the Backspace key is that this
key is often hit repeatedly: a user often wants to delete a whole word or a whole
sentence. Here, a bit of human aid could be useful because backspaces are relatively
easy to detect by ear based on sound and context, although it is harder than spaces.
It is not difficult for human ears to detect repeated keystrokes of the Backspace key.
Since the sound of the Backspace key is very different from others, in the acoustic
clustering step, they will normally clustered with the same label. It is possible to
write a program to automatically select sound samples of consecutive keys which
are clustered in a common label. A variety of techniques could be used to decide
whether these are consecutive Backspaces. After sound samples of the Backspace
keys are collected, we train a specific acoustic classifier for the Backspace keys as
well.
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6.4 Attack Improvements

This section discusses improvements to our attacks.

—One challenge we met in our work was marking keystroke starting points in the
sound signal. This is not trivial because the sound varies in energy level, timing,
frequency distribution, etc., depending on the typist and recording environment.
We use energy level and timing constraints between consecutive keys to mark the
starting positions of keystrokes. Detection rules are manually created based on
past experiences. Our detection program based on this approach has difficulty
in marking keystroke positions in recordings from fast typists. However, there
is additional information we can use: namely frequency, which appears to vary
from the push peak to the release peak. We hope to explore this in future work.
A robust and consistent keystroke position detection algorithm may also improve
the recovery rate of typed characters.

—Currently, we assume the Space key, Enter key and punctuation keys are detected
correctly and use them to divide characters into words. We use candidate words
of the same length as the “words” separated in this way. In future work, we will
explore better ways to choose candidate words for correction, with the goal of
high quality correction even when there are mistakes in separating words.

—An alternative method for feedback training is Hierarchical Hidden Markov Mod-
els (HHMMs) [Fine et al. 1998]. In a HHMM, HMMs of multiple levels (grammar
level and spelling level in this case) are built into a single model. Algorithms to
maximize global joint probability may improve the effectiveness of the feedback
training procedure. This approach merits further investigation.

—Our experiments tested on FFT features and cepstrum features. However, there
are other types of features for representing sound signals. For each type of feature,
there are multiple parameters to control the extracted information. Currently,
we used ad hoc methods to select these parameters. An entropy based metric
defined specifically for measuring acoustic features may provide better, more
systematic way to compare features and parameters. This metric may also allow
us to compare information leaked by individual keys. Given current PC keyboard
layouts, is the leaking uniform among keys, or should we pay more attention to
specific keys? Is it possible to know which typing styles leak more information
and whether different typists leak different amounts of information?

—In a controlled environment where we can record isolated typing sounds, the
recovery rate is now high. However, in most realistic situations, environmental
background noise is an issue. In many work spaces, we have multiple users simul-
taneously typing. Isolating the sound of a single typist is difficult. We propose to
test recording with multiple microphones, including arrays of directional micro-
phones. We could get the sound signal of multiple channels in this way. Similarly,
we have shown that the recognition rate is lower in noisy environments. Attacks
will be less successful when the user is playing music or talking to others while
typing. However, we may be able to use signal processing techniques (especially
in multichannel recordings) to isolate the sound of a single typist.

—We hope to explore a variety of recording devices including parabolic micro-
phones, laser microphones, telephone receiver microphones, acoustic chat con-
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nections such as Skype, etc.

—In future work, it is particularly interesting to try to detect keystrokes typed
in a particular application, such as a visual editor (e.g. emacs) or a software
development environment (e.g. Eclipse). Examining text typed in these environ-
ment presents challenges because more keys maybe used and special keys maybe
used more often. Furthermore, the bigram or transition matrix will be different.
Nonetheless we believe that our techniques may be applicable to detecting key-
strokes of users in these applications and indeed can even cover input as different
as other small alphabet languages, such as Russian or Arabic, large alphabet
languages, such as Chinese or Japanese, and even programming languages.

6.5 Defenses

Since our attack is based on acoustic signal through passively eavesdropping, it
is more difficult to detect this type of attacks than active attacks where attack-
ers actively interact with victims. Here are some preliminary areas for potential
defenses:

—Reduce the possibility of leaking acoustic signals. Sound proving may help, but
given the effectiveness of modern parabolic and laser microphones, the standards
are very high.

—Quieter keyboards as suggested by Asonov and Agrawal may reduce vulnerability.
However, the two so-called “quiet” keyboards we used in our experiments proved
ineffective against the attack. Asonov and Agrawal also suggest that keyboard
makers could produce keyboards having keys that sound so similar that they are
not easily distinguishable. They claim that one reason keys sound different today
is that the plate underneath the keys makes different sounds when hit at different
places. If this is true, using a more uniform plate may alleviate the attack.
However, it is not clear whether these kinds of keyboards are commercially viable.
Also, there is the possibility that more subtle differences between keys can still
be captured by an attacker. Further, keyboards may develop distinct keystroke
sounds after months of use.

—Another approach is reduce the quality of acoustic signal that could be acquired
by attackers. We could add masking noise while typing. However, we are not sure
that masking noises might not be easily separated out. As we discussed above, an
array of directional microphones may be able to record and distinguish sound into
multiple channels according to the locations of the sound sources. This defense
could also be ineffective when attackers are able to collect more data. Reducing
the annoyance of masking is also an issue. Perhaps a short window of noise could
be added at every predicted push peak. This may be more acceptable to users
than continuous masking noise. Alternatively, perhaps we could randomly insert
noise windows which sound like push peaks of keystrokes.

—The practice of relying only on typed passwords or even long passphrases should
be reexamined. One alternative is two-factor authentication that combines pass-
words or pass-phrases with smart cards, one-time-password tokens, biometric
authentication and etc. However two-factor authentication does not solve all our
problems. Typed text other than passwords is also valuable to attackers.
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7. CONCLUSION

Our new attack on keyboard emanations needs only acoustic recording of typing
using a keyboard and recovers the typed content. Compared to previous work that
requires clear-text labeled training data, our attack is more general and serious.
More important, the techniques we use to exploit inherent statistical constraints
in the input and to perform feedback training can be applied to other emanations
with similar properties.
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A. RECOVERED TEXT EXAMPLES

Text recognized by the HMM classifier, with cepstrum features (underlined words
are wrong),

the big money fight has drawn the shoporo od dosens of companies
in the entertainment industry as well as attorneys gnnerals on
states, who fear the fild shading softwate will encourage illegal
acyivitt, srem the grosth of small arrists and lead to lost cobs
and dimished sales tas revenue.

Text after spelling correction using trigram decoding,

the big money fight has drawn the support of dozens of companies
in the entertainment industry as well as attorneys generals in
states, who fear the film sharing software will encourage illegal
activity, stem the growth of small artists and lead to lost jobs
and finished sales tax revenue.

Original text. Notice that it actually contains two typographical errors, one of
which is fixed by our spelling corrector.

the big money fight has drawn the support of dozens of companies
in the entertainment industry as well as attorneys gnnerals in
states, who fear the file sharing software will encourage illegal
activity, stem the growth of small artists and lead to lost jobs
and dimished sales tax revenue.

B. DETAILS OF FEATURE EXTRACTION IMPLEMENTATION

The main difference between the duration of keystrokes and the silent periods be-
tween keystrokes is the level of energy in a certain range of frequencies. The “silent”
periods between keystrokes might also have non-negligible energy because of other
noises. The major part of energy is in different frequency range than those from
keystrokes. Our experiments show that the energy of keystroke durations is mainly
in the frequencies between 400Hz and 12KHz.

To extract the start of each keystroke, we:

(1) Compute the windowed discrete-time Fourier transform of a signal using a
sliding window (e.g. Matlab specgram()) with the magnitude of outputs as the
spectrograim;

(2) Sum over the spectrogram in the range [0.4, 12] KHz to get a aggregate curve;

(3) Set a threshold and find the start of each peak in the curve as the start of a
keystroke (see Figure 4).

Note that the positions of starts of keystrokes detected from the curve in Figure 4
is the index of window number (win num), which are converted back to the original
location (wav_position) in the audio stream by:

wav_position = (winnum — 2) * win_shift 4+ win_length
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The raw features might have high dimensionality. Possible algorithms for dimen-
sionality reduction are Factor Analysis (FA) or the simpler Principal Component
Analysis (PCA) [Jordan 2005]. Although some of our preliminary experiments use
PCA, our final experiments do not use it. The FFT and cepstrum features we ex-
tract are not of very high dimension (typically the number of dimension is between
60 and 80), so we do not need to apply dimension reduction.
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