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Abstract. CAPTCHAs are tests that distinguish humans from software
robots in an online environment [3, 14, 7]. We propose and implement
three CAPTCHAs based on naming images, distinguishing images, and
identifying an anomalous image out of a set. Novel contributions include
proposals for two new CAPTCHAs, the first user study on image recog-
nition CAPTCHAs, and a new metric for evaluating CAPTCHAs.

1 Introduction

We want to distinguish Internet communications originating from humans from
those originating from software robots. Alan Turing’s celebrated “Turing Test”
paper [13] discussed the special case of a human tester who attempts to dis-
tinguish humans and artificial intelligence computer programs. However, the
situation is far harder when the tester is a computer. Recent interest in this
subject has spurred a number of proposals for CAPTCHAs: Completely Auto-

mated Public Tests to tell Computers and Humans Apart [14, 3]. This interest
is motivated in large part by a variety of undesirable behavior associated with
software robots, such as sending bulk unsolicited commercial e-mail (spam), or
inflating ratings on a recommender system by rating the same product many
times. Paypal and Yahoo already require CAPTCHAs in order to provide ser-
vices. However, sufficiently advanced computer programs can break a number of
CAPTCHAs that have been proposed to date.

Integrating a CAPTCHA into a software system raises a question which
straddles the fields of human computer interactions (HCI) and computer security:
how do we develop an effective CAPTCHA that humans are willing to take?
This paper examines three proposals for image recognition CAPTCHAs and
finds merits and weaknesses associated with each of them. Since CAPTCHAs
straddle HCI and computer security, we need to apply techniques drawn from
both fields to analyze them. This paper concentrates not only on the underlying
security issues raised by these CAPTCHA proposals, but also on their usability.
We validate our results with serious user tests.

CAPTCHAs must satisfy three basic properties. The tests must be

– Easy for humans to pass.
– Easy for a tester machine to generate and grade.
– Hard for a software robot to pass. The only automaton that should be able

to pass a CAPTCHA is the one generating the CAPTCHA.
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The first requirement implies that user studies are necessary to evaluate the
effectiveness of CAPTCHAs. The second and third requirements push us in a
different direction. We must find a test with a new property: the test must be
easy to generate but intractable to pass without special knowledge available
to humans and not computers. Image recognition seems to be such a problem.
Humans can easily identify images, but to date, image recognition appears to be
a hard problem for computers.

Generating tests is also a challenge. Unless the number of potential tests is
huge or the material being tested is highly dynamic, one runs the risk of an
adversary generating all possible tests and using a hash function to look up the
answer in a precomputed database.

Note that CAPTCHAs need not be 100% effective at rejecting software
robots. As long as the CAPTCHA raises the cost of using a software robot
above the cost of using a human, the CAPTCHA can still be effective.

Several types of CAPTCHAs already exist. The types of tasks they require
include: image recognition, text recognition, and speech recognition. All of the
CAPTCHAs in use are either broken or insufficiently studied. The idea of using
image recognition for CAPTCHAs is not new, but no previous formal study of
such CAPTCHAs exists. There are two prototypes of image recognition CMU’s
CAPTCHA website [3]. Both of them use small, fixed sets of images and re-
sponses. Text-based CAPTCHAs alternatively require the user to transcribe an
image of a word, but seem to be easy to break [10, 4].

1.1 Contributions of this work

A number of researchers [3] have proposed the image recognition-based naming

CAPTCHA, where the test subject is asked to identify a word associated with
a set of images. We propose two variations on this approach:

– Asking the test subject to determine if two subsets of images are associated
with the same word or not (the distinguishing CAPTCHA);

– Showing the test subject a set of images where all but one image is associated
with a word and asking the test subject to identify the anomalous image (the
anomaly CAPTCHA).

In this paper, we propose a new metric for evaluating CAPTCHAs, imple-
ment all three approaches, evaluate them both theoretically and in user studies,
and find that anomaly identification appears to be the most promising approach.
Preliminary results indicate that 100% of users can pass the anomaly CAPTCHA
at least 90% of the time. We also help expand the literature on the intersection
between HCI and computer security by discussing a number of unique HCI issues
that arise in the evaluation of CAPTCHAs.

2 Image Recognition CAPTCHAs

We use the following three tasks to construct our CAPTCHAs.



The naming CAPTCHA The anomaly CAPTCHA

Fig. 1. The figure on the left is the naming CAPTCHA. (Answer: astronaut.) The
right figure illustrates the anomaly CAPTCHA. Five images are of moose, top middle
anomalous image is of weave.

1. The naming images CAPTCHA.

The naming CAPTCHA presents six images to the user. If the user correctly
types the common term associated with the images, the user passes the
round. Figure 1 shows an example of one round of the naming CAPTCHA.
The common term illustrated in the figure is astronaut.

2. The distinguishing images CAPTCHA.

The distinguishing CAPTCHA presents two sets of images to the user. Each
set contains three images of the same subject. With equal probability, both
sets either have the same subject or not. The user must determine whether or
not the sets have the same subject in order to pass the round. For example,
of six images, the subject of the top three images could be briefcase, and the
subject of the bottom three images could be plate.

3. The identifying anomalies CAPTCHA.

The anomaly CAPTCHA presents six images to the user: five images are
of the same subject, and one image (the anomalous image) shows a differ-
ent subject. The user must identify the anomalous image to pass the test.
Figure 1 shows five images of moose and one image of weave.

To make an image recognition CAPTCHA, we need a database of labelled
images, several images for each label in a dictionary. Since it will be easy for
humans to guess the label and hard for machines, we can use this database to
create CAPTCHAs.

Dictionary For the labels, we use a dictionary of 627 English words from
Pdictionary [12]. Pdictionary is an pictorial dictionary, so every word in it is
easy to illustrate. Easily illustrated or visualized words are important; pictures
of abstract nouns such as love or agony are difficult to identify.



Images For the images, we collect the first 20 hits from Google’s image search
on each word in the dictionary, using moderate safe search (a content filter). After
culling broken links and potentially offensive images, 10116 images remain.1 For
this study, we pre-fetched the images to minimize latency when presenting the
user with a round (in order to get more accurate timing information) and to
ensure that no images are offensive. However, one could easily fetch the images
dynamically to take advantage of changes in Google’s image index.

2.1 Problems affecting human CAPTCHA performance

Each of the three above tasks (naming images, distinguishing images, identify-
ing an anomalous image) incur potential problems that might lower test scores
for humans. A problem lowers the probability that a human user will pass. A
potential problem might hurt or help human performance. Below, × indicates a
problem, ◦ a possible problem.

Task Misspelling Synonymy Polysemy Mislabelling

Naming images × × ◦ ×
Distinguishing images ◦ ×
Identifying anomalies ◦ ×

Misspelling The human user may misspell a word.

– The naming CAPTCHA: The human user must type the word associated
with the images. The user may misspell a word, failing the CAPTCHA even
though the user knows the correct label of the image. Solution: We do not
require an exact string match between the answer and the query in order for
the user to pass. We choose Oliver’s similarity score, a good metric that is
also available as a PHP built-in function [11].

– The distinguishing CAPTCHA and the anomaly CAPTCHA: Misspelling is
not a problem, since the user does not have to type anything.

Synonymy One word may have multiple correct definitions.

– The naming CAPTCHA: Synonymy will lower user scores. For example, a
user may label a picture of a mug as a cup or a mug. Both answers are correct,
but the cup answer will cause the user to fail. Solution: The CAPTCHA
could use a thesaurus, and accept all synonyms of the expected answer. The
problem with this solution is that an adversary also has a greater chance of
passing if there is more than one correct answer.
Another solution is to allow the user to fail some rounds: a CAPTCHA could
be composed of m rounds, and a user would only have to pass k of them. We
choose this solution and discuss picking the optimal k and m in Section 3.

– The distinguishing CAPTCHA and the anomaly CAPTCHA: Synonymy is
not a problem since the user does not have to type anything.

Polysemy One word may correspond to multiple definitions. For example,
a mouse is both a rodent and an electronic pointing device.
1 Google has since added a strict content filter, which might help weed out more

offensive images.



– The naming CAPTCHA: Polysemy might cause lower test scores, or it might
raise them. On one hand, polysemy may provide more hints to the user. In
the example above, if the user were only shown the picture of the rodent,
the user might answer rat or mouse. However, if the picture of the pointing
device is included, the user could rule out rat and give the correct answer. On
the other hand, if the user does not know the alternate definition of mouse,
the picture of the pointing device may be confusing.

– The distinguishing CAPTCHA: Polysemy could be a problem. For example,
suppose the word is mouse. If the first set of images is of a rodent, and the
second set is of a pointing device, the user will be confused. However, we
expect this to be negligible in practice.

– The anomaly CAPTCHA: Polysemy could be a problem, if the user does not
know the secondary definition of a word.

Solution: In each of the three CAPTCHAs, if polysemy is a problem, we can
allow the user to fail some rounds.

Mislabelling Google indexes images by the name of the image. Some images
on Google are labelled incorrectly. The label may have a meaning to the author
of the web page, but no discernible connection to the image content to anyone
else. For example, someone might have a pet cat whose name is Pumpkin, and
thus an image search of the word pumpkin might produce pictures of a cat.
– The naming CAPTCHA: Mislabelling confuses the user.
– The distinguishing CAPTCHA: The distinguishing CAPTCHA presents two

sets of images to the user, each set containing three images. Mislabelling will
confuse the user, especially if the majority of images in a set are mislabelled.

– The anomaly CAPTCHA: A mislabelled image is indistinguishable from an
anomalous image. Suppose the two labels are pumpkin and briefcase, and
there is a pet cat named Pumpkin. There might be four easily identifiable
pictures of a pumpkin and two anomalous images: one picture of Pumpkin
the cat and a picture of a briefcase.

Solution: In each of the three CAPTCHAs, we can allow the user to fail some
rounds. Additionally, in the naming CAPTCHA, we present six images of the
same query to the user, with the hope the majority of the images are labelled
correctly and the user will be able to guess the correct response.

Allowing the human user to fail some rounds alleviates all of these problems;
we turn to the question of the total number of rounds the user must take, and
the number of those the user must pass.

3 CAPTCHA metrics

In this section we choose two metrics for evaluating CAPTCHAs: a metric that
allows us to measure CAPTCHA efficacy with respect to the number of rounds,
and a metric measuring the expected time for a human user to take a CAPTCHA.

We can optimize a variety of CAPTCHA parameters:
1. Type of task. We can choose the nature of the tasks: naming the com-

mon element in a set of images, distinguishing images, and identifying an
anomalous image.



2. Number of images shown. We can choose the number of images shown
in each round. We chose to show six images, based on favorable response
during the first round of experiments (Section 5).

3. Number of rounds. We can consider the number of rounds that compose
a single CAPTCHA, and the minimum (threshold) number of rounds that
a subject must pass to pass the CAPTCHA.

4. Attack models. We consider different attack models for a computer pro-
gram attempting to pass the CAPTCHA. Section 4 discusses the effect of
programs with good image identification ability which could do better than
chance.
We consider several factors in choosing optimal values for the number of

rounds and the threshold number of rounds that a subject must pass. First,
human subjects have limits of how many rounds they are willing to tolerate.
A human subject may find five rounds acceptable but is unlikely to agree to
five hundred rounds. Second, computers have a speed advantage over humans.
A computer can guess more quickly than a human can take a test. Below, we
assume that within the time it takes for a human to complete one round, a
computer can complete n rounds.2

CAPTCHA efficacy metric. We propose a new metric for CAPTCHA
efficacy: the probability that in the time it takes a human to take a CAPTCHA,
the human will pass and a computer will not. Let p be the probability that a
human user will pass a round, q be the probability that a computer will pass a
round, n be the number of times faster a computer is than a human, m be the
number of rounds, and k be the threshold number of rounds. Then the efficacy
metric G is

G =
m

∑

i=k

(

m

i

)

pi(1 − p)m−i ·
[

1 −
m

∑

i=k

(

m

i

)

qi(1 − q)m−i

]n

We also consider the expected time to complete a CAPTCHA. Short-circuit
grading allows us to grade the CAPTCHA sometimes before all m rounds are
complete. For a derivation of efficacy metric G and expected time to complete
(pass or fail) a CAPTCHA with short-circuit grading, see the full version of the
paper [5].

4 Attacking CAPTCHAs

Machine vision is a hard problem [1, 2, 6, 9]. A computer program is unlikely to
correctly identify a previously unseen image without good training data. How-
ever, instead of the random-guessing attack model, a computer program could
try the following attacks:

1. Build a database of labelled images from Google using our dictionary.

2 Some might argue that choosing any value n unnecessarily limits the computer pro-
gram, but we could apply other countermeasures, such as temporarily disabling IP
blocks if too many attempts fail in a particular period of time.



2. Search the database for the images presented in a round.

We can adopt the following countermeasures:
1. Use a large database of images.

(a) Increase the size of the dictionary, so the image database is harder
to maintain. Although the current dictionary (an online picture dictio-
nary) was hand-picked by humans, adding more words to the dictionary
does not necessarily require human intervention. For example, the most
frequently-used search terms on Google’s image search might be good
candidates for inclusion in the dictionary.

(b) Increase the number of images per word. For the user study, we prefetched
the first 20 hits for each word in the dictionary. There is no reason not
to increase this to, say, 100.

2. Use a dynamic database. Google updates its index of images frequently.
There is no guarantee that an image in the database today will be there
tomorrow. Also, recall that any attacker who indexes the entire Google im-
age database is outside of our threat model, as we consider such attacks
prohibitively expensive. Unlike the attacker, we do not have to maintain the
database, since Google does it for us — the only advantage of prefetching
images is speed.

3. Degrade the images, so searching for an exact match is no longer possible.
This strategy might have the effect of lowering human performance. However,
as long we maximize the gap between human performance and computer per-
formance, we can still distinguish between the two. In addition, degrading
the images is bound to have a negative effect on any kind of machine vision
performance (both q and n). This is the first formal study of image recogni-
tion CAPTCHAs. We chose not to degrade the images in order to test the
canonical naming CAPTCHA.
Recall that a CAPTCHA does not have to be 100% resistant to computer

attack. If it is at least as expensive (due to database maintenance issues or
image manipulations) for an attacker to break the CAPTCHA by machine than
it would be to pay a human to take the CAPTCHA, the CAPTCHA is secure.
Since these countermeasures are probably sufficient to deter current machine
vision attacks, for the rest of the paper we only consider the random-guessing
model.

5 First round of testing

We performed two rounds of user testing. The first round had 4 users and was
small and informal; the second round had 20 users who each completed 100
rounds of naming images and 100 rounds of identifying anomalies. This section
is restricted to discussing the first, preliminary round of testing.

We had several goals in the first, informal round of user testing:

1. Parameterize CAPTCHAs and check for practical considerations.
(a) Estimate p for the general population. If p for any task is too low, we

reject that task.



(b) Using p, find the optimal m and k as in Section 3.

(c) Estimate the time to complete a round for the general population.

(d) Using p,m, and k, and round timing measurements, estimate the ex-
pected time to take a CAPTCHA. If the expected time for any CAPTCHA
is too high, we reject that CAPTCHA.

2. Identify user interface problems.

3. Identify problems with the dictionary and database of images.

All tests were conducted on a web browser in the same location. Questions,
answers, and timing measurements were logged on a mysql database on a sin-
gle computer. During the testing, we received continuous feedback about user
interface issues and difficulty of the tests.

Grading the naming CAPTCHA: For the naming images task, the Oliver
similarity score is the best metric. We picked a minimum score of 80% to pass a
round. For the preliminary test results, this lower bound allowed all the plural-
ization errors of the preliminary testers, and allowed no obviously wrong answers
(no false positives). It did exclude a few obviously correct answers, but we wanted
to be conservative to reduce the possibility of false positives. 3

Problems with the dictionary and images: Mislabelled images were the
most common problem. There are several mislabellings for surprising cultural
reasons. For example, the word cleaver returns many pictures of cutting im-
plements, and some pictures of the Cleaver family from the television program
“Leave it to Beaver.”

Optimal CAPTCHA parameters: We found the the optimal m and k
for the experimentally determined values of p. For the naming CAPTCHA, the
adversary is assumed to know the dictionary and guess randomly, so q = 1/627.
For the distinguishing images CAPTCHA, the adversary picks uniformly at ran-
dom whether or not the sets are same, so q = 1/2. For the anomaly CAPTCHA,
the adversary picks the anomaly uniformly at random from a set of 6 images, so
q = 1/6. Likewise, for the distinguishing CAPTCHA, q = 1/2.

We let n = 100 and searched exhaustively over values of m and k until
G ≥ 95% and m was minimized, as in Section 3. Although the optimal number
of rounds (m) for the naming images varies between 4 and 6, the threshold
number of rounds (k) that a user must take is 2. For the anomaly CAPTCHA,
m = 10 and k = 7, an acceptable number of rounds. Unfortunately, for the
distinguishing CAPTCHA, m = 26 and k = 22. Based on these rough timing
measurements, completing one CAPTCHA should take no more than 2 minutes,
even with the maximum number of rounds. (The formal testing shows that both
CAPTCHAs take less than one minute.)

The distinguishing CAPTCHA is impractical: We no longer considered
the distinguishing images CAPTCHA, since it requires 26 rounds to be effective.

3 In the dictionary, no two words have a similarity score greater than 12%. Since the
metric obeys the triangular inequality, there are no words that are 80% similar to
two words in the dictionary. Therefore, the dictionary still has size 627 using this
similarity score.



Test type Median (%) Mean (%) Optimal m Optimal k tcor tinc E[t]

Anomaly ID 91 91.4 ± 12.3 7–15 (10) 6–9 (7) 6 13 51

Image ID 76.5 74.0 ± 19.2 3–8 (5) 2 8 11 24

Table 1. Average percent of 100 rounds passed (pass rate) by each user. The range in
the optimal m column corresponds to the 95% confidence limits of the pass rate, and the
number in parentheses indicates the optimal m for the mean pass rate. For example,
the mean pass rate for anomaly detection rounds is 91%, with the 95% confidence
interval 77.8-100%. The optimal m for the mean is 10, for the lower bound is 15, and
for the upper bound is 7. Columns tcor and tinc correspond to the median number of
seconds to pass or fail a round. E[t] is the expected number of seconds to take the
CAPTCHA with short-circuit grading.

6 Second round of testing

20 users participated in the study (N = 20). The statistical significance of per-
formance results varies with

√
N and p. Based on results from the first round of

testing, to achieve a 95% confidence interval of ±3% on p, we would have had to
test nearly 1000 subjects, an infeasible number of subjects given financial and
personnel constraints.

We recruited the users on an Internet bulletin board and with paper fliers.
The users varied in age from 18 to 60, in education from 11th grade to PhD, and
in frequency of computer usage from 0.5 to 40 hours a week. Four of the users
are non-native speakers.

The performance results from a sample of 20 users may not predict of the
performance of the entire population, in this case, the population of Internet
users. The educational demographics of the sample is approximately the same
as the demographics of the Internet from the most recent comprehensive survey,
GVU’s 10th WWW survey of 5022 users [8]. The GVU survey did not cover
frequency of computer usage in hours per week, but we believe our sample is
not skewed towards frequent computer usage. The median number of hours on a
computer per week is 17.5, or 2.5 hours a day. Given that 20% of the participants
used a computer on the job (40 hours/week) and this time includes email, web-
surfing, shopping, word processing, 17.5 is a plausible median for the population.

The users were paid
�
10-

�
15 for completing 100 image identification rounds

and 100 anomaly identification rounds, about the number of rounds that could
be completed in an hour.The users rated the difficulty of each test, on a scale
from 1 (easiest) to 5 (hardest). The rating process was not included in the tim-
ing measurements of each round. The users rated the test before the answer is
revealed to prevent bias. The tests were conducted in the same location to elim-
inate network latency and variation in setup.4 The users were also videotaped.
After the tests, the users completed an exit interview.

We can learn several things from this graph of pass rates (Figure 2).

1. The anomaly CAPTCHA is better than the naming CAPTCHA.

All but one person were better at identifying anomalies than naming images

4 Two users completed the testing at their home, but their timing results are excluded.
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Fig. 2. The graph on the left gives the percent of 100 rounds passed (pass rate) by each
user. The x axis corresponds to the user ID, and the y axis corresponds to the percent
of rounds they passed for each type of test. For example, user 20 passed 97% of the
anomaly detection rounds and 74% of the naming images rounds. The graph on the
right gives the distribution of percent of CAPTCHAs passed. The x axis corresponds
to percent of CAPTCHAs passed, and the y axis corresponds to the percent of users
who passed that many CAPTCHAs.

because of mislabelled images and an imperfect grading scheme. Figure 3
illustrates that a lower similarity score cutoff would not help much. Either
the subject knew the correct label but might have made one or two mistakes
in spelling or pluralization (resulting in a sufficiently high similarity score),
or the subject guessed the wrong label, occasionally because of synonymy.
Improving the grading scheme requires solving the synonymy problem.

2. CAPTCHA performance is not uniform across CAPTCHA types.

Subjects who were good at identifying anomalies are not necessarily good
at naming images, and vice versa. This means that if user does poorly at
one kind of CAPTCHA, we can switch to the other kind in hopes they do
better. This switch should not benefit adversarial computer programs, since
the parameters for both CAPTCHAs result in similar computer failure rates.

3. No discrimination against a particular educational or technical

level. Occupation, computer skills, technical background and education do
not seem to be very good indicators of performance based on our sample
of N = 20 users. For example, of the two highest scorers (97%) in anomaly
detection, one completed high school, and the other had a PhD. Although
our sample is small, these results suggest that the two CAPTCHAs do not
discriminate against a particular educational or technical skill level.

4. The anomaly CAPTCHA is language-independent. Speaking English
natively seems to be a pretty good indicator of performance in the naming
CAPTCHA, but not in the anomaly CAPTCHA.

Table 1 gives the median and mean percent of 100 rounds passed by each user
(pass rate) for image and anomaly identification rounds. The upper and lower
bounds denote the 95% confidence limits for N = 20. Table 1 also shows the
upper and lower bounds for the revised m and k, given the 95% confidence limits.
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Fig. 3. The figure on the left gives accuracy vs. difficulty rating. The x axis corresponds
to the difficulty rating, with 1 being the easiest rating and 5 the most difficult. The y

axis is the mean pass rate for rounds with that rating. The figure on the right gives
distribution of similarity scores. The x axis corresponds to the similarity score. The y

axis is the proportion of naming images rounds in that bucket of scores. Each bucket
is 10% wide, except the 100% bucket, which is 1% wide. We recommend a minimum
similarity score of 80% to pass a round.

Note that the new values for m and k are identical to the old ones calculated
after the preliminary testing.

Figure 2 shows the results of grading the rounds according to the parameters
m and k. Using short-circuit grading produces nearly identical results (Section 3).
From Figure 2, we see that 85% of the users passed the anomaly detection
CAPTCHA 100% of the time with m = 10, k = 7, and 100% of the users passed
the CAPTCHA at least 90% of the time. 85% of the users passed the anomaly
detection 100% of the time with m = 6, k = 2. Table 1 shows the expected
number of rounds and expected time to take a CAPTCHA. Figure 3 shows
accuracy versus difficulty rating.

6.1 Lessons learned

At the end of the testing, each subject completed an exit interview. Mislabelled
images were the most common complaint. The anomaly CAPTCHA is the best
choice for the following reasons:

1. 90% of the users prefer it to the naming CAPTCHA.

2. 100% of the users pass the CAPTCHA at least 90% of the time, with m =
10, k = 7.

3. The expected time to take this CAPTCHA is 51 seconds.

4. Most people are willing to spend at least 2 minutes on a CAPTCHA.

5. The anomaly CAPTCHA is language-independent. Non-native speakers did
equally well as native English speakers.



7 Open problems

CAPTCHAs are still a new research area. Open problems include

– The mislabelling problem. Of all the problems discussed in Section 2.1, mis-
labelling causes the most human errors. We may be able to solve this using
collaborative filtering, where known human users rate images according to
how well they evoke their label.

– Optimizing CAPTCHA parameters. We can present more images per round
in the anomaly detection CAPTCHA to deflate computer performance.

– Testing other image recognition CAPTCHAs. For example, we could require
the human user to locate Waldo in an image filled with background clutter
and other Waldo-shaped objects.

– Improving usability. Because of the CAPTCHA “annoyance factor,” not ev-
eryone in the study was willing to take a CAPTCHA, even in exchange for
free services. Rounds rated difficult (primarily because of the mislabelling
problem) are both more onerous and difficult to pass.
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