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6.7 CASE STUDY: ACOUSTIC KEYBOARD EMANATIONS

Li Zhuang, Feng Zhou and 1. D. Tygar

Emanations produced by electronic devices have long been a topic of concern in the
security and priviacy communities [27]. Both electromagnetic and optical emanations have
been used as sources for attacks. For example, Kuhn was able to recover the display on
a CRT monitor by using indirectly reflected optical emanations [38). Recently he also
successfully attacked LCD monitors [39]. Acoustic emanations are another source of data
for attacks. Researchers have shown that acoustic emanations of matrix printers carry
substantial information about the printed text [27]. Some researchers suggest it may be

Table 6.5  Fields in the Riddle Demo’s Hidden Form and Percentages of Unique Visits {out
of 71) in Which the Browser’s Autofill Feature Disclosed Personal Information.(No personal
information is collected by the demo, so we do not know if the information would be valuable to a phisher;
we only record the instances in which the server receives some value for each field. These numbers are for
illustration purposes only: no formal user study was conducted and the demo was only advertised to & few
colleagues interested in cybersecurity.)

Field Victims
First_Name 9%
Last_Name 9%
Email 9%
Address 9%
City 9%
State 9%
Zip 8%
Phone_Number 8%

Credit_Card_Number 1%
Password 1%
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possible to discover CPU operations from acoustic emanations [47]. Most recently, Asonov
and Agrawal showed that it is possible to recover text from the acoustic emanations from
typing on a keyboard [22].

Most emanations, including acoustic keyboard emanations, are not uniform across dif-
ferent instances. even when the same device model is used; and they are often affected by
the environment. Different keyboards of the same model. or the same keyboard typed by
different people emit different sounds. making reliable recognition hard [22]. Asonov and
Agrawal achieved relatively high recognition rate (approximately 80%) only when they
trained neural networks with text-labeled sound samples of the same keyboard typed by the
same person. This is in some ways analogous to a known-plaintext attack on a cipher — the
cryptanalyst has a sample of plaintext (the keys typed) and the corresponding ciphertext
(the recording of acoustic emanations). This labeled training sample requirement suggests
a limited attack. because the attacker needs to obtain training samples of significant length.
Presumably these could be obtained from video surveillance or network sniffing. However,
video surveillance in most cases should render the acoustic attack irrelevant, because even
if passwords are masked on the screen, a video shot of the keyboard could directly reveal
typed keys. Network sniffing of interactive network logins is becoming less viable since
unencrypted login mechanisms are being phased out.

Is a labeled training sample requirement neccessary? The answer is no according to our
recent research. This implies keyboard emanation attacks are more serious than previous
work suggests. The key insight in our work is that the typed text is often not random. When
one types English text, the limited number of English words limits the possible temporal
combinations of keys, and English grammar limits the word combinations. One can first
cluster (using unsupervised methods) keystrokes into a number of classes based on their
sound. Given sufficient (unlabeled) training samples, a most-likely mapping between these
classes and actual typed characters can be established using the language constraints.

This task is not trivial. Challenges include: 1) How can one model these language
constraints in a mathematical way and mechanically apply them? 2) In the first sound-
based clustering step, how can one address the problem of multiple keys clustered in the
same class and the same key clustered into multiple classes? 3) Can we improve the accuracy
of the guesses by the algorithm to match the level achieved with labeled sumples?

Our work answers these challenges, using a combination of machine learning and speech
recognition techniques. We show how to build a keystroke recognizer that has better recog-
nition rate than labeled sample recognizers in [22]. We use only a sound recording of a user
typing.

Our method can be viewed as a machine learning version of classic attacks to simple
substitution ciphers. Assuming the ideal case in which a key sounds exactly the same each
time it is pressed, each keysiroke is easily given a class according 1o the sound. The class
assignment is a permutation of the key labels. This is exactly an instance of a substitution
cipher. Early cryptographers developed methods for recovering plaintext. using features of
the plaintext language. Our attack follows the same lines as those methods, although the
problem is harder because a keystroke sounds differently each time it is pressed, so we need
new techniques.

We built a prototype that can bootstrap the recognizer from about 10 minutes of English
text typing, using about 30 minutes of computation on a desktop computer with Pentium IV
3.0G CPU and IG memory. After that it can recognize keystrokes in real time, including
random ones such as passwords, with an accuracy rate of about 90%. For English text, the
language constraints can be applied resulting in a 90-96% accuracy rate for characters and
a 75-90% accuracy rate for words.
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We posit that our framework also applies to other types of emanations with inherent sta-
tistical constraints, such as power consumption or electromagnetic radiation. One only need
adapt the methods of extracting features and modeling constraints. Our work implies that
emanation attacks are far more challenging, serious, and realistic than previously realized.
Emanation attacks deserve greater attention in the computer security community.

6.7.1 Previous Attacks of Acoustic Emanations

Asonov and Agrawal are the first researchers we are aware of who present a concrete attack
exploiting keyboard acoustic emanations [22]. Their attack uses FFT values of the push
peaks (see Figure 6.27) of keystrokes as features, and trains a classifier using a labeled
acoustic recording with 100 clicks of each key. After training, the classifier recognizes
keystrokes.

Asonov and Agrawal’s work is seminal. They opened a new field. However, there are
limitations in their approach. )

1. As we discuss in Section 12.1, their attack is for labeled acoustic recordings. Given
that the attack works well only with the same settings (i.e. the same keyboard,
person, recording environment, etc.) as the training recording, the training data are
hard to obtain in typical cases. Training on one keyboard and recognizing on another
keyboard of the same model yields lower accuracy rates, around 25% [22]. Even if
we count all occasions when the correct key is among the top four candidates, the
accuracy rate is still only about 50%. Lower recognition rates are also observed when
the model is trained by one person and used on another. Asonov and Agrawal admit
that this may not be sufficient for eavesdropping.

12

. The combination of classification techniques leaves room for improvement. We found
superior techniques to FFT as features and neural networks as classifiers. Figure 6.25
shows comparisons. The classifier is trained on the rraining sef data and is then used
to classify the training set itself and two other data sets. The Figure shows that
the recognition rate with cepstrum features is consistently higher than that of FFT.
This is true for all data sets and classification methods. The Figure also shows that
neural networks perform worse than linear classification on the two test sets. In
this experiment, we could only approximate the exact experiment settings of Asonov
and Agrawal. But significant performance differences indicate that there are better
alternatives to FFT and neural networks combination.

6.7.2 Description of Attack

In this section. we survey our attack without statistical details. Section 6.7.3 presents the
attack in full.

We take a recording of a user typing English text on a keyboard, and produce a recognizer
that can, with high accuracy, determine subsequent keystrokes from sound recordings if it
is typed by the same person, with the same keyboard, under the same recording conditions.
These conditions can easily be satisfied by, for example, placing a wireless microphone
in the user’s work area or by using parabolic microphones. Although we do not know in
advance whether a user is typing English text, in practice we can record continuously, try
to apply the attack, and see if meaningful text is recovered.

Figure 6.26 presents a high leve] overview of the attack. ’
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Figure 6.25 Recognition rates using FFT and cepstrum features. The Y axis shows the recognition
rate. Three different classification methods are used on the same sets of FFT or cepstrum features.
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Feature extraction. We use cepstrum features, a technique developed by researchers
in voice recognition [49]. As we discuss below in Section 6.7.3, cepstrum features
give better results than FFT.

Unsupervised kev recognition using unlabeled training data. We cluster each key-
stroke into one of A" classes, using standard data clustering methods. K is chosen to
be slightly larger than the number of keys on the keyboard.

Asdiscussed in Section 12.1, if these clustering classes correspond exactly to different
keys in a one-to-one mapping, we can easily determine the mapping between keys
and classes. However. clustering algorithms are imprecise. Keystrokes of the same
key are sometimes placed in different classes and conversely keystrokes of different
keys can be in the same class. We let the class be a random variable conditioned on
the actual key typed. A particular key will be in each class with a certain probability.
In well clustered data, probabilities of one or a few classes will dominate for each
key.

Once the conditional distributions of the classes are determined, we try to find the
most likely sequence of keys given a sequence of classes for each keystroke. Naively,
one might think picking the letter with highest probability for each keystroke yields
the best estimation and we can declare our job done. But we can do better. We use a
Hidden Markov Models (HMM) [36]. HMMs predict a stochastic process with state.
They capture the correlation between keys typed in sequence. For example, if the
current key can be either “h" or *j" (e.g. because they are physically close on the
keyboard) and we know the previous key is “t”, then the current key is more likely
to be ~h” because “th™ is more common than *tj”. Using these correlations, both
the keys and the key-to-class mapping distributions are efficiently estimated using
standard HMM algorithms. This step yields accuracy rates of slightly over 60% for
characters, which in turn yields accuracy rates of over 20% for words.

. Spelling and grammar checking. We use dictionary-based spelling correction and

a simple statistical model of English grammar. These two approaches, spelling and
grammar, are combined in a single Hidden Markov Model. This increases the char-
acter accuracy rate to over 70%, yielding a word accuracy rate of about 50% or more.
At this point, the text is quite readable (see Section 6.7.3.2).

. Feedback-based training. Feedback-based training produces a keystroke classifier

that does not require an English spelling and grammar model, enabling random text
recognition, including password recognition. We use the previously obtained cor-
rected results as labeled training samples. Note that even our corrected results are not
100% correct. We use heuristics to select words that are more likely to be correct.
For examples, a word that is not spell-corrected or one that changes only slightly
during correction in the last step is more likely to be correct than those that had
greater changes. In our experiments, we pick out those words with fewer than 1/4 of
characters corrected and use them as labeled samples to train a classifier. The recog-
nition phase (Figure 6.26(b), described below) recognizes the training samples again.
This second recognition typically yields a higher keystroke accuracy rate. We use the
number of corrections made in the spelling and grammar correction step as a quality
indicator. Fewer corrections indicate better results. The same feedback procedure
is done repeatedly until no significant improvement is seen. In our experiments, we



226 ADDING CONTEXT TO PHISHING ATTACKS: SPEAR PHISHING

03 Sl 7
450 Wsirokes star positions
400
350

250

Sample Value

150
100
0.2 50
Push Peak  Aclease Peak o

Sum of FFT Cogticiants

-

Figure 6.28  Energy levels over the duration of
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perform three feedback cycles. Our experiments indicate both linear classification
and Gaussian mixtures perform well as classification algorithms [36], and both are
better than neural networks as used in [22]. In our experiments, character accuracy
rates (without a final spelling and grammar correction step) reach up to 92%.

The second phase. the recognition phase, uses the trained keystroke classifier to recognize
new sound recordings. If the text consists of random strings, such as passwords, the result
is output directly. For English text, the above spelling and grammar language model is used
to further correct the result. To distinguish between two types of input, random or English,
we apply the correction and see if reasonable text is produced. In practice, a human attacker
can typically determine if text is random. An attacker can also identify occasions when
the user types user names and passwords. For example. password entry typically follows
a URL for a password protected website. Meaningful text recovered from the recognition
phase during an artack can also be fedback to the first phase. These new samples along
with existing samples can be used together to get an even more accurate keystroke classifier.
Our recognition rate improves over time (see Section 6.7.3.3).

Our experiments include data sets recorded in quiel and noisy environments and with
four different keyboards (See Table 6.7.4.1 and Table 6.9 in Section 6.7.4).

6.7.3 Technical Details

This Section describes in detail the steps of our attack. Some steps (feature extraction anc
supervised classification) are used in both the training phase and the recognition phase.

Keystroke Extraction

Typical users can type up to about 300 characters per minutes. Keystrokes contain a
push and a release. Our experiments confirm Asonov and Agrawal’s observation that the
period from push to release is typically about 100 milliseconds. That is, more than 100
milliseconds is left between consecutive keystrokes, which is large enough for distinguishing
the consecutive keystrokes. Figure 6.27 shows the acoustic signal of a push peak and a
release peak. We need to detect the start of a keystroke which is essentially the start of the
push peak in a keystroke acoustic signal.

We distinguish between keystrokes and silence using energy levels in time windows.
In particular, we calculate windowed discrete Fourier transform of the signal and use the
sum of all FFT coefficients as energy. We use a threshold to detect the start of keystrokes.
Figure 6.28 shows an example.
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Figure 6.29 The Hidden Markov Model for unsupervised key recognition.

Features: Cepstrum vs. FFT

Given the start of each keystroke (i.e. wav_position), features of this keystroke are
extracted from the audio signal during the period from wav_pogsitionto wav_position+
AT. Two different types of features are compared in our experiments. First we use FFT
features with AT == 5ms, as in [22]. This time period roughly cormresponds to the rouch
peak of the keystroke, which is when the finger touches the key. An alternative ‘wou‘ld be
to use the hit peak, when the key hits the supporting plate. But that is harder to pinpoint in
the signal, so our experiments use the rouch peak.

As shown in Figure 6.25, the classification results using FFT features are not satisfactory
and we could not achieve the levels reported in [22].

Next we use cepstrum features. Cepstrum features are widely used in speech analysis
and recognition [49]. Cepstrum features have been empirically verified to be more effective
than plain FFT coefficients for voice signals. In particular, we use Mel-Frequency Cepstral
Coefficients (MFCCs) [37]. In our experiments, we set the number of channels in the Mel-
Scale Filter Bank to 32 and use the first 16 MFCCs computed using 10ms windows, shifting
2.5ms each time. MFCCs of a keystroke are extracted from the period from wav_position
to wav_position + AT’, where AT" = 40ms which covers the whole push peak. As
Figure 6.25 reports, this yields far better results than from FFT features.

Asonov and Agrawal's observation shows that high frequency acoustic data provides
limited value. We ignore data over 12KHz. After feature extraction, each keystroke is
represented as a vector of features (FFT coefficients or MFCCs). For details of feature
extraction, see Appendix B.

6.7.3.1 Unsupervised Single Keystroke Recognition As discussed above. the
unsupervised recognition step recognizes keystrokes using audio recording data only and
no training or language data.

The first step is to cluster the feature vectors into K classes. Possible algorithms to do
this include K-means and EM on Gaussian mixtures [36]. Our experiments indicate that
for tried K (from 40 to 55), values of & = 50 yield the best results. We use thirty keys, so
K = 30. Alarger N captures more information from the sound sarnples, but it also makes
the system more sensitive to noise. It is interesting to consider future experiments using
Dirichlet processes to predict K automatically [36].
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The second step is to recover text from these classes. For this we use a Hidden Markov
Model (HMM) [36]. HMMs are often used to model finite-state stochastic processes. In
a Markov chain. the next state depends only on the current state. Examples of processes
that are close to Markov chains include sequences of words in a sentence. weather patterns,
ete. For processes modeled with HMM, the true srate of the system is unknown and thus
is represented with hidden random variables. What is known are observations that depend
on the state. These are represented with known output variables. One common problem
of interest in an HMM is the inference problem, where the unknown state variables are
inferred from a sequence of observations. This is often solved with the Viterbi algorithm
[45]. Another problem is the parameter estimation problem. where the parameters of the
conditional distribution of the observations are estimated from the sequence of observations.
This can be solved with the EM (Expectation Maximization) algorithm [26].

The HMM we use is shown in Figure 6.29'%. It is represented as a statistical graphical
model [36]. Circles represent random variables. Shaded circles (y,) are observations while
unshaded circles (y;) are unknown state variables we wish to infer. Here q, is the label of
the ¢-th key in the sequence, and y, is the class of the keystroke we obtained in the clustering
step. The arrows from g, 10 ¢,+, and from q; to y; indicate that the latter is conditionally
dependent on the former; the value on the arrow is an entry in the probability matrix. So
here we have p(q;. 1q;) = A, ,,_,. which is the probability of the key ¢, . | appearing after
key ¢,. The A matrix is another way of representing plaintext bigram distribution data. The
A matrix (called the transition matrix) is determined by the English language and thus is
obtained from a large corpus of English text. We also have p(y;|q;) = 11, ,, . which is the
probability of the key ¢; being clustered into class y, in the previous step. Our observations
(the y, values) are known. The output matrix 1 is unknown. We wish to infer the ¢; values.
Note that one set of values for ¢; and 1 are better than another set if the likelihood (joint
probability) of the whole set of variables, computed simply by multiplying all conditional
probabilities, is larger with the first set than the other. Ideally, we want a set of values that
maximize the likelihood, so we are performing a type of Maximum Likelihood Estimation
[45].

We use the EM algorithm [26] for parameter estimation. It goes through a number of
rounds. alternately improving ¢; and 7. The output of this step is the ;) matrix. After that,
the Viterbi algorithm [45] is used to infer ¢;. i.e. the best sequence of keys.

EM is a randomized algorithm. Good initial values make the chance of getting satis-
factory results better. We found initializing the row in » corresponding to the Space key
to an informed guess makes the EM results more stable. This is probably because spaces
delimit words and strongly aftect the distribution of keys before and after the spaces. This
task is performed manually. Space keys are easy to distinguish by ear in the recording
because of the key's distinctive sound and frequency of use. We mark several dozen space
keys. look at the class that the clustering algorithm assigns to each of them, calculate their
estimated probabilities for class membership, and put these into 7. This approach yields
good results for most of the runs. However, it is not necessary. Even without space keys
guessing, running EM with different random initial values will eventually vield a good set
of parameters. All other keys, including punctuation keys are initialized to random values

"One might think that a more generalized Hidden Markov Model. such as one that uses Gaussian mixture
emissions [36]. would give better results. However, the HMM with Gaussian mixture emission has a much larger
number of parameters and thus faces the “overfitting™ problem. We found a discrete HMM as presented here pave
better results,
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in 17. We believe that initialization of 7 can be completely automated, and hope to explore
this idea in the future work.

6.7.3.2 ErrorCorrection with a Language Model Aswediscussed in Section9.5.3.

error correction is a crucial step in improving the results. It is used in unsupervised training.
supervised training and also recognition of English text.

Simple Probabilistic Spell Correction

Using a spelling checker is one of the easiest ways to exploit knowledge about the
language. We ran spell checks using Aspell [24] on recognized text and found some im-
provements. However stock spell checkers are quite limited in the kinds of spelling errors
they can handle, e.g. at most two letters wrong in a word. They are designed to cope
well with the common errors that human typists make, not the kinds of errors that acoustic
emanation classifiers make. It is not surprising that their utility here is quite limited.

Fortunately, there are patterns in the errors that the keystroke classifier makes. For
example, it may have difficulty with several keys. often confusing one with another. Suppose
we know the correct plaintext. (This is of course not true, but.as we iterate the algorithm.
we will predict the correct plaintext with increasing accuracy. Below, we address the case
of unsupervised step, where we know no plaintext at all.) Under this assumption. we have
a simple method to exploit these patterns. We run the keystroke classifier on some training
data and record all classification results, including errors. With this, we calculate a matrix
E (sometimes called the confusion matrix in the machine learning literature),

:\' -
SIEERYTY (6.1}

Ej=ply=ilz=j)=

where pi(-) denotes estimated probability, x is the typed key and y is the recognized key,
Ni—j.y=+1s the number of times 1 = j. y = i is observed. Columns of E give the estimated
conditional probability distribution of y given a.

Assume that letters are independent of each other and the same is true for words. (This is
a false assumption because there is much dependence in natural languages, but works well
in practice for our experiments.) We compute the conditional probability of the recognized
word Y (the corresponding string returned by the recognizer. not necessarily a correct word)
given each dictionary word X.

fength of X
pYIX)= ] p(YiXi)=]] By (6.2)
=1 K

We compute this probability for each dictionary word, which takes only a fraction of a
second. The word list we use is SCOWL [25] which ranks words by complexity. We use
words up to level 10 (higher-level words are obscure). giving us 95,997 words in total. By
simply selecting the word with the largest posterior probability as our correction result, we
COITECt MAny errors,

Because of the limited amount of training data, there will be many zeroes in E if Equation
(6.1) is used directly, i.e. the matrix is sparse. This is undesirable because the corresponding
combination may actually occur in the recognition data. This problem is similar to the zero-
occurrence problem in n-gram models [37]. We assign an artificial occurrence count (we
use (1. 1) to each zero-occurrence event.

In the discussion above we assume the plaintext is known, but we do not even have an
approximate idea of the plaintext in the first round of (unsupervised) training. We work

]
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“for” “example”

) 1

“fur” “examplf” “the”

Figure 6.30 Trigram language model with spell correction,

around this by letting £E;; = py where py is a constant (we use 0.5) and distribute the
remaining | — py uniformly over all E;; where j # /. Obviously this gives suboptimal
results, but the feedback mechanism corrects this later.

Adding an n-gram Language Model

The spelling correction scheme above does not take into uccount relative word frequency
or grammar issues: for example, some words are more common than others. and there
are rules in forming phrases and sentences. Spelling correction will happily accept “fur
example” as a correct spelling because “fur” is a dictionary word. even though the original
phrase is probably “for example™.

One way to fix this is to use an n-gram language model that models word frequency
and relationship between adjacent words probabilistically [37]. Specifically, we combine
trigrams with the spelling correction above and model a sentence using the graphical model
show in Figure 6.30. The hidden variables w; are words in the original sentence. The
observations v; are recognized words. p{|u, ) is calculated using Equation (6.2) above.
Note this HMM model is a second-order one, because every hidden variable depends on two
prior variables. The conditional probability p(iw [ur_y. wy_») is determined by a trigram
model obtained by training on a large corpus of English text.

In this model only the w; values are unknown. To infer the most likely sentence, we
again use the Viterbi algorithm. We use a version of the Viterbi algorithm for second order
HMMs, similar to the one in [50]. The complexity of the algorithm is O(7'N*), where T is
the length of the sentence and V is the number of possible values for each hidden variable,
that is, the number of dictionary words of the appropriate length. To reduce complexity,
only the top M candidates from the spelling correction process of each word are considered
in the Viterbi algorithm, lowering the cost to O(TM ™). We use A = 20 in our experiments.
Larger M values provide little improvement.

6.7.3.3 Supervised Training and Recognition Supervised training refers to train-
ing processes performed with labeled training data. We apply our feedback-based training
processes iteratively, using in each iteration characters “‘recognized” in previous iterations
as training samples to improve the accuracy of the keystroke classifier.

We discuss three different methods we use in our experiments. including the one used
in [22]. Like any supervised classification problem, there are two stages:

CASE STUDY: ACOUSTIC KEYBOARD EMANATIONS 231

e Training: input feature vectors and corresponding labels (the key pressed) and output
a model to be used in recognition;

= Recognition: input feature vectors and the trained classification model and output
the label of cach feature vector (keystroke).

Neural Network

The first method is neural networks, also used by Asonov and Agrawal [22]. Specifi-
cally. we use probabilistic neural networks, which are arguably the best available for for
classification problems [51]. We use Matlab’s newpnn () function, setting spread radius
parameter o 1.4 (this gave the best results in our experiments).

Linear Classification (Discriminant)

The second methoed is simple linear (discriminant) classification [36). This method
assumes the data 1o be Gaussian and try to find hyperplanes in the space to divide the
classes. We use classify () function from Matlab.

Gaussian Mixtures

The third method is more sophisticated than linear classification (although it gave worse
result in our experiments). Instead of assuming Gaussian distribution of data, it assumes
that each class corresponds to a mixture of Gaussian distributions [36]. A mixture is a
distribution composed of several sub-distributions. For example, a random variable with
distribution of a4 mixture of two Gaussians could have a probability of (.6 to being in one
Gaussian distribution and 0.4 of being in the other Gaussian distribution. This captures the
fact that each key may have several slightly different sounds depending on typing styling.
e.g. the direction it is hit.

We also use the EM algorithm to train the Gaussian mixture model. In our experiment.
we use mixtures of five Gaussian distributions of diagonal covariance matrices. Mixtures of
more Gaussians provide potentially better model accuracy but need more parameters to be
trained, requiring more training data and often making EM less stable. We find using five
components seems to provide a good tradeoff. Using diagonal covariance matrices reduces
the number of parameters. Without this restriction, EM has very little chance of yielding a
useful set of parameters.

6.7.4 Experiments

Our experiments evaluate the attacks. In our first experiment, we work with four recordings
of various lengths of news articles being typed. We use a Logitech Elite cordless keyboard

Table 6.6 Text recovery rate at each step. With different keyboards.

recording length  number of words  number of keys

Set | 12ml17s 409 2514

Set 2 26m36s 1000 5476
Set 3 21m49s 753 4188
Set 4 23m54s 732 4300
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in use for about two years (manufacturer part number: 867223-0100), a $10 generic PC
microphone and a Soundblaster Audigy 2 soundcard. The typist is the same for each
recording. The keys typed include “a"-z", comma. period. Space and Enter. The article
is typed entirely in lower case so the Shift key is never used. (We discuss this issue in
Section 6.7.4.4)

Table 6.6 shows the statistics of each test set. Sets | and 2 are from quict environments,
while sets 3 and 4 are from noisy environments. Qur algorithm for detecting the start of a
keystroke sometime fails. We manually corrected the results of the algorithm for sets 1, 2
and 3, requiring ten to twenty minutes of human time per data set. (Sets | and 2 needed
about 10 corrections; set 3 required about 20 corrections.) For comparison purposes, sct 4
(which has about 50 errors in determining the start of keystrokes) is not corrected.

In our second experiment, we recorded keystrokes from three additional models of
keyboards. The same keystroke recognition experiments are run on these recordings and
results compared. We use identical texts in this experiments on all these keyboards.

6.7.4.1 English Text Recognition: A Single Keyboard In our experiments, we
use linear classification to train the keystroke classifier. In Table 6.7.4.1. the result after
each step is shown in separate rows. First, the unsupervised learning step (Figure 6.26(a))
is run. In this unsupervised step, the HMM model shown in Figure 6.29 is trained using
EM algorithm described above'”. The output from this step is the recovered text from
HMM/Viterbi unsupervised learning, and the text after language model correction. These
two are denoted as kevstrokes and language respectively in the table. Then the first round
of feedback supervised training produces a new classifier. The iterated corrected text from
this classifier {and corresponding text corrected by the language model) are shown in the
row marked “Ist supervised feedback™. We perform three rounds of feedback su pervised
learning. The bold numbers show our final results. The bold numbers in the “language”

B3Since EM algorithm is 4 randomized algorithm. it might get stuck in local optima sometimes. To avoid this,
in each of these experiments. we run the same training process eight times and use results from the run with the
highest log-likelihood,

Table 6.7 Text recovery rate at each step. All numbers are percentages, where “Un" denotes
“unsupervised learning”. “Ist” denotes “1st supervised feedback”, “2nd” denotes *2nd
supervised feedback™, and “3rd” denotes ~3rd supervised feedback ™.

Ser | Ser 2 Ser 3 Ser 4
words chars  words chars  words chars  words  chars

Un  keystrokes 3472 76.17 3850 79.60 31.61 7299 2322 67.67
language  74.57 87.19 7130 87.05 56.57 80.37 5123 7507
Ist  keystrokes 58.19 89.02 5820 89.86 51.53 8737 37.84 82.02
language 8973 9594 88.10 9564 7875 9255 7322 88.60
2nd  keystrokes 6528 91.81 62.80 91.07 61.75 90.76 4536 85098
language 9095 9646 8870 9593 8274 9448 7842 91.49
3rd  keystrokes  66.01 92.04 6270 91.20 63.35 91.21 4822 86.58
language  90.46 96.34 89.30 96.09 83.13 9472 7951 92.49
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row are the final recognition rate we achieve for each test set. The bold numbers in the
“keystroke"” row are the recognition rates of the keystroke classifier, without using the
language model. These are the recognition rates for random or non-English text.
The results show that:
o The language model correction greatly improves the correct recovery rate for word‘s.
o The recover rates in quiet environment (sets | and 2) are slightly better that those in
noisy environment (sets 3 and 4). But the difference becomes smaller after several
rounds of feedback.
o Correctness of the keystroke position detection affects the results. The recovery rate
in set 3 is better than set 4 because of the keystroke location mistakes included in set
4.
e When keystroke positions have been corrected after several rounds of feedback. we
achieve an average recovery rate of 87.6% for words and 95.7% for characters.

To understand how different classification methods in the supervised training step affect
the results, we rerun the same experiment on set 1, using different supervised classification
methods. Table 6.8 shows ourresults. The best method is linear classification, then Gaussian
mixtures. and then neural networks. Experiments with other data sets give similar results.

In the experiments above, we use recordings longer than 10 minutes. To discover the
minimal amount of training data needed for reasonable results, we take the first data set

Table 6.8 Recognition raie of classification methods in supervised learning. All numbers are
percentages. where “1st” corresponds to the first supervised feedback, “2nd™ the second, etc.

Neural Network — Linear Classification  Gaussian Mixtures
words  chars  words chars words chars

Ist  keystrokes 59.17  87.07 58.19 89.02 59.66 87.03
language  80.20 90.85 89.73 95.94 78.97 90.45
2nd  keystrokes 7042 90.33  65.28 91.81 66.99 90.25
language  81.17 9121  90.95 96.46 80.20 90.73
3rd  keystrokes 7139  90.81 66.01 92.04 69.68 91.57
language  81.42 91.93  90.46 96.34 83.86 93.60

Table 6.9 Text recovery rate at each step. With different keyboards.

Ke;'b;ud ! Kevboard 2 Kevboard 3
words chars words chars words chars

unsupervised  keystrokes  30.99 71.67 2005 6240 2277 63.71

learning language  61.50 80.04 4766 73.09 4921 72.63

Ist supervised  keystrokes 44.37 84.16 3490 7642 3351 75.04
feedback language 73.00 89.57 6641 8522 6361 81.24
2nd supervised  keystrokes 56.34 88.66 54.69 8694 4215 81.59
feedback language  80.28 9297 7656 91.78 7042 86.12
Final keystrokes  60.09 89.85 6172 90.24 51.05 86.16

result language 82.63 93.56 82.29 9442 74.87 89.81
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Figure 6.31  Length of recording vs. recognition rate,

(i.e. “Set 1” above) and use only the first 4, 5, 7 and 10 minutes of the 12-minute recording
for training and recognition. Figure 6.31 shows the recognition results we get. This figure
suggests that at least 5 minutes of recording data are necessary to get good results for this
particular recording.

6.7.4.2 English Text Recognition: Multiple Keyboards To verify that our ap-
proach applies to different models of keyboards, we perform the keystroke recognition
experiment on different keyboards, using linear classification in the supervised training
step. The models of the keyboards we use are:

e Keyboard I: Dell™ Quietkey® PS/2 keyboard. manufacturer part number 2P121,
in use for about 6 months.

¢ Keyboard 2: Dell™ Quietkey® PS/2 keybourd. manufacturer purt number 035KKW,
in use for more than 5 years.

* Keyboard 3: Dell™ Wireless keyboard. manufacturer part number WO147, new.

The same document (2273 characters) is typed on all three keyboards and the sound of
keystrokes is recorded. Each recording lasts about 12 minutes. In these recordings, the
background machine fan noise is noticeable. While recording from the third keyboard. we
get several seconds of unexpected noise from a cellphone nearby. The results are shown in
Table 6.9. Results in the table show that the first and the second keyboards achieve higher
recognition rate than the third one. But in general. all keyboards are vulnerable to the attack
we present in this paper,

6.7.4.3 Example of Recovered Text Text recognized by the HMM classifier. with
cepstrum features (underlined words ure wrong),

the big money fight has drawn the shopore od dosens of companies in
the entertainment industry as well as attorneys gnnerals on states,
vho fear the fild shading softwate will encourage illegal acyivitt,

srem the grosth of small arrists and lead to lost cobs and dimished
sales tas revenue.

Text after spell correction using trigram decoding,

the big money fight has drawn the support of dozens of companies in
the entertainment industry as well as attorneys generals in states,
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Figure 6.32  Password stealing: distribution of the number of trials required by the attacker.

who fear the film sharing software will encourage illegal activity,
stem the growth of small artists and lead to lost jobs and finished

sales tax revenue.
Original text. Notice that it actually contains two typos, one of which is fixed by our spelling
COITeCtor.

the big money fight has drawn the support of dozens of companies in
the entertainment industry as well as attorneys gnnerals in states,

who fear the file sharing software will encourage illegal activity,
stem the growth of small artists and lead to lost jobs and dimished

sales tax revenue.

6.7.4.4 Random Text Recognition and Password Stealing We used the key-
stroke classifier trained by set 1 to mount password stealing attacks. All password input
recorded in our experiment are randomly generated sequences, not user names or dlCl!l)—
nary words. The output of the keystroke classifier for each keystroke is a set of posterior

probabilities:
p(this keystroke has label i|observed-sound). i =1,2..... 30.

Given these conditional probabilities, one can calculate probabilities for al.l.s.equenccs of
keys being the real password. These sequences are sorted by their probabilities from the
largest to the smallest. This produces a candidate list and the attacker can try onc-b_\’_—c_mc
from the top to the bottom. To measure the efficacy of the attack, we use thfe position
of the reul password in this list. A user inputs 500 random passwords each (_)f_ lcngt‘h 5;
8 and 10. Figure 6.32 shows the cumulative distribution function of the position Ot. the\
real password. For example, with twenty trials, 90% of 5-character passwm'd_s. T7% i)i
8-character passwords and 69% of 10-character passwords are detected. As Figure 6.32
also shows. with seventy-five trials, we can detect 80% of 10-character passwords.

6.7.4.5 Attack Improvements The current attack does not take into account spcciz_il
keys such as Shift. Control, Backspace and Capslock. There are two issu_cs here. (Jm? is
whether keystrokes of special keys are separable from other keystrokes at signal processing
time. Our preliminary experiments suggest this is possible; push peaks of !(eyslrokes are
easily separable in the recordings we looked at. The other issue is how modifier keys such
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as Shift fit into spelling correction scheme. We believe ad hoc solutions such as replacing
Shift or Capslock keys with spaces will work. Backspace is also important. The ideal
solution would be to figure out what the final text is after applying the backspaces. But
that probably will complicate the error correction algorithms. So one could Jjust recognize
these keys and leave the “word™ before and after out of error-correction because they are
probubly not full words. Here a bit of human aid could be useful because backspaces are
relatively easy to detect by ear based on sound and contexl, although it is harder than spaces.
Assuming this is possible, the classifier can be trained to recognize them accurately.

In future work. itis particularly interesting to try to detect keystrokes { yped in a particular
application, such us a visual editor (e.g. emacs) or a software development environment
fe.g. Eclipse). Examining text typed in these environment presents challenges because
more keys maybe used and special keys maybe used more often. Furthermore. the bigram
or transition matrix A will be different. Nonetheless we believe that our techniques may
be applicable 1o detecting keystrokes of users in these applications and indeed can even
cover input as different as other small alphabet languages. such as Russian or Arabic, large
alphabet lunguages, such as Chinese or Japanese, and even programming languages.

A possible alternative method for feedback training procedure is Hierarchical Hidden
Markov Models (HHMMs) [31]. In a HHMM, HMMs of multiple levels, grammar level
and spelling level in this case, are built into a single model. Algorithms to maximize global
Joint probability presumably will result in similar effectiveness as the feedback training
procedure. This approach merits further investigation.

We have shown that the recognition rate is lower in noisy environments. Attacks will
be less successful when. say. the user is playing music while typing. However, there is
research in the signal processing area that separates voice from other sound in the same
channel. For example, sophisticated Karaoke systems can separate voice and music. These
techniques may also apply here.

Another way to improve keyboard related attacks is to use other types of side channel
information. e.g. timing information. Timing information includes the time between two
keystrokes, the last time of a keystroke. etc. (See Dawn Song, David Wagner and Xuqing
Tian's study [48].) Combining multiple side channels may yield a stronger attack.

6.7.4.6 Defenses To defend against attacks, one can ensure the physical security of
the machine and the room. Given the effectiveness of modern parabolic microphones, it
must be ensured both that no bugging device is in the room and also that sound cannot
possibly be captured from outside the room. The usage of quieter keyboards, as suggested
by [22] may also reduce vulnerability. However, the two so-called “quiet” keybouards we
use in our experiments prove ineffective against the attack.

The more important message. however, is that the practice of relying only on typed
passwords or even long passphrases should be reexamined. One aiternative is two-factor
authentication that combines password or pass-phrase with smart cards, one-time-password
tokens. biometric authentication and etc. However two-factor authentication does not solve
all our problems. Typed text other than passwords is also valuable to attackers.

Asonov and Agrawal suggest that keyboard makers could produce keyboards having keys
that sound so similar that they are not easily distinguishable. They claim that one reason
keys sound different today is that the plate underneath the keys makes different sounds
when hit at different places. If this is true, using a more uniform plate may alleviate the
attack. However. it is not clear whether these kinds of keyboards are commercially viable.
There is the possibility that more subtle differences between keys can still be captured by
an attacker. Further, keyboards may develop distinct keystroke sounds after months of use,
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Conclusion

Our new attack on keyboard emanations needs only acoustic recording of typing using a
keyboard and recovers the typed content. Compared to previous work that requires clear-
text labeled training data. this attack is much more general and serious in nature. More
important, the techniques we use to exploit inherent statistical constraints in the input and
to perform feedback training can be applied to other emanations with similar properties.
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