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EFFICIENT PARALLEL PSEUDORANDOM NUMBER GENERATION*

J. H. REIFf AnD J. D. TYGAR#?

Abstract. We present a parallel algorithm for pseudorandom number generation. Given a seed of n®
truly random bits for any &> 0, our algorithm generates n‘ pseudorandom bits for any ¢> 1. This takes
poly-log time using n*’ processors where &'= ke for some fixed small constant k> 1. We show that the
pseudorandom bits output by our algorithm cannot be distinguished from truly random bits in parallel
poly-log time using a polynomial number of processors with probability 3+1/n°™" if the Multiplicative
Inverse Problem almost always cannot be solved in RNC. The proof is interesting and is quite different
from previous proofs for sequential pseudorandom number generators.

Our generator is fast and its output is brovably as effective for RNC algorithms as truly random bits.
Our generator passes all the statistical tests in Knuth [14].

Moreover, the existence of our generator has a number of central consequences for complexity theory.
Given a randomized parallel algorithm s (over a wide class of machine models such as parallel RAMs and
fixed connection networks) with time bound T(n) and processor bound P(n), we show that & can be
simulated by a parallel algorithm with time bound T(n)+ O((log n)(log log n)), processor bound P(n)n®
and only using »n° truly random bits for any £ > 0.

Also, we show that if the Multiplicative Inverse Problem is almost always not in RNC, the RNC is
within the class of languages accepted by uniform poly-log depth circuits with unbounded fan-in and strictly
subexponential size N,.,2"".
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L. Introduction. A number of parallel randomized algorithms have appeared
recently. These algorithms typically use a large number of random bits which must be
generated in a small amount of time. Nonetheless, the area of parallel random bit
generation remains unexplored.

In reality, our computers are deterministic and unable to generate truly random
values. But we can give algorithms which will give pseudorandom bits on input of a
random seed s,. These pseudorandom bits satisfy conditions which suggest that for
algorithmic purposes they are as effective as truly random bits.

What conditions should a pseudorandom bit sequence satisfy?

Improving on an idea by Shamir [16], Blum and Micali [6] argue that the notion
of “cryptographic strength” captures the important facets of random sequences. To
demonstrate cryptographic strength they follow this schema:

(1) Upper bound the computational resources by Resources A.

(2) Assume that Problem B cannot be solved within the limits of Resources A.

(3) Produce a Pseudorandom Bit Generator G.

(4) Argue that if an opponent sees the first my bits generated by Pseudorandom
Bit Generator G and can utilize Resources A to predict the remaining bits with an
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accuracy rate of 3+ &£(m) (where m is the size of the seed and ¢ is a fixed function
satisfying lim,,.« £(m) = 0), then the opponent will be able to solve Problem B limited
to Resources A by consulting the bit-guessing oracle, a contradiction.

Several cryptographically-strong pseudorandom bit generators have been proposed
(Blum, Blum and Shub [5], Blum and Micali [6],) and many applications have been
discussed (Alexi, Chor, Goldreich and Schnorr [3], Goldreich, Goldwasser and Micali
[9], Goldwasser, Micali and Tong [10], Vazirani and Vazirani [19], Yao [21].) These
generators are all inherently sequential, require polynomial time, and their crypto-
graphic strength relies on some unproven cryptographic assumption.

Notation. When we say a class of circuit is uniform, we mean that it is constructible
in logarithmic space by a deterministic Turing Machine.

NC (NCy) is the class of languages accepted by (uniform, respectively) determinis-
tic circuits constructible in log-space with poly-log depth and polynomial size.

RNC (RNCy) is the class of languages accepted by (uniform, respectively) random-
ized circuits constructible in log-space with two-sided error, poly-log depth, polynomial
size, and acceptance probability greater than 3.

We give more precise definitions of these terms in § 4.

Our result. We present a new cryptographically-strong pseudorandom bit gen-
erator which runs in NCy, but which is secure against attacks taking parallel poly-log
time if the Multiplicative Inverse Problem almost always is not in RNC. While we use
the schema described above for demonstrating the cryptographic strength of our random
number generator, because of the inherent parallel nature of our generator, the technical
details of our proof are quite different from those of previous proofs for sequential
pseudorandom number generators. In particular, we prove that if the bits output by
our pseudorandom bit generator can be predicted in RNC, then we can solve the
multiplicative inverse problem in RNC almost always and this requires that we construct
an interesting, nontrivial, parallel algorithm for that problem. (See § 3.)

About the assumption. While our assumption has not been proved, it is quite
interesting to observe that it is testable in the following sense: If an RNC algorithm
takes more than poly-log time using our pseudorandom bits instead of truly random
bits then we can observe this event by timing. Thus one of two scenarios is possible:
either every application of our generator to an RNC algorithm yields a poly-log
algorithm using only a small number of random bits, or some application of our
generator is discovered to exceed its poly-log time bounds and we can immediately
derive a NC algorithm for multiplicative inverse.

About the measure of randomness. Valiant, Skyum, Berkowitz and Rackoff {18]
show that an NC-machine can evaluate any straight-line program which computes a
multivariate polynomial which has degree polynomial in the length of the program.
Thus if our assumption is correct, our pseudorandom bit generator is secure against
any statistical test which can be so formulated as a straight-line program. This includes
most standard statistical tests for random number generators (Knuth [14]).

Applications. Our method for parallel pseudorandom bit generation is actually
very practical. It requires, for any ¢ >0, only O(log n{loglog(n))) added depth and
a factor of n® for a bounded fan-in circuit. Here is an example: Karp and Wigderson
{12] give a deterministic algorithm for the maximal independent set problem in
O((log n)*) time using O(n*/(log n)*) processors. They also give a uniform randomized
algorithm for the same problem running in O((log n)*) expected time with O(n?)
processors using O(n?) random bits. Our results immediately yield a uniform algorithm
with O((log n)*) running time and O(n***) processors using only n° random bits,
where €, £'> 0 can be set arbitrarily small.
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Recently, Karp, Upfal and Wigderson [13] have shown that finding a maximum
graph matching is in RNCy, and Anderson and Mayr [2] have shown that finding a
maximal path is in RNCy. Our results also immediately yield efficient randomized
uniform algorithms for these problems, using only n° bits for any &> 0.

Implications. An interesting theoretical application of our result is that RNCy is
contained within the class of languages recognized by uniform deterministic circuits
of unbounded fan-in with poly-log depth and 2" size for any &> 0. (Adleman [1]
proved RNCy is contained in (nonuniform) NC, but the previous best construction
for bounding RNCy, by deterministic uniform circuits of poly-log depth required 2"
size.) This extends a result of Yao [21] for sequential polynomial time computations
to poly-log time parallel computations.

2. Definitions and results.
'Notation. We use the following notation throughout the paper:

N A positive composite integer such that each prime factor of N is greater than
N for a fixed ¢>0.

Z%, The multiplicative group of positive integers less than and relatively prime
to N. (Note that the fact that N has only large factors implies that a random
positive integer less than N is an element of Z% with high probability.)

We will sometimes use x mod N to indicate the residue of x modulo N.

Definitions. An NC-machine (Cook [8]) is a deterministic parallel algorithm which
runs on n°" parallel-RAM (P-RAM) processors in time (log n)°" for input of size
n. (Note that NCy, is the class of languages accepted by NC-machines.)

An RNC-machine is a randomized parallel algorithm which runs on n°Y P-RAM
processors in time (log n)°" for input of size n. (Note that RNCy, is the class of
languages accepted by RNC-machines.)

Given soe Z%, the multiplicative inverse of s, modulo N is the s;' such that
5086 =1mod N.

For a fixed N, given an arbitrary k € Z%,, the Multiplicative Inverse Problem is to
find the multiplicative inverse of kK modulo N. Note that the input size to the problem
is n=[log N1.

The problem of finding multiplicative inverses in poly-log depth has been studied
extensively. (Cook [8], Kannan, Miller and Randolf [11], Reif [15] and von zur Gathen
[20].) Based on the lack of significant positive results obtained so far we conjecture
the following.

Complexity assumption. There exists an infinite sequence of numbers N, N,, - - -
constructible in NCy such that for each n=1,2,-- - we have n=[log N, ] and that
no RNC-machine can solve the Multiplicative Inverse Problem for arbitrary elements
of Z%, for almost all values of n.

(Actually we could replace this complexity assumption with the weaker assumption
that there exists a k such that for almost all n there exists an n’ such that n<n’<n*
and no RNC-machine can solve the Multiplicative Inverse Problem for arbitrary
elements of Z%, . All the theorems in this paper would remain true under that weaker
assumption.)

Definitions. A set S of bit sequences o=(b,, --,b,) of length J=n°"
pseudorandom bits is RNC-cryptographically strong if no RNC-machine can, on a
randominput b,, « - -, b;€ S (i <J) predict any one bit b;, - - -, b, with expected success
of 3+1/n°". Informally, the bit sequences are RNC-cryptographically strong if no
RNC-machine can predict untransmitted bits with an expected success rate significantly
better than 1.
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THEOREM. If no RNC-machine can solve the Multiplicative Inverse Problem for
almost all n, then there exists a deterministic NC-machine 4 which on an input seed of
n bits outputs an RNC-cryptographically strong sequence of J = n°" pseudorandom bits.
% can be computed by a bounded fan-in uniform Boolean circuit of depth O((log n)(log
log n)) and size n°",

This theorem is proved in § 3.

Definition. An RNC-statistical test is an RNC-machine which attempts to distin-
guish truly random bit sequences from pseudorandom bit sequences. A statistical test
succeeds if it correctly distinguishes the pseudorandom bit sequences from truly random
bit sequences with probability at least 1/n°".

By a technique due to Yao [21] we can show that no RNC statistical test can
succeed on RNC-cryptographically strong bit sequences. Hence we have the following.

CoRrRoOLLARY 1. If no RNC-machine can solve the Multiplicative Inverse Problem
for almost all n, then no RNC-statistical test can succeed on our pseudorandom bit
generator 4.

COROLLARY 2. If the N, are constructible in depth h(n), then given a randomized
parallel algorithm o (over a wide class of machine models such as parallel RAMS and
fixed connection networks) with time bound T(n) and processor bound P(n) then A can
be simulated by a parallel algorithm with time bound T(n) + h(n)+ O((log n)(log log n)),
processor bound P(n)n®, and only using n° truly random bits for any £ >0, where
e'=0(¢). :

CIRCUITy (D(n), S(n)) is the class of languages accepted by uniform determinis-
tic circuits with unbounded fan-in, depth D(n), and size S(n). (See § 4 for a precise
definition of these complexity classes.)

COROLLARY 3. If for almost all n the Multiplicative Inverse Problem is not in RNC
then

RNCyc U N CIRCUITy ((log n)°, 2™)

c>0 >0

This corollary is proved in § 4.

COROLLARY 4. There exists a cryptosystem where encryption and decryption can be
done by an NC-machine on n°®" bits given a secret shared key exactly n bits long (here
n is a security parameter). If no RNC-machine can solve the Multiplicative Inverse
Problem, then no RNC-machine can decrypt ciphertext exchanged in this cryptosystem.

We use the pseudorandom bits as a ““one-time pad”—we take the sequential
exclusive-or of the plaintext and the pseudorandom bits to produce the ciphertext and
take the sequential exclusive-or of the ciphertext and the pseudorandom bits to obtain
the plaintext again. Encryption and decryption both take parallel poly-log time but an
opponent cannot decrypt the ciphertext with RNC-machine.

3. The proof of the main theorem.

Properties. We recall the following facts which we use implicitly (Beame, Cook
and Hoover [4], Reif [15], and Shonhage and Strassen [17]):

¢ There exists an NC-machine for multiplication of two numbers in Z%.

* 2log p multiplications suffice to find the pth power of a number in Z%.

e If p<(log N)°®" there exists an NC-machine for finding the pth power of a
number in Z%,.

Fix m = [log N | throughout this section.

Let % be the NC-machine which performs the following operations:

Input: random elements s,, k€ Z%,.



408 J. H. REIF AND J. D. TYGAR
Output: by, -+, b, where J=m°",

Method: Inparallel each processor P (i=1, - - -, J)calculates s; = ks mod N
and b,_,,,= B(s;) where

0 ifx=N/2,
B(x)_{l ifx>N/2.

LEMMA. If there exists an RNC-machine which can determine the value of b, with
probability 1 (i.e.,, no error) on input by, - - -, b,_,, then there exists an RNC-machine
which can solve the Multiplicative Inverse Problem for y A

Proof of the lemma. Suppose that MB (for “magic box”’) is an oracle which can
determine the value of b, with probability 1. Then given s, Z% we can find 5o mod N,
We can find this by running in parallel the following algorithm on each processor P,
for (0=i=m):

Set k < 2'. In parallel set b« B(ksg™"™") for 1=i=J—1. Note that b, = B(2's;").
Feed the sequence (b,,- - -, b,_,) to MB to get b,. Set the ith most significant bit of
8 to be B(2'sy'). Define

$(5)= [ 2 ]

2m
Then ¢(8)=s,"mod N, O

THEOREM. If there exists an RNC-machine which can determine the value of b, with
probability at least 3+1/m°" on input b, - -, b,, then there exists an RNC-machine
H which can solve the Multiplicative Inverse Problem for Z%, . % can be computed by a
bounded fan-in Boolean circuit of depth O((log n)(log log n)) and size n°®".

Proof of the theorem. Assume that there exists an RNC-machine MB which can
predict b, with probability 3+2/m®. Let H =2(c+1) [log m]. Let 6 and ¢ be as in the
proof of the lemma.

Let $={0,1,---,2" '~ 1}. For each 0=y < x = m, we will create, by randomized
methods, two functions F,,:S-{0,1}*"” and G,,: S~ S. Informally, values in S are
guesses; F, , is a rule for transforming a guess j, € S into the xth to yth most significant
bits of §; and G,, is a rule for transforming the guess j, € S into the guess j,_, € S.

If an RNC-machine could find 8 for arbitrary s,, we could solve the Multiplicative
Inverse Problem. It will turn out that for some j,, € S, F,,o(j..) =& with probability 3.
We can verify this occurrence simply by checking whether s,¢(8)=1mod N. If we
do not immediately find s;" mod N, we simply form a new F,,. 0 by randomized methods
and continue testing until we do find s;’ mod N.

Suppose we can determine j, such that we know (2*s;" mod N) belongs to one
of the two intervals

) el 1 el A sl

We can pick 2 random values 8 € Z% and let v be MB’s prediction for

N
B (2"sg‘+ lz,’;‘J +B mod N).

Q" '-1)N
o[ %]

mark a vote for v, when B lies in the interval

[FH==)

When S lies in the interval
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mark a vote the complement of v, and mark a null vote when B lies in other intervals.
By assumption, MB predicts correctly with probability at least 3+2/m"

We can assign a processor to calculate MB’s prediction for each of the 2¥ randomly
chosen values of 8 € Z%. This computation can be done in poly-log time for each .
The expected fraction of null votes is 2' " <1/m*. Thus we have a bias of at least
2/m‘—1/m°=1/m° between 0 and 1 votes. Set F., ,(j.) (our guess for
B(2%s;'mod N)) to be a value which got the most votes. If our guess for
B(2*s;' mod N) is right, this immediately identifies which of the two intervals
(2%s5 ' mod N) belongs to. By the argument in the Appendix, 2 tests are sufficient to
make our guess correct with probability at least 1—1/2™. If our guess is right, that
immediately determines the value of j,_; thatis, we can determine that (2*"'s;" mod N)
lies in one of the two intervals

{H]N‘l [(jx,,ﬂ)NH H(z”“ﬂm)zﬂ [(2”‘+jx_1+1)N”}
2H 2 2H 2 2H 2 2H ’

namely

jx—l = x,xfl(jx) = I,]x/zj +2HA2(Fx,x—1(jx))-

We can calculate in parallel, for each m = x =1, the functions F,,_, and G, ,_,,
since the domain is finite and of polynomial size. If x —y>1, then F,, and G, , can
be recursively defined as

F,y(Jx) = F ) (G (jx))2" 77 + F . ()
and
Gy (jx) = Gy (Gx . (jix))
where z = [(x+y)/2]. For each x, y pair (0=y <x=m) and each j, € § we repeatedly
calculate the appropriate compositions of these functions for all j, in the domain of
the functions. Thus we can compute F,,, in [log m] stages.

Some guess j,, is correct. Suppose that for all 1 =i=m, that (1) G;;_,(j;) is the
correct value of j;,.,. Then (2) F,,o(j.) would be the correct value of 8. For each i,
the probability that (1) is true for a particular j; is (1—27™), so the probability that
(2 istrueis 1-2"")""'>1-(m-1)2"">1

For some j, € S, it will be true that F,, (j,) =8 with probability 3. We can try all
possible j,, in parallel, and find out if we have a correct value by checking whether
& (F,.0(jm))so=1mod N. (Of course, it might happen that an incorrect guess for j,,
might give a correct value for 8 but this can only speed the calculation.) In the event
that we do not get the correct value for sg' mod N, we simply form new F,, and G,,
functions and continue until we do get the correct value. 0O

4. Randomized and deterministic parallel complexity. Let € be a list of circuits
(C;, C,, - - -) of unbounded fan-in where C, and n inputs and size S(n). We consider
% to be uniform if there exists a (log S(n)) space deterministic Turing machine which,
given any n, outputs the circuit C,. Let CIRCUIT (D(n), S(n)) be the class of all
languages accepted by deterministic Boolean circuits with unbounded fan-in, depth
D(n), and size S(n). As usual we define

NC= U CIRCUIT ((log n)“, n®).
ky>0,ky>0

We allow a randomized Boolean circuit C to have r special nodes, each of which
are assigned independent random bits chosen from {0, 1} with equal probability. C
accepts an input € {0, 1}" if C outputs 1 with probability >3; otherwise C rejects the
input. For simplicity, we consider only one-sided error randomized circuits which
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never output a 1 on an input they have rejected. (The construction below can easily
be extended to two-sided error randomized circuits which have an acceptance probabil-
ity of at least 1+1/n* for some k>1.) Let RCIRCUIT (D(n), S(n)) be the class of
languages accepted by randomized circuits with unbounded fan-in, depth D(n), and
size S(n). We define

RNC= U RCIRCUIT ((log n)", n*2).
ky>0,k;>0

We define CIRCUITy, NCy, RCIRCUITy, and RNCy, analogously—restricting
the circuits to be uniform.

Proof of Corollary 3. Let C be a (one-sided error) uniform randomized Boolean
circuit with n inputs, depth D(n) = (log n)", and size S(n)=n". Fix any ¢ >0.

First suppose we had a source of b= [n*/?] truly random bits. Observe that C
uses at most S(n)=n" random bits on each execution. Since S(n)=b° where &¢'=
[e/k,] is constant, we can apply our parallel pseudorandom bit generator % to produce
S(n) pseudorandom bits in (log n)°™ parallel time using n°" processors and using
the b truly random bits as the seed. We can view the execution of C on the given input
w as a statistical test. By Corollary 2, given an input w € {0, 1}", we need only execute
C on o for each of the 2° possible pseudorandom bit sequences. We accept w if C
ever outputs 1.

Furthermore, we can avoid the use of a truly random seed by simply (1) enumerat-
ing all b-bit numbers in parallel; (2) executing the parallel pseudorandom bit generator
using each of the b-bit numbers as a seed; and (3) executing C in parallel on w on
each of the resulting pseudorandom bit sequences. If C ever outputs 1 we accept w.
The resulting uniform circuit requires size 2> =2"" and depth (log n)°V+ 0(D(n)) =
(logm)°®. O

Note that if we require that our simulation circuit have bounded fan-in, then to
simulate a circuit accepting a language in RNCy, we require n°" (rather than
(log n)°" depth) and 2™ size. This is an improvement over previous size bounds for
RNCy.

Appendix. Let X be the binomial variable which is the sum of 7 independent

Bernoulli trials each of which has a probability p=3+1/m° of giving a value 1 and

probability 1 —p=3—1/m° of giving a value of 0. We need to find = large enough so

that
Pr[X<7/2]<1/2"
Using Chernoft bounds (Chernoff [7]) we recall that
Pr{X <(1-8)mp]<e®??
Substituting p=3—1/m° and (1 —.b‘)p =3 we get
Pr[X < r/2]< e W/m*)r1/2-1/mO1/2) o gmr/8mi

2¢+1

If we set 7=m>*"!, our initial condition is satisfied. Since 2"’ = 7, setting

H=2(c+1)[log m]=0O(log m)
will give us conditions sufficient to prove the main theorem.
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