
3

Keyboard Acoustic Emanations Revisited

LI ZHUANG, FENG ZHOU, and J. D. TYGAR

University of California, Berkeley

We examine the problem of keyboard acoustic emanations. We present a novel attack taking as input

a 10-minute sound recording of a user typing English text using a keyboard and recovering up to

96% of typed characters. There is no need for training recordings labeled with the corresponding

clear text. A recognizer bootstrapped from a 10-minute sound recording can even recognize random

text such as passwords: In our experiments, 90% of 5-character random passwords using only letters

can be generated in fewer than 20 attempts by an adversary; 80% of 10-character passwords can

be generated in fewer than 75 attempts by an adversary. In the attack, we use the statistical

constraints of the underlying content, English language, to reconstruct text from sound recordings

without knowing the corresponding clear text. The attack incorporates a combination of standard

machine learning and speech recognition techniques, including cepstrum features, Hidden Markov

Models, linear classification, and feedback-based incremental learning.

Categories and Subject Descriptors: K.6.5 [Security and Protection]: Unauthorized Access; K.4.1

[Public Policy Issues]: Privacy

General Terms: Security

Additional Key Words and Phrases: Computer security, human factors, acoustic manations, learn-

ing theory, hidden markov models, HMM, cepstrum, signal analysis, keyboards, privacy, electronic

eavesdropping

ACM Reference Format:
Zhuang, L., Zhou, F., Tygar, J. D. 2009. Keyboard acoustic emanations revisited. ACM Trans. Info.

Syst. Sec. 13, 1, Article 3 (October 2009), 26 pages.

DOI = 10.1145/1609956.1609959 http://doi.acm.org/10.1145/1609956.1609959

1. INTRODUCTION

This article reports on recovering keystrokes typed on a keyboard from a sound
recording of the user typing. Emanations produced by electronic devices have
long been a topic of concern in the security and privacy communities [Briol
1991]. Both electromagnetic and optical emanations have been used as sources

This work is funded by US National Science Foundation contracts EIA-01225989, IIS-0205647,

CNS-0325247 and CCS-0424422. This article does not necessarily reflect the views of the US gov-

ernment or any funding sponsor.

Authors’ addresses: L. Zhuang, F. Zhou, and J. D. Tygar, University of California, Berkeley; email:

{zl,zf,tygar}@cs.berkeley.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use

is granted without fee provided that copies are not made or distributed for profit or commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2009 ACM 1094-9224/2009/10-ART3 $10.00

DOI 10.1145/1609956.1609959 http://doi.acm.org/10.1145/1609956.1609959

ACM Transactions on Information and System Security, Vol. 13, No. 1, Article 3, Publication date: October 2009.

In ACM Transactions on Information and Systems Security, 13:1, October 2009, pp 3:1-3:26

3:2 • L. Zhuang et al.

for attacks. For example, Kuhn [2002, 2003] was able to recover the display on
CRT and LCD monitors using indirectly reflected optical emanations. Acoustic
emanations are another source of data for attacks. Researchers have shown
that acoustic emanations of matrix printers carry substantial information about
the printed text [Briol 1991]. Some researchers suggest it may be possible to
discover CPU operations from acoustic emanations [Shamir and Tromer 2004].
In ground-breaking research, Asonov and Agrawal [2004] showed that it is
possible to recover text from the acoustic emanations from typing on a keyboard.

Most emanations, including acoustic keyboard emanations, are not uniform
across different instances, even when the same device model is used; and they
are affected by the environment. Different users on a single keyboard or differ-
ent keyboards (even of the same model) emit different sounds, making reliable
recognition hard [Asonov and Agrawal 2004]. Asonov and Agrawal achieved a
relatively high recognition rate (approximately 80%) when they trained neu-
ral networks with text-labeled sound samples of the same user typing on the
same keyboard. Their attack is analogous to a known plaintext attack on a
cipher—the cryptanalyst has a sample of plaintext (the keys typed) and the
corresponding ciphertext (the recording of acoustic emanations). This labeled
training sample requirement suggests a limited attack because the attacker
needs to obtain training samples of significant length. Presumably, these could
be obtained from video surveillance or network sniffing. However, video surveil-
lance, in most cases, should render the acoustic attack irrelevant because, even
if passwords are masked on the screen, a video shot of the keyboard could di-
rectly reveal the keys being typed.

In this article, we argue that a labeled training sample requirement is un-
necessary for an attacker. This implies keyboard emanation attacks are more
serious than previous work suggests. The key insight in our work is that the
typed text is often not random. When one types English text, the finite number
of mostly used English words limits possible temporal combinations of keys, and
English grammar limits word combinations. One can first cluster (using unsu-
pervised methods) keystrokes into a number of acoustic classes based on their
sound. Given sufficient (unlabeled) training samples, a most-likely mapping
between these acoustic classes and actual typed characters can be established
using the language constraints.

This task is not trivial. Challenges include: (i) How can one mathemati-
cally model language constraints and mechanically apply them? (ii) In the first
sound-based clustering step, how can one address the problem of different keys
clustered in the same acoustic class and a single key clustered in multiple acous-
tic classes? (iii) Can we improve the accuracy of the guesses by the algorithm
to match the level achieved with labeled samples?

Our work answers these challenges, using a combination of machine learning
and speech recognition techniques. We show how to build a keystroke recognizer
that has better recognition rate than labeled sample recognizers in Asonov and
Agrawal [2004]. We only use a sound recording of a user typing.

Our method can be viewed as a machine learning version of classic attacks to
simple substitution ciphers. Assuming the ideal case in which a key produces

ACM Transactions on Information and System Security, Vol. 13, No. 1, Article 3, Publication date: October 2009.

Keyboard Acoustic Emanations Revisited • 3:3

exactly the same sound each time it is pressed, each keystroke could be easily
given an acoustic class according to the sound. The acoustic class assignment
would be a permutation of the key labels. This is exactly an instance of substi-
tution cipher. Early cryptographers developed methods for cryptanalyzing sub-
stitution ciphers. Our attack can be viewed as an extension of these methods,
but our problem is more difficult because the sound of a particular keystroke
varies even when it is produced by the same typist.

We built a prototype that can bootstrap the recognizer from about 10 minutes
of English text typing, using about 30 minutes of computation on a desktop
computer with a Pentium IV 3.0G CPU and 1GB of memory. After the bootstrap
step, it could recognize language-independent keystrokes in real time, including
random keystrokes occurring in passwords, with an accuracy rate of about 90%.
When language-dependent constraints are applied to English text, we achieve
a 90% to 96% accuracy rate for characters and a 75% to 90% accuracy rate for
words.1

We posit that our framework also applies to other types of emanations with
inherent statistical constraints, such as power consumption or electromagnetic
radiation. One only needs to adapt the methods of extracting features and
modeling constraints. Our work implies that emanation attacks are far more
challenging, serious, and realistic than previously realized. Emanation attacks
deserve greater attention in the computer security community.

This article is organized as follows: Section 2 briefly reviews previous key-
board emanation attacks. Section 3 presents an informal description of the new
attack, followed by additional details in Section 4. Section 5 presents experi-
ment results. Section 6 discusses issues and future work. Section 7 concludes
the article.

2. OVERVIEW OF PREVIOUS ATTACKS

We briefly review two related previous research studies examining recovery of
keystrokes, each using a different type of side channel information (see Bar-El
[2003] for an overview of side channel attacks in general).

To the best of our knowledge, Asonov and Agrawal [2004] were the first
researchers to publish a concrete attack exploiting keyboard acoustic emana-
tions. They note that the sound of keystrokes differ slightly from key to key.
They give a concrete method to recover information about typing on keyboards,
using neural networks as acoustic classifiers. Their approach is to first “teach”
the neural networks about what the different keys sound like. To do this, each
key is typed 100 times. The neural network is trained with the label (the key
being typed) and the corresponding sound. The raw digitalized sound input is
too large for their neural networks, so each keystroke is represented as a vector
of fast fourier transform (FFT) features. The trained neural network then can
be used to recognize subsequent keystrokes.

1The accuracy rate for words is counted by the number of correctly recognized words over the total

number of words typed.

ACM Transactions on Information and System Security, Vol. 13, No. 1, Article 3, Publication date: October 2009.

3:4 • L. Zhuang et al.

Based on the supervised learning approach, Asonov and Agrawal show:

—a wide variety (e.g., different keyboards of the same model, different models,
different brands) of keyboards have keys with distinct acoustic properties;

—sound recordings from as far away as 15 meters suffice for neural network
supervised learning if sophisticated microphones such as parabolic micro-
phones are used;

—their neural network supervised learning is sensitive to training errors. If
input label are inaccurate, their recognition rates drop sharply. The effec-
tiveness of the appraoch also depends a lot on the comprehensiveness of the
training samples, that is, whether it contains enough samples for each key
or not.

Asonov and Agrawal’s [2004] work opened a new field. However, there are
limitations in their approach.

—Their attack is for labeled acoustic recordings. Their attack works well only
with the same settings (i.e., the same keyboard, person, recording environ-
ment) as the training recording, and such training data are hard to obtain in
many cases. Training on one keyboard and recognizing on another keyboard
of the same model yields much lower accuracy rates, at around 25%. Even
if we count all occasions when the correct key is among the top four candi-
dates, the accuracy rate is still only about 50%. Lower recognition rates are
also observed when the system is trained for one typist and then applied to
another typist.

—The set of acoustic classification techniques used leaves room for improve-
ment. In our work, we found superior features to FFT and superior acoustic
classifiers to neural networks. Figure 1 compares FFT and cepstrum features
and also compares three classifiers: linear classification, neural networks,
and Gaussian mixtures. The classifier is trained on the training set data and
is then used to classify the training set itself and two other datasets. Char-
acter recognition rate using cepstrum features (discussed later in the text),
on average, is better than character recognition using FFT. This is true for
all datasets and classification methods. Neural networks perform worse than
linear classification on the two test sets. In this experiment, we could only
approximate the experiment settings in Asonov and Agrawal [2004]. But the
significant performance differences indicate that there are better alterna-
tives to FFT and neural networks combination.

Timing information is a different type of side channel information related
to keyboard typing. Timing information includes the time between two key-
strokes, the time between keystroke push to keystroke release, and so on. Song
et al. [2001] showed how to extract information based on the time between
two consecutive keystrokes. They considered interactive login shells encrypted
with the SSH protocol. In this scenario, an eavesdropper can detect the time
between consecutive keys. Statistical analysis shows that the distribution of
time between a pair of keys vary for different key pairs. Contributing factors
include whether keys are typed with alternating hands or the same hand, with

ACM Transactions on Information and System Security, Vol. 13, No. 1, Article 3, Publication date: October 2009.

Keyboard Acoustic Emanations Revisited • 3:5

Fig. 1. Recognition rates using FFT and cepstrum features. The y-axis shows the recognition rate.

Three different classification methods are used on the same sets of FFT or cepstrum features.

different fingers or the same fingers, and the like. The types of pairs defined
in their work capture the physical distances between keys and also the the
response time of human beings. However, many different pairs may belong
to the same type (e.g., two letters typed by alternating hands). Timing infor-
mation is generally not helpful in distinguishing different pairs in the same
type. Their work gives some analysis of the amount of information leaked by
timing information. In Section 6.1, we give an approach to combine timing in-
formation with our acoustic emanation recognition. However, to date, we have
only observed modest improvements by adding timing information. It remains
an open question whether the two methods together can yield substantially
higher recognition rates.

3. THE ATTACK

In this section, we present a survey of our attack. Section 4 presents the attack
in full.

We take a recording of a user typing English text on a keyboard and produce
a recognizer that can, with high accuracy, determine subsequent keystrokes

ACM Transactions on Information and System Security, Vol. 13, No. 1, Article 3, Publication date: October 2009.

3:6 • L. Zhuang et al.

Fig. 2. Overview of the attack.

from sound recordings if it is typed by the same person, with the same keyboard,
under the same recording conditions. These conditions can easily be satisfied by,
for example, placing a wireless microphone in the user’s work area or by using
parabolic or laser microphones from a distance. Although we do not necessarily
know in advance whether a user is typing English text, in practice, we can record
continuously, try to apply the attack, and see if meaningful text is recovered.

Figure 2 presents a high level overview of the attack.
The first phase (Figure 2(a)) trains the recognizer. It contains the following

steps.

—Feature extraction. We use cepstrum features, a technique developed by re-
searchers in voice recognition [Childers et al. 1977]. As we discuss later in
the text, cepstrum features give better results than FFT.

—Unsupervised key recognition using unlabeled training data. We cluster each
keystroke into one of K acoustic classes, using standard data clustering meth-
ods. K is chosen to be slightly larger than the number of keys on the keyboard.
As discussed in Section 1, if these acoustic clustering classes correspond ex-
actly to different keys in a one-to-one mapping, we can easily determine the
mapping between keys and acoustic classes. However, clustering algorithms
are imprecise. Keystrokes of the same key are sometimes placed in different
acoustic classes, and conversely, keystrokes of different keys can be in the
same acoustic class. We let the acoustic class be a random variable condi-
tioned on the actual key typed. A particular key will be in each acoustic class
with a certain probability. In well-clustered data, probabilities of one or a few
acoustic classes will dominate for each key. Once the conditional distributions
of the acoustic classes are determined, we try to find the most likely sequence
of keys given a sequence of acoustic classes for each keystroke. Naı̈vely, one
might think picking the letter with highest probability for each keystroke
yields the best estimation and we can declare our job done. But we can do
better. We use a Hidden Markov Model (HMM) [Rabiner and Juang 1986].
HMMs model a stochastic process with state. They capture the correlation
between keys typed in sequence. For example, if the current key can be either

ACM Transactions on Information and System Security, Vol. 13, No. 1, Article 3, Publication date: October 2009.

Keyboard Acoustic Emanations Revisited • 3:7

“h” or “j” (e.g., because they are physically close on the keyboard) and we know
the previous key is “t,” then the current key is more likely to be “h” because
“th” is more common than “tj.” Using these correlations in English,2 both the
keys and the key-to-class mapping distributions can be efficiently estimated
using standard HMM algorithms. This step yields accuracy rates of slightly
over 60% for characters, which in turn yields accuracy rates of over 20% for
words.

—Spelling and grammar checking. We use dictionary-based spelling correction
and a simple statistical model of English grammar. These two approaches,
spelling and grammar, are combined in a single HMM. This increases the
character accuracy rate to over 70%, yielding a word accuracy rate of about
50% or more. At this point, the text is quite readable (see Section 4.3).

—Feedback-based training. Feedback-based training produces a keystroke
acoustic classifier that does not require an English spelling and grammar
model, enabling random text recognition, including password recognition. In
this step, we use the previously obtained corrected results as labeled train-
ing samples. Note that our corrected results are not 100% correct. We use
heuristics to select words that are more likely to be correct. For example, a
word that is not spell-corrected or one that changes only slightly during cor-
rection in the last step is more likely to be correct than those that had more
changes. In our experiments, we pick out those words with fewer than one
fourth of characters corrected and use them as labeled samples to train an
acoustic classifier. The recognition phase (Figure 2(b), described later in the
text) recognizes the training samples again.This second recognition typically
yields a higher keystroke accuracy rate. We use the number of corrections
made in the spelling and grammar correction step as a quality indicator.
Fewer corrections indicate better results. The same feedback procedure is
performed repeatedly until no significant improvement is seen. In our ex-
periments, we perform three feedback cycles. Our experiments indicate that
both linear classification and Gaussian mixtures perform well as classifica-
tion algorithms [Jordan 2005], and both are better than neural networks as
used in Asonov and Agrawal [2004]. In our experiments, character accuracy
rates (without a final spelling and grammar correction step) reach up to 92%.

The second phase, the recognition phase, uses the trained keystroke acous-
tic classifier to recognize new sound recordings. If the text consists of random
strings, such as passwords, the result is output directly. For English text, the
previously described spelling and grammar language model is used to further
correct the result. To distinguish between two types of input, random or English,
we apply the correction and see if reasonable text is produced. In practice, a
human attacker can typically determine if text is random. An attacker can also
identify occasions when the user types user names and passwords. For exam-
ple, password entry typically follows a URL for a password protected website.
Meaningful text recovered from the recognition phase during an attack can also

2Other languages than English have different probabalistic distributions of pairs, but the method

still applies.

ACM Transactions on Information and System Security, Vol. 13, No. 1, Article 3, Publication date: October 2009.

3:8 • L. Zhuang et al.

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 80 60 40 20 0

S
a

m
p

le
 V

a
lu

e

Time (ms)

Touch
Peak

Hit
Peak

Push Peak Release Peak

Fig. 3. The audio signal of a keystroke.

be fedback to the first phase. These new samples along with existing samples
can be used together to increase the accuracy of the keystroke classifier. Our
recognition rate improves over time (see later discussion).

Our experiments include datasets recorded in quiet and noisy environments
and with four different keyboards (see Tables II and IV). Refer to Appendix A
for an example of recovered text.

4. TECHNICAL DETAILS

In the following text, we describe in detail the steps of our attack. Some steps
(feature extraction and supervised classification) are used in both the training
phase and the recognition phase.

4.1 Keystroke Feature Extraction

4.1.1 Keystroke Extraction. Typical users can type up to about 300 charac-
ters per minutes. Keystrokes consist of a push and a release. Our experiments
confirm Asonov and Agrawal’s observation that the period from push to release
is typically about 100ms. That is, there is usually more than 100ms between
consecutive keystrokes, which is large enough to distinguish the consecutive
keystrokes. Figure 3 shows the acoustic signal of a push peak and a release
peak. We need to detect the start of a keystroke, which is essentially the start
of the push peak in a keystroke acoustic signal.

We distinguish between keystrokes and silence using energy levels in time
windows. In particular, we calculate windowed discrete Fourier transform of
the signal and use the sum of all FFT coefficients as energy. We use a threshold
to detect the start of keystrokes. Figure 4 shows an example.

4.1.2 Features: Cepstrum vs. FFT. Given the start of each keystroke (i.e.,
wav position), features of this keystroke are extracted from the audio signal
during the period from wav position to wav position + �T . Our experiments
compared two different types of features. First we used FFT features with �T ≈
5ms, as in Asonov and Agrawal [2004]. This time period roughly corresponds
to the touch peak of the keystroke, which is when the finger touches the key.

ACM Transactions on Information and System Security, Vol. 13, No. 1, Article 3, Publication date: October 2009.

Keyboard Acoustic Emanations Revisited • 3:9

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 250 200 150 100 50

S
u

m
 o

f
F

F
T

 C
o

e
ff

ic
ie

n
ts

Time (ms)

keystrokes start positions

Fig. 4. Energy levels over the duration of five keystrokes. (Smaller peaks are release peaks.)

An alternative would be to use the hit peak, when the key hits the supporting
plate. The hit peak is harder to pinpoint in the signal, so our experiments used
the touch peak.

As shown in Figure 1, the classification results using FFT features were
not satisfactory, and we could not achieve the levels reported in Asonov and
Agrawal [2004]. This might be caused by different experimental environment
settings, different quality of recording devices, and the like.

Next, we used cepstrum features. Cepstrum features are widely used in
speech analysis and recognition [Childers et al. 1977]. Cepstrum features
have been empirically verified to be more effective than plain FFT coefficients
for voice signals. In particular, we used mel-frequency cepstral coefficients
(MFCCs) [Jurafsky and Martin 2000]. In our experiments, we set the num-
ber of channels in the Mel-Scale Filter Bank to 32 and used the first 16 MFCCs
computed using 10ms windows, shifting 2.5ms each time. MFCCs of a keystroke
were extracted from the period from wav position to wav position+�T ′, where
�T ′ ≈ 40ms, which covers the whole push peak. As Figure 1 reports, this yields
far better results than from FFT features.

Asonov and Agrawal’s observation shows that high-frequency acoustic data
provides limited value. We ignore data over 12KHz. After feature extraction,
each keystroke is represented as a vector of features (FFT coefficients or
MFCCs). For details of feature extraction, see Appendix B.

4.2 Unsupervised Single Keystroke Recognition

As discussed earlier, the unsupervised recognition step recognizes keystrokes
using audio recording data only and no training or language data.

The first step is to cluster the feature vectors into K acoustic classes. Possible
algorithms to do this include K-means and expectation-maximization (EM) on
Gaussian mixtures [Bilmes 1997]. Our experiments tested values of K from
40 to 55, and K = 50 yielded the best results. We use 30 keys, so K must be
greater than or equal to 30. A larger K captures more information from the
sound samples, but it also makes the system more sensitive to noise. It would
be interesting to experiment with using Dirichlet processes that might predict
K automatically [Jordan 2005].

ACM Transactions on Information and System Security, Vol. 13, No. 1, Article 3, Publication date: October 2009.

3:10 • L. Zhuang et al.

Fig. 5. The Hidden Markov Model for unsupervised key recognition.

The second step is to recover text from these classes. For this we use an HMM
[Rabiner and Juang 1986]. HMMs are often used to model finite-state stochas-
tic processes. In a Markov chain, the next state depends only on the current
state. Examples of processes that are close to Markov chains include sequences
of words in a sentence, weather patterns, and so on. For processes modeled
with HMM, the true state of the system is unknown and thus is represented
with hidden random variables. What is known are observations that depend
on the state. These are represented with known output variables. One common
problem of interest in an HMM is the inference problem, where the unknown
state variables are inferred from a sequence of observations. This is often solved
with the Viterbi algorithm [Russell and Norvig 2003]. Another problem is the
parameter estimation problem, where the parameters of the conditional dis-
tribution of the observations are estimated from the sequence of observations.
This can be solved with the EM algorithm.

Figure 5 shows the HMM we used. It is represented as a statistical graphical
model [Jordan 2005].3 Circles represent random variables. Shaded circles (yi)
are observations, while unshaded circles (qi) are unknown state variables we
wish to infer. Here, qi is the label of the i-th key in the sequence, and yi is the
class of the keystroke we obtained in the clustering step. The arrows from qi to
qi+1 and from qi to yi indicate that the latter is conditionally dependent on the
former; the value on the arrow is an entry in the probability matrix. So here
we have p(qi+1|qi) = Aqi ,qi+1

, which is the probability of the key qi+1 appearing
after key qi. The A matrix is another way of representing plaintext bigram
distribution data. The A matrix (called the transition matrix) is determined
by the English language and thus is obtained from a large corpus of English
text. We also have p(yi|qi) = ηqi , yi , which is the probability of the key qi being
clustered into acoustic class yi in the previous step. Our observations (the yi

values) are known. The output matrix η is unknown. We wish to infer the qi

values. Note that one set of values for qi and η are better than a second set
if the likelihood (joint probability) of the whole set of variables, computed by
multiplying all conditional probabilities, is larger with the first set than the
second set. Ideally, we want a set of values that maximize the likelihood, so we
are performing a type of maximum likelihood estimation [Russell and Norvig
2003].

3One might think that a more generalized HMM, such as one that uses Gaussian mixture emis-

sions [Jordan 2005], would give better results. However, the HMM with Gaussian mixture emission

has a much larger number of parameters and thus faces the “overfitting” problem. We found a dis-

crete HMM as presented here gave better results.

ACM Transactions on Information and System Security, Vol. 13, No. 1, Article 3, Publication date: October 2009.

Keyboard Acoustic Emanations Revisited • 3:11

We use the EM algorithm [Bilmes 1997] for parameter estimation. It goes
through a number of rounds, alternately improving qi and η. The output of this
step is the η matrix. After that, the Viterbi algorithm [Russell and Norvig 2003]
is used to infer qi, that is, the best sequence of keys.

EM is a randomized algorithm. Good initial values make the chance of get-
ting satisfactory results better. We found initializing the row in η corresponding
to the Space key to an informed guess makes the EM results more stable. This
is probably because spaces delimit words and strongly affect the distribution
of keys before and after the spaces. This task is performed manually. Space
keys are easy to distinguish by ear in the recording because of the key’s dis-
tinctive sound and frequency of use. We marked several dozen space keys, look
at the class that the clustering algorithm assigns to each of them, calculate
their estimated probabilities for class membership, and put these into η. This
approach yields good results for most of the runs. However, it is not necessary.
Even without space keys guessing, running EM with different random initial
values will eventually yield a good set of parameters. All other keys used in
our study, including punctuation keys are initialized to random values in η. We
believe that initialization of η can be completely automated and hope to explore
this idea in the future work.

4.3 Error Correction with a Language Model

As we discussed in Section 3, error correction is a crucial step in improving
the results. It is used in unsupervised training, supervised training, and also
recognition of English text.

4.3.1 Simple Probabilistic Spelling Correction. Using a spelling checker
is one of the easiest ways to exploit knowledge about the language. We ran
spell checks using Aspell [Atkinson 2005a] on recognized text and found some
improvements. However, stock spell checkers are limited in the kinds of spelling
errors they can handle (e.g., at most two letters wrong in a word). They are
designed to cope well with common errors that human typists make, not the
kinds of errors that acoustic emanation classifiers make. It is not surprising
that their utility here is limited.

Fortunately, there are patterns in the errors that the acoustic keystroke
classifier makes. For example, it may have difficulty with several keys, often
confusing one with another. Suppose that we knew the correct plaintext. (This
is, of course, not true, but as we iterate the algorithm, we will predict the
correct plaintext with increasing accuracy. In the following text, we address
the case of unsupervised step, where we know no plaintext at all.) Under this
assumption, we would have a simple method to exploit these patterns. We act
as if this assumption were true and run the acoustic keystroke classifier on
some training data and record all classification results, including errors. With
this, we calculate a matrix E (sometimes called the confusion matrix in the
machine learning literature),

Eij = p̂(y = i|x = j) = Nx= j , y=i

Nx= j
, (1)

ACM Transactions on Information and System Security, Vol. 13, No. 1, Article 3, Publication date: October 2009.

3:12 • L. Zhuang et al.

where p̂(·) denotes estimated probability, x is the typed key and y is the recog-
nized key, and Nx= j , y=i is the number of times x = j , y = i is observed. Columns
of E give the estimated conditional probability distribution of y given x.

Assume that letters are independent of each other and the same is true for
words. (This is a false assumption because there is much interletter dependence
in natural languages, but works well in practice for our experiments.) We com-
pute the conditional probability of the recognized word Y (the corresponding
string returned by the recognizer, not necessarily a correct word) given each
dictionary word X.

p(Y|X) =
length of X∏

i=1

p(Yi|Xi) ≈
∏

i

E yi ,xi (2)

In the equation, Xi is the i-th character of dictionary word X and Yi is the
i-th character of the recognized word. p(Y|X) represents the probability that
the recognition result is Y but the actual user input word is X .

We compute this probability for each dictionary word, which takes only a
fraction of a second. The word list we use is SCOWL [Atkinson 2005b], which
ranks words by complexity. We use words up to level 10 (higher-level words are
more obscure), which covers most commonly used words, giving us 95,997 words
in total. By simply selecting the word with the largest posterior probability as
our correction result, we correct many errors.

Because of the limited amount of training data, there will be many zeroes
in E if Equation (1) is used directly, that is, the matrix will be sparse. This
is undesirable because the corresponding combination may actually occur in
the recognition data. This problem is similar to the zero-occurrence problem in
n-gram models [Jurafsky and Martin 2000]. We assign an artificial occurrence
count (we use 0.1) to each zero-occurrence event.

In the previous discussion, we assume the plaintext is known, but we do not
even have an approximate idea of the plaintext in the first round of (unsuper-
vised) training. We work around this by letting Eii = p0 where p0 is a constant
(we use 0.5) and distribute the remaining 1 − p0 uniformly over all Eij , where
j �= i. Obviously, this gives suboptimal results, but the feedback mechanism
corrects this later.

4.3.2 Adding an n-gram Language Model. The previously described
spelling correction scheme does not take into account relative word frequency
or grammar issues. For example, some words are more common than others,
and there are rules in forming phrases and sentences. Spelling correction will
happily accept “fur example” as a correct spelling because “fur” is a dictionary
word, even though the original phrase is probably “for example.”

One way to fix this is to use an n-gram language model that mod-
els word frequency and relationship between adjacent words probabilisti-
cally [Jurafsky and Martin 2000]. Specifically, we combine trigrams with the
previously described spelling correction method and model a sentence using
the graphical model shown in Figure 6. The hidden variables wt are words
in the original sentence. The observations vt are recognized words. p(vt |wt) is

ACM Transactions on Information and System Security, Vol. 13, No. 1, Article 3, Publication date: October 2009.

Keyboard Acoustic Emanations Revisited • 3:13

Fig. 6. Trigram language model with spell correction.

calculated using Equation (2). Note this is a second-order HMM because ev-
ery hidden variable depends on two prior variables. The conditional probability
p(wt |wt−1, wt−2) is determined by a trigram model obtained by training on a
large corpus of English text.

In this model, only the wi values are unknown. To infer the most likely sen-
tence, we again use the Viterbi algorithm. We use a version of the Viterbi algo-
rithm for second-order HMMs, similar to the one in Thede and Harper [1999].
The complexity of the algorithm is O(TN 3), where T is the length of the sen-
tence and N is the number of possible values for each hidden variable, that is,
the number of dictionary words of the appropriate length. To reduce complex-
ity, only the top M candidates from the spelling correction process of each word
are considered in the Viterbi algorithm, lowering the cost to O(TM 3). That is,
for each recognized word vt , we select the top M possible hidden variables (wt),
where p(vt |wt) are the largest values among all dictionary words. We start from
the first word, and each word is chosen from the top M candidate dictionary
words. We find the path with the largest:

p(v1|w1)p(w2|w1)p(v2|w2)
T∏

t=3

p(vt |wt)p(wt |wt−1, wt−2)

We used M = 20 in our experiments. Larger M values provide little improve-
ment.

4.4 Supervised Training and Recognition

Supervised training refers to training processes performed with labeled train-
ing data. We apply our feedback-based training processes iteratively, using in
each iteration characters “recognized” in previous iterations as training sam-
ples to improve the accuracy of the acoustic keystroke classifier.

In the following text, we discuss three different methods of supervised train-
ing and recognition we use in our experiments, including the one used in Asonov
and Agrawal [2004]. Like any supervised classification problem, there are two
stages:

(1) training—input feature vectors and corresponding labels (the key pressed)
and output a model to be used in recognition;

(2) recognition—input feature vectors and the trained classification model and
output the label of each feature vector (keystroke).

ACM Transactions on Information and System Security, Vol. 13, No. 1, Article 3, Publication date: October 2009.

3:14 • L. Zhuang et al.

4.4.1 Method 1: Neural Networks. The first method is neural networks,
also used by Asonov and Agrawal [2004]. Specifically, we use probabilistic neu-
ral networks, which are arguably the best neural networks available for for
classification problems [Wasserman 1993]. We use Matlab’s newpnn() function,
with spread radius parameter as 1.4 (this gives the best results in our experi-
ments).

4.4.2 Method 2: Linear Classification (Discriminant). The second method
is simple linear (discriminant) classification [Jordan 2005]. This method as-
sumes the data to be Gaussian and finds hyperplanes in the space to divide the
classes. We use the classify() function from Matlab.

4.4.3 Method 3: Gaussian Mixtures. The third method is more sophisti-
cated than linear classification (though it gave worse results in our experi-
ments). Instead of assuming Gaussian distribution of data, it assumes that
each class corresponds to a mixture of Gaussian distributions [Jordan 2005].
A mixture is a distribution composed of several subdistributions. For example,
a random variable with distribution of a mixture of two Gaussians could have
a probability of 0.6 of being in one Gaussian distribution and 0.4 of being in
the other Gaussian distribution. This captures the fact that each key may have
several slightly different sounds depending on how the typist hit the key.

We also use the EM algorithm to train the Gaussian mixture model. In our
experiment, we used mixtures of five Gaussian distributions of diagonal covari-
ance matrices. Mixtures of more Gaussians provide potentially better model ac-
curacy but need more parameters to be trained, requiring more training data
and often making EM less stable. We find using five components seems to pro-
vide a good trade-off. Using diagonal covariance matrices reduces the number
of parameters. Without this restriction, EM has very little chance of yielding a
useful set of parameters.

5. EXPERIMENTS

Our experiments evaluated the attacks. In our first experiment, we worked
with four recordings of various lengths of news articles being typed. We use a
Logitech Elite cordless keyboard in use for about 2 years (manufacturer part
number: 867223-0100), a $10 generic PC microphone and a Soundblaster Au-
digy 2 soundcard. The typist was the same for each recording. The keys typed
included “a” through “z,” comma, period, space, and enter. The article was typed
entirely in lower case, so the shift key was never used. Typists were told to con-
tinue typing without using backspace key for error correction. (We discuss these
issues in Section 6.) Note that our experiments are preliminary. To validate
the applicability of the work in more complicated environment and settings, a
more complete set of experiments, in particular with more than a couple typists,
would be necessary.

Table I shows the statistics of each test set. Sets 1 and 2 are from quiet
environments, while Sets 3 and 4 are from noisy environments. Our algorithm
for detecting the start of a keystroke sometime fails. We manually corrected the
results of the algorithm for Sets 1, 2 and 3, requiring 10 to 20 minutes of human

ACM Transactions on Information and System Security, Vol. 13, No. 1, Article 3, Publication date: October 2009.

Keyboard Acoustic Emanations Revisited • 3:15

Table I. Statistics of Each Test Set

Recording Length Number of Words Number of Keys

Set 1 12m 17s 409 2,514

Set 2 26m 56s 1,000 5,476

Set 3 21m 49s 753 4,188

Set 4 23m 54s 732 4,300

Table II. Text Recovery Rate at Each Step

Set 1 Set 2 Set 3 Set 4

Words Chars Words Chars Words Chars Words Chars

unsupervised keystrokes 34.72 76.17 38.50 79.60 31.61 72.99 23.22 67.67

learning language 74.57 87.19 71.30 87.05 56.57 80.37 51.23 75.07

1st supervised keystrokes 58.19 89.02 58.20 89.86 51.53 87.37 37.84 82.02

feedback language 89.73 95.94 88.10 95.64 78.75 92.55 73.22 88.60

2nd supervised keystrokes 65.28 91.81 62.80 91.07 61.75 90.76 45.36 85.98

feedback language 90.95 96.46 88.70 95.93 82.74 94.48 78.42 91.49

3rd supervised keystrokes 66.01 92.04 62.70 91.20 63.35 91.21 48.22 86.58
feedback language 90.46 96.34 89.30 96.09 83.13 94.72 79.51 92.49

All numbers are percentages. The outputs denoted as “keystroke” are recovery rates before language model

correction. The bold face numbers in the “keystroke” row represent recovery rates that could be achieved for

random sequences of characters. The outputs denoted as “language” are recovery rates after language model

correction. The bold face numbers in the “language” row represent recovery rates that could be achieved for

nonrandom sequences of characters, such as English text.

time per dataset. (Sets 1 and 2 needed about 10 corrections; Set 3 required about
20 corrections.) For comparison purposes, Set 4 (which has about 50 errors in
determining the start of keystrokes) was not corrected.

In our second experiment, we recorded keystrokes from three additional mod-
els of keyboards (see Section 5.1.2). The same keystroke recognition experi-
ments were run on these recordings and results compared. We used identical
texts in this experiments on all these keyboards.

5.1 English Text Recognition

5.1.1 A Single Keyboard. In our experiments, we used linear classification
to train the keystroke classifier. Table II shows the result after each step. First,
the unsupervised learning step (Figure 2(a)) was run. In this unsupervised
step, the HMM model, shown in Figure 5, was trained using EM algorithm
described earlier in the text.4 The output from this step is the recovered text
from HMM/Viterbi unsupervised learning, and the text after language model
correction. In Table II, these two are denoted as keystrokes and language, re-
spectively. Then, the first round of feedback supervised training produces a new
classifier. The iterated corrected text from this classifier (and corresponding text
corrected by the language model) are shown in the row marked “1st supervised
feedback.” We perform three rounds of feedback supervised learning. The bold

4Since the EM algorithm is a randomized algorithm, it might sometimes get stuck in local optima.

To avoid this, in each of these experiments, we run the same training process eight times and used

results from the run with the highest log-likelihood.

ACM Transactions on Information and System Security, Vol. 13, No. 1, Article 3, Publication date: October 2009.

3:16 • L. Zhuang et al.

Table III. Recognition Rates of Classification Methods in Supervised Learning

NN LC MC

Words Chars Words Chars Words Chars

1st supervised keystrokes 59.17 87.07 58.19 89.02 59.66 87.03

feedback language 80.20 90.85 89.73 95.94 78.97 90.45

2nd supervised keystrokes 70.42 90.33 65.28 91.81 66.99 90.25

feedback language 81.17 91.21 90.95 96.46 80.20 90.73

3rd supervised keystrokes 71.39 90.81 66.01 92.04 69.68 91.57
feedback language 81.42 91.93 90.46 96.34 83.86 93.60

All numbers are percentages. The outputs denoted as “keystroke” are recovery rates before language

model correction. The bold face numbers in the “keystroke” row represent recovery rates that could be

achieved for random sequences of characters. The outputs denoted as “language” are recovery rates after

language model correction. The bold face numbers in the “language” row represent recovery rates that

could be achieved for nonrandom sequences of characters, such as English text. (NN: Neural Network;

LC: Linear Classification; MC: Gaussian Mixtures)

numbers show our final results. The bold numbers in the “language” row are
the final recognition rate we achieve for each test set. The bold numbers in
the “keystroke” row are the recognition rates of the keystroke classifier, with-
out using the language model. These are the recognition rates for random or
non-English text.

The results show that

—the language model correction greatly improved the correct recovery rate for
words;

—the recovery rates in quiet environments (Sets 1 and 2) were slightly better
that those in noisy environments (Sets 3 and 4), but the difference became
smaller after several rounds of feedback;

—correctness of the keystroke position detection affected the results. The recov-
ery rate in Set 3 was better than Set 4 because of keystroke location mistakes
included in Set 4;

—when keystroke positions have been corrected after several rounds of feed-
back, we achieved an average recovery rate of 87.6% for words and 95.7% for
characters.

To understand how different classification methods in the supervised train-
ing step affected the results, we reran the same experiment on Set 1, using dif-
ferent supervised classification methods. Table III shows our results. The meth-
ods in order of quality are in linear classification, then Gaussian mixtures, and
then neural networks. Experiments with other datasets gave similar results.

In the previous experiments, we used recordings longer than 10 minutes. To
discover the minimal amount of training data needed for reasonable results,
we took the first dataset (i.e., Set 1) and used only the first 4, 5, 7, and 10
minutes of the 12-minute recording for training and recognition. Figure 7 shows
the recognition results we get. This figure suggests that at least 5 minutes of
recording data are necessary to get good results for this particular recording.5

5The dip in the solid curve probably occuried because of noise during the 2-minute recording window

(between minute 5 and minute 7).

ACM Transactions on Information and System Security, Vol. 13, No. 1, Article 3, Publication date: October 2009.

Keyboard Acoustic Emanations Revisited • 3:17

 30

 40

 50

 60

 70

 80

 90

 100

 2 4 6 8 10 12 14
F

in
a
l
R

e
c
o
g
n
it
io

n
 R

a
te

Length of Recording

word correct rate
char correct rate

Fig. 7. Length of recording vs. recognition rate.

Table IV. Text Recovery Rate at Each Step

Keyboard 1 Keyboard 2 Keyboard 3

Words Chars Words Chars Words Chars

unsupervised keystrokes 30.99 71.67 20.05 62.40 22.77 63.71

learning language 61.50 80.04 47.66 73.09 49.21 72.63

1st supervised keystrokes 44.37 84.16 34.90 76.42 33.51 75.04

feedback language 73.00 89.57 66.41 85.22 63.61 81.24

2nd supervised keystrokes 56.34 88.66 54.69 86.94 42.15 81.59

feedback language 80.28 92.97 76.56 91.78 70.42 86.12

Final keystrokes 60.09 89.85 61.72 90.24 51.05 86.16
result language 82.63 93.56 82.29 94.42 74.87 89.81

With different keyboards. All numbers are percentages. The outputs denoted as “keystroke” are recovery

rates before language model correction. The bold face numbers in the “keystroke” row represent recovery

rates that could be achieved for random sequences of characters. The outputs denoted as “language” are

recovery rates after language model correction. The bold face numbers in the “language” row represent

recovery rates that could be achieved for nonrandom sequences of characters, such as English text.

5.1.2 Multiple Keyboards. To verify that our approach applies to different
models of keyboards, we performed the keystroke recognition experiment on
different keyboards, using linear classification in the supervised training step.
The models of the keyboards we used are:

—Keyboard 1: DellTM Quietkey� PS/2 keyboard, manufacturer part number
2P121, in use for about 6 months.

—Keyboard 2: DellTM Quietkey� PS/2 keyboard, manufacturer part number
035KKW, in use for more than 5 years.

—Keyboard 3: DellTM Wireless keyboard, manufacturer part number W0147,
new.

The same document (2,273 characters) was typed on all three keyboards and we
recorded keystroke sounds. Each recording lasted about 12 minutes. In these
recordings, the background machine fan noise was noticeable. While recording
from the third keyboard, we got several seconds of unexpected noise from a
cellphone nearby. Table IV shows our results. Results in the table show that the
first and the second keyboards achieve higher recognition rate than the third

ACM Transactions on Information and System Security, Vol. 13, No. 1, Article 3, Publication date: October 2009.

3:18 • L. Zhuang et al.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 4 8 16 32 64 128

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti
o
n
 F

u
n
c
ti
o
n

Number of Trials Needed

password length = 5
password length = 8

password length = 10

Fig. 8. Password stealing: distribution of the number of trials required by the attacker.

one. But in general, all keyboards are vulnerable to the attacks we present in
this article.

5.2 Random Text Recognition and Password Stealing

We used the keystroke classifier trained by Set 1 to mount password stealing
attacks. All password input recorded in our experiment were randomly gener-
ated sequences, not user names or dictionary words. The output of the keystroke
classifier for each keystroke is a set of posterior probabilities:

p(this keystroke has label i|observed-sound), i = 1, 2, . . . , 30.

Given these conditional probabilities, one can calculate probabilities for all
sequences of keys being the real password. We sorted these sequences by their
probabilities from the largest to the smallest. This produced a candidate list
and the attacker can try one-by-one from the top to the bottom. To measure the
efficacy of the attack, we used the position of the real password in this list. A
user inputed 500 random passwords, each of length 5, 8, and 10. Figure 8 shows
the cumulative distribution function of the position of the real password. For
example, with twenty trials, 90% of 5-character passwords, 77% of 8-character
passwords and 69% of 10-character passwords are recovered. As Figure 8 also
shows, after 75 trials, we can recover 80% of 10-character passwords.

6. DISCUSSION

6.1 Timing Information

We discussed how to use acoustic information of keystrokes to recover typed
keys. Our experiments show high keystroke recovery rates using only acoustic
information. As mentioned earlier Song et al. [2001] point out that the time
between consecutive keys also carries information about typed keys. It may be
possible to further improve the recovery rate with timing information. Here,
we give one way to combine timing features with acoustic features; however,
our results show only a modest improvement in recovery rate.

ACM Transactions on Information and System Security, Vol. 13, No. 1, Article 3, Publication date: October 2009.

Keyboard Acoustic Emanations Revisited • 3:19

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

C
D

F

Time a pair of keys

a*
h*

Fig. 9. Cumulative Distribution Function (CDF) of time: a pair of keys starting with “a”(“a*”) vs.

a pair of keys starting with “h”(“h*”).

The time between a pair of consecutive keys is related to many factors, such
as the location of the two keys on the keyboard, typing style, whether the keys
are typed by alternating hands or the same hands, whether the keys are typed
by different fingers or the same finger, and so on. We recorded a typist at normal
pace, without intentional stops between keys. Figure 9 shows the distribution
of time between “a” and subsequent keys is significantly different from “h” and
subsequent keys. The key “a” is located near the border of a keyboard and touch
typists use the small finger of the left hand to type it, while the key “h” is located
in the middle of a keyboard and touch typists use the index finger of the right
hand to type it. Figure 9 suggests the time between a key and a subsequent
key carries information about the location of the key on the keyboard, that is,
information related to the label of the key.

In the previous discussion, we represent acoustic information as a vector
of features. If we assume the length of the time interval between a key and
its next key carries information (as shown in Figure 9), we can add time as
an additional dimension in the feature vector. We can then apply new feature
vectors with time as one of the dimensions in our supervised training step. We
experimented with the Sets 1, 2, and 3, using the previously described training
approaches. Table V shows that initial and final recognition rates in supervised
training.

The recognition rates in Table V suggest that time between consecutive keys
does not substantially improve the supervised learning in the feedback-based
training. The results are not as good as the results reported by Song et al. [2001]
Reasons for this discrepancy may include the following.

—Song et al. [2001] used the length of the time interval between consecutive
keys in a very short phase, such as a password. The pace of typing when a user
types his password is probably more consistent than the pace of typing when
a user types an article. In our test sets, the typist sometimes stopped in the
middle of typing an article. Also, the typing speed for some words are much
faster than others even if those words share common pairs of characters.
The newly introduced timing information (“signal”) comes along with ran-
dom variations (“noise”). When we add the timing information with acoustic

ACM Transactions on Information and System Security, Vol. 13, No. 1, Article 3, Publication date: October 2009.

3:20 • L. Zhuang et al.

Table V. Recognition Rate in Supervised Training: With Timing

Information vs. Without Timing Information

Without Time With Time

Word Char Word Char

initial keystroke 58.19 89.02 57.95 88.94

set 1 language 89.73 95.94 89.00 95.31

final keystroke 66.01 92.04 65.77 92.12

language 90.46 96.34 91.20 96.50
initial keystroke 58.20 89.86 58.20 89.83

set 2 language 88.10 95.64 87.7 95.28

final keystroke 62.70 91.20 62.70 91.09

language 89.30 96.09 89.2 96.00

initial keystroke 51.53 87.37 51.39 87.32

set 3 language 78.75 92.55 77.56 92.09

final keystroke 63.35 91.21 62.55 91.07

language 83.13 94.72 82.20 94.44

information, the training methods do not receive a sufficient number of sam-
ples with consistent timing information to improve recovery rates.

—Acoustic information alone yields a high recognition rate. The acoustic infor-
mation has a higher “signal-to-noise” ratio compared to timing information.
Moreover, spelling and grammar correction makes the effects of timing in-
formation less visible too.

Finding good ways to combine interkeystroke time interval information with
acoustic key recovery merits further research.

6.2 Why Keys Sound Different

We are interested in finding out why keystrokes of different keys sound differ-
ent. There are at least two contributing factors.

—Keyboard layout. Keys are located at different locations on the support plate
of a keyboard. Just as striking a drum at different locations yields different
sounds, the keys on a keyplate yield different sounds.

—Typing patterns. The sound of keystroke is related to how the key is typed;
for example, the direction that a key is hit.

To verify the hypotheses, we performed an experiment.
In the experiment, each key was repeatedly struck 50 times. The sound sam-

ples of 50 hits for each key were used to train acoustic classifiers using different
classification methods (i.e., linear classification, neural networks, and mixture
of Gaussians). Then, the acoustic classifiers trained in this way were used to
recognize the training set and two different sets of new sound samples. The first
test set was composed of sound samples from 30 repeated hits of each key. The
second test set is composed of sound samples from a typist typing an article.
Table VI shows our recognition rates.

When a key was repeatedly struck, all keystrokes are made with the similar
strength by a single finger and using almost the same gesture. There is no differ-
ence in typing style between different keys. Table VI shows that the recognition

ACM Transactions on Information and System Security, Vol. 13, No. 1, Article 3, Publication date: October 2009.

Keyboard Acoustic Emanations Revisited • 3:21

Table VI. Recognition Rate of Repeat Key Hits and Article Input Using

Classifier Trained by Repeat Key Hits

Repeat50 (training) Repeat30 Article

Linear Classification 95.67% 88.05% 53.49%

Neural Network 100% 81.84% 51.21%

Mixture of Gaussians 98.87% 81.15% 47.44%

rates of test samples from keys typed repeatedly are over 80%, which suggests
that the sound differences may come from the physical properties of a keyboard
(location of keys, physical difference between keys, etc). This observation sup-
ports our first assumption that keyboard layout contributes to different sound
from keys.

If the keyboard layout was the only reason for different sound of keys, the
classifier trained by sound of repeatedly typing the same key should also work
for normal typing. However, this model was not very effective in classifying
normal English text. One reason for this is that typing normal English text
uses a variety of paces, gestures, and key press strengths. Repeated typing only
teaches the acoustic classifiers a portion of sounds that a key could make. This
experiment suggests that keys sound different because of both the keyboard
layout and typing style such as paces, gestures and hitting strengths, an so on.

6.3 Special Keys

The current attack does not take into account special keys such as the Shift
key, the Control key, the Backspace key and the Caps Lock key. There are two
issues here. One is whether keystrokes of special keys are separable from other
keystrokes at signal processing time. Our preliminary experiments suggest this
is possible; push peaks of keystrokes are easily separable in the recordings we
looked at. The other issue is how modifier keys such as the Shift key fit into
spelling correction scheme. We hypothesize ad hoc solutions such as replacing
the Shift key or the Caps Lock key with spaces will work. The Shift key often
appears before the first letter of a word. If it is recognized incorrectly, the fol-
lowing word will be one letter longer. In spelling and grammar correction, we
can take this into account by not only considering words of the same lengths,
but also those with one fewer letter. For example, if we get “atje” after initial
recognition, the word “the” will also be considered as a candidate word for cor-
rection because we might misrecognize the Shift key as “a.” These keys can be
much more reliably recognized by training a classifier specifically for the Shift
key and the Caps Lock key. Note that we do not need to distinguish between
uppercase and lowercase in the recovered text, so it is not necessary to detect
when the Shift key is released.

The Backspace key is also important. The ideal solution would be to figure
out what the final text is after applying the backspaces, but that will probably
complicate the error correction algorithms, so one could just recognize these
keys and leave the “word” before and after out of error-correction because they
are probably not full words. An interesting fact about the Backspace key is that
this key is often hit repeatedly: A user often wants to delete a whole word or a
whole sentence. Here, a bit of human aid could be useful because backspaces are

ACM Transactions on Information and System Security, Vol. 13, No. 1, Article 3, Publication date: October 2009.

3:22 • L. Zhuang et al.

relatively easy to detect by ear based on sound and context, although it is harder
than spaces. It is not difficult for human ears to detect repeated keystrokes
of the Backspace key. Since the sound of the Backspace key is very different
from others, in the acoustic clustering step, they will normally clustered with
the same label. It is possible to write a program to automatically select sound
samples of consecutive keys that are clustered in a common label. A variety of
techniques could be used to decide whether these are consecutive Backspaces.
After sound samples of the Backspace keys are collected, we train a specific
acoustic classifier for the Backspace keys as well.

6.4 Attack Improvements

This section discusses improvements to our attacks.

—One challenge we met in our work was marking keystroke starting points
in the sound signal. This is not trivial because the sound varies in energy
level, timing, frequency distribution, and the like, depending on the typ-
ist and recording environment. We use energy level and timing constraints
between consecutive keys to mark the starting positions of keystrokes. De-
tection rules are manually created based on past experiences. Our detection
program based on this approach has difficulty in marking keystroke positions
in recordings from fast typists. However, there is additional information we
can use, namely frequency, which appears to vary from the push peak to the
release peak. We hope to explore this in future work. A robust and consistent
keystroke position detection algorithm may also improve the recovery rate
of typed characters.

—Currently, we assume the Space key, Enter key, and punctuation keys are
detected correctly and use them to divide characters into words. We use can-
didate words of the same length as the “words” separated in this way. In
future work, we will explore better ways to choose candidate words for cor-
rection, with the goal of high-quality correction even when there are mistakes
in separating words.

—An alternative method for feedback training is Hierarchical Hidden Markov
Models (HHMMs) [Fine et al. 1998]. In an HHMM, HMMs of multiple lev-
els (grammar level and spelling level in this case) are built into a single
model. Algorithms to maximize global joint probability may improve the ef-
fectiveness of the feedback training procedure. This approach merits further
investigation.

—Our experiments tested on FFT features and cepstrum features. However,
there are other types of features for representing sound signals. For each
type of feature, there are multiple parameters to control the extracted in-
formation. Currently, we used ad hoc methods to select these parameters.
An entropy-based metric defined specifically for measuring acoustic fea-
tures may provide a better, more systematic way to compare features and
parameters. This metric may also allow us to compare information leaked by
individual keys. Given current PC keyboard layouts, is the leaking uniform
among keys, or should we pay more attention to specific keys? Is it possible

ACM Transactions on Information and System Security, Vol. 13, No. 1, Article 3, Publication date: October 2009.

Keyboard Acoustic Emanations Revisited • 3:23

to know which typing styles leak more information and whether different
typists leak different amounts of information?

—In a controlled environment where we can record isolated typing sounds,
the recovery rate is now high. However, in most realistic situations, environ-
mental background noise is an issue. In many work spaces, we have multiple
users simultaneously typing. Isolating the sound of a single typist is difficult.
We propose to test recording with multiple microphones, including arrays of
directional microphones. We could get the sound signal of multiple channels
in this way. Similarly, we have shown that the recognition rate is lower in
noisy environments. Attacks will be less successful when the user is playing
music or talking to others while typing. However, we may be able to use sig-
nal processing techniques (especially in multichannel recordings) to isolate
the sound of a single typist.

—We hope to explore a variety of recording devices including parabolic mi-
crophones, laser microphones, telephone receiver microphones, acoustic chat
connections such as Skype, and so on.

—In future work, it is particularly interesting to try to detect keystrokes typed
in a particular application, such as a visual editor (e.g., emacs) or a software
development environment (e.g. Eclipse). Examining text typed in these envi-
ronment presents challenges because more keys maybe used and special keys
maybe used more often. Furthermore, the bigram or transition matrix will
be different. Nonetheless we believe that our techniques may be applicable
to detecting keystrokes of users in these applications and indeed can even
cover input as different as other small alphabet languages, such as Russian
or Arabic, large alphabet languages, such as Chinese or Japanese, and even
programming languages.

6.5 Defenses

Since our attack is based on acoustic signal through passively eavesdropping, it
is more difficult to detect this type of attacks than active attacks where attack-
ers actively interact with victims. Here are some preliminary areas for potential
defenses.

—Reduce the possibility of leaking acoustic signals. Sound proving may help,
but given the effectiveness of modern parabolic and laser microphones, the
standards are very high.

—Quieter keyboards as suggested by Asonov and Agrawal may reduce vulner-
ability. However, the two so-called “quiet” keyboards we used in our experi-
ments proved ineffective against the attack. Asonov and Agrawal also suggest
that keyboard makers could produce keyboards having keys that sound so
similar that they are not easily distinguishable. They claim that one rea-
son keys sound different today is that the plate underneath the keys makes
different sounds when hit at different places. If this is true, using a more
uniform plate may alleviate the attack. However, it is not clear whether these
kinds of keyboards are commercially viable. Also, there is the possibility that
more subtle differences between keys can still be captured by an attacker.

ACM Transactions on Information and System Security, Vol. 13, No. 1, Article 3, Publication date: October 2009.

3:24 • L. Zhuang et al.

Furthermore, keyboards may develop distinct keystroke sounds after months
of use.

—Another approach is reduce the quality of acoustic signal that could be ac-
quired by attackers. We could add masking noise while typing. However, we
are not sure that masking noises might not be easily separated out. As we dis-
cussed previously, an array of directional microphones may be able to record
and distinguish sound into multiple channels according to the locations of
the sound sources. This defense could also be ineffective when attackers are
able to collect more data. Reducing the annoyance of masking is also an is-
sue. Perhaps a short window of noise could be added at every predicted push
peak. This may be more acceptable to users than continuous masking noise.
Alternatively, perhaps we could randomly insert noise windows that sound
like push peaks of keystrokes.

—The practice of relying only on typed passwords or even long passphrases
should be re-examined. One alternative is two-factor authentication that
combines passwords or pass-phrases with smart cards, one-time password
tokens, biometric authentication, and the like. However, two-factor authen-
tication does not solve all our problems. Typed text other than passwords is
also valuable to attackers.

7. CONCLUSION

Our new attack on keyboard emanations needs only an acoustic recording of
typing using a keyboard and recovers the typed content. Compared to previous
work that requires clear-text–labeled training data, our attack is more general
and serious. More importantly, the techniques we use to exploit inherent statis-
tical constraints in the input and to perform feedback training can be applied
to other emanations with similar properties.

APPENDIX

A. RECOVERED TEXT EXAMPLES

Text recognized by the HMM classifier, with cepstrum features (underlined
words are wrong),

the big money fight has drawn the shoporo od dosens
of companies in the entertainment industry as well
as attorneys gnnerals on states, who fear the
fild shading softwate will encourage illegal acyivitt,
srem the grosth of small arrists and lead to lost cobs and
dimished sales tas revenue.

Text after spelling correction using trigram decoding,

the big money fight has drawn the support of dozens
of companies in the entertainment industry as well as
attorneys generals in states, who fear the film sharing
software will encourage illegal activity, stem the growth

ACM Transactions on Information and System Security, Vol. 13, No. 1, Article 3, Publication date: October 2009.

Keyboard Acoustic Emanations Revisited • 3:25

of small artists and lead to lost jobs and finished sales
tax revenue.

Original text. Notice that it actually contains two typographical errors, one of
which is fixed by our spelling corrector.

the big money fight has drawn the support of dozens
of companies in the entertainment industry as well as
attorneys gnnerals in states, who fear the file sharing
software will encourage illegal activity, stem the growth
of small artists and lead to lost jobs and dimished sales
tax revenue.

B. DETAILS OF FEATURE EXTRACTION IMPLEMENTATION

The main difference between the duration of keystrokes and the silent periods
between keystrokes is the level of energy in a certain range of frequencies.
The “silent” periods between keystrokes might also have nonnegligible energy
because of other noises. The major part of energy is in different frequency range
than those from keystrokes. Our experiments show that the energy of keystroke
durations is mainly in the frequencies between 400Hz and 12KHz.

To extract the start of each keystroke, we:

(1) compute the windowed discrete-time Fourier transform of a signal using a
sliding window (e.g., Matlab specgram()) with the magnitude of outputs at
the spectrogram;

(2) sum over the spectrogram in the range [0.4, 12] KHz to get a aggregate
curve;

(3) set a threshold and find the start of each peak in the curve at the start of a
keystroke (see Figure 4).

Note that the positions of starts of keystrokes detected from the curve in
Figure 4 is the index of window number (win num), which are converted back to
the original location (wav position) in the audio stream by:

wav position = (win num − 2) ∗ win shift + win length

The raw features might have high dimensionality. Possible algorithms for di-
mensionality reduction are Factor Analysis (FA) or the simpler Principal Com-
ponent Analysis (PCA) [Jordan 2005]. Although some of our preliminary exper-
iments use PCA, our final experiments do not use it. The FFT and cepstrum
features we extract are not of very high dimension (typically the number of di-
mension is between 60 and 80), so we do not need to apply dimension reduction.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their comments. We also
want to thank Chris Karlof, Michael I. Jordan, Naveen Sastry, Umesh Shankar,
Zile Wei, and Hao Zhang, and especially Marco Barreno.

ACM Transactions on Information and System Security, Vol. 13, No. 1, Article 3, Publication date: October 2009.

3:26 • L. Zhuang et al.

REFERENCES

ASONOV, D. AND AGRAWAL, R. 2004. Keyboard acoustic emanations. In Proceedings of the IEEE
Symposium on Security and Privacy. IEEE, Los Alamitos, CA, 3–11.

ATKINSON, K. 2005a. GNU Aspell. http://aspell.sourceforge.net.

ATKINSON, K. 2005b. Spell checker oriented word lists. http://wordlist.sourceforge.net.

BAR-EL, H. 2003. Introduction to side channel attacks.

http://www.hbarel.com/Misc/side channel attacks.html.

BILMES, J. A. 1997. A gentle tutorial of the EM algorithm and its application to parameter estima-

tion for Gaussian mixture and Hidden Markov Models. Tech. rep. ICSI-TR-97-021, International

Computer Science Institute, Berkeley, CA.

ftp://ftp.icsi.berkeley.edu/pub/techreports/1997/tr-97-021.pdf.

BRIOL, R. 1991. Emanation: How to keep your data confidential. In Proceedings of the Symposium
on Electromagnetic Security for Information Protection. ACM, New York, 225–234.

CHILDERS, D. G., SKINNER, D. P., AND KEMERAIT, R. C. 1977. The cepstrum: A guide to processing.

Proc. IEEE 65, 10, 1428–1443.

FINE, S., SINGER, Y., AND TISHBY, N. 1998. The hierarchical Hidden Markov Model: Analysis and

applications. Mach. Learn. 32, 1, 41–62.

JORDAN, M. I. 2005. An Introduction to Probabilistic Graphical Models. In preparation.

JURAFSKY, D. AND MARTIN, J. H. 2000. Speech and Language Processing: An Introduction to Natural
Language Processing, Computational Linguistics, and Speech Recognition. Prentice Hall, Upper

Saddle River, NJ.

KUHN, M. G. 2002. Optical time-domain eavesdropping risks of CRT displays. In Proceedings of
the IEEE Symposium on Security and Privacy. IEEE, Los Alamitos, CA, 3–18.

KUHN, M. G. 2003. Compromising emanations: Eavesdropping risks of computer displays. Tech.

rep. UCAM-CL-TR-577, Computer Laboratory, University of Cambridge, UK.

http://www.usenix.org/events/sec09/tech/full papers/sec09 attacks.pdf.

RABINER, L. R. AND JUANG, H. 1986. An introduction to Hidden Markov Models. IEEE Trans.
Acoust. Speech Signal Process. 3, 4–16.

RUSSELL, S. AND NORVIG, P. 2003. Artificial Intelligence: A Modern Approach, 2nd Ed. Prentice

Hall, Upper Saddle River, NJ.

SHAMIR, A. AND TROMER, E. 2004. Acoustic cryptanalysis.

http://www.wisdom.weizmann.ac.il/∼tromer/acoustic.

SONG, D., WAGNER, D., AND TIAN, X. 2001. Timing analysis of keystrokes and timing attacks on

ssh. In Proceeding of the 10th USENIX Security Symposium. USENIX Association, Berkley, CA,

337–352.

THEDE, S. M. AND HARPER, M. P. 1999. A second-order Hidden Markov Model for part-of-speech

tagging. In Proceedings of the 37th Conference on Association for Computational Linguistics.

Morgan Kaufmann, San Francisco, CA, 175–182.

WASSERMAN, P. D. 1993. Advanced Methods in Neural Computing. Wiley, New York.

Received January 2006; revised September 2007; accepted March 2008

ACM Transactions on Information and System Security, Vol. 13, No. 1, Article 3, Publication date: October 2009.

