

worth what you pay for it. To improve the quality of
available electronic information, we must create
mechanisms to conveniently compensate the creators
and owners of network information. If we want to put
the Library of Congress on-line, we will have to first
find a way to compensate copyright owners.

Electronic commerce is an attempt to address these
problems. The idea is to build mechanisms that make it
simple to buy and sell goods on-line. These mechanisms
have attracted wide interest in the last year. Besides
enabling a new type of commerce, they appear to offer a
variety of benefits, including increasing the range of
information easily available to most people, making
automatic search and retrieval of that information easy,
and reducing costs by simplifying or eliminating human
involvement in processing and fulfilling orders.

Here is one measure of the excitement over
electronic commerce: the 12 June 1995 issue of

Business Week

includes the following projection of the
role of electronic commerce. This projection is probably
overly optimistic, but it indicates that electronic
commerce is being taken seriously in some quarters.

Here is another measure: in 1994, J. C. Penney, a
well-known American retailer with a reputation for not
being especially high-tech, sold directly to customers
$17 million worth of goods over computer networks

Year
Traditional
Commerce
(billion $)

Electronic
Commerce
(billion $)

1994 5150 245

2000 8500 1650

2005 12000 2950

Atomicity in Electronic Commerce

J. D. Tygar
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213-3891 USA

tygar@cs.cmu.edu

Abstract

There is tremendous demand for the ability to be able to
electronically buy and sell goods over networks. This
field is called electronic commerce, and it has inspired a
large variety of work. Unfortunately, much of that work
ignores traditional transaction processing concerns —
chiefly atomicity. This paper discusses the role of
atomicity in electronic commerce. It then briefly surveys
some major types of electronic commerce pointing out
flaws in atomicity. We pay special attention to the
atomicity problems of proposals for digital cash.

The paper present two examples of highly atomic
electronic cash systems: NetBill and Cryptographic
Postage Indicia.

1. Electronic Commerce

If you regularly use the World Wide Web, you have
probably noticed that much of the information on it is

I gratefully acknowledge support from various sources for this work:
Department of Defense (ARPA contracts F33615-90-C-1465, F19628-
93-C-0193), IBM, the Information Networking Institute, Motorola,
National Science Foundation (under Presidential Young Investigator
Grant CCR-8858087 and Cooperative Agreement No. IRI-9411299),
TRW, the US Postal Service, and Visa International. Appendix A is
drawn from a report that was additionally supported by ARPA contract
F19628-95-C-0018. The views and conclusions contained in this doc-
ument are those of the author and should not be interpreted as reflect-
ing the official policies, either expressed or implied, of the Advanced
Research Projects Agency, the National Science Foundation, the U.S.
Government or any part thereof, or any other research sponsor.

In Proceedings of the Fifteenth Annual ACM Symposium on Principles of Distributed Computing,
Keynote paper, May 1996, pp. 8-26

(including both Internet and private services such as
Compuserve, America On Line, Prodigy, etc.)

For yet another measure, visit the WWW site

http://www.yahoo.com

, and see the tens of
thousands of electronic storefronts available.

There are many efforts to build electronic
commerce systems. Here are some representative
organizations making major electronic commerce
efforts (by no means comprehensive):

• CMU (NetBill)

• Cybercash

• Digicash

• DEC (Millicent)

• First Virtual

• FSTC (E-check)

• IBM (iKP)

• Mastercard (SEPP)

• Microsoft and Visa (STT)

• Open Market

• Netscape (SSL)

• US Postal Service

(This list is very fluid. For example, at the time that
this paper is being written [December 1995] there are
discussions about developing a merged protocol from
STT and SEPP; statements that I make about the
systems being developed today are likely to become
outdated as the systems evolve. Any bibliographic
listing of references is will rapidly become dated, but
[30] is a nice summary of most of this work.)

Concepts from the PODC community are used
heavily in electronic commerce. Concepts that need to
be mastered to properly handle electronic commerce
include:

• atomic transactions

• cryptographically secure protocols

• secure computation

• safe voting

• high reliability

This paper is concerned with the first property,
atomic transactions. I will discuss a variety of types of
electronic commerce. After giving a discussion on
atomicity, I will consider the atomic properties of
several electronic commerce protocols. I will then

discuss the development of two highly atomic protocols:
the NetBill protocol and cryptographic postage indicia.

Because this paper is based on an expository
lecture, my tone throughout is informal. I am afraid that
you will not find formal definitions of types of
electronic commerce atomicity below; indeed, I
consider the formulation of those formal definitions an
open problem (see Section 6). For those who crave more
details presented in a more formal manner, Section 8
(Appendix A) contains a technical exposition of the
NetBill protocol; [10] is the best reference for a formal
exposition of cryptographic postage indicia.

Note that throughout the text I use male pronouns to
refer to merchants and female pronouns to refer to
customers.

2. Electronic Commerce Properties

How can we characterize electronic commerce
protocols. There are a variety of properties that we can
describe; this paper focuses on atomicity but, because
properties often interact in a variety of non-trivial ways,
it important to review several properties.

2.1. Atomicity

Atomicity allows us to logically link multiple operations
so that either all of them are executed or none of them
are. For example, in transaction processing, one may
execute a sequence of code as follows:

<begin-transaction>
state-changing operation 1;
state-changing operation 2;
. . .
state-changing operation

n

;
<end-transaction>

When this block of operations is executed, all of the
state-changing operations from 1 to

n,

inclusive will be
executed or the state of the system will be as if none of
them had been executed.

Why would atomicity every fail to occur? Well, if
the transactions are being executed in a distributed
environment on multiple processors, then one of the
processors executing a state-changing operation or
communication between two processors executing state-
changing operations may fail. In that case, it may be
impossible to complete the entire block of state-
changing operations. In these cases, it is necessary to
roll-back the processors to a state consistent with the
transaction have never been begun in the first place.

Atomic transactions form the cornerstone of
modern transaction processing theory. (Nancy Lynch

and her fellow researchers have written an encyclopedic
book about atomic transactions [13]; a tremendous
resource for those implementing atomic transaction
processing systems is the standard textbook [9]; for a
thorough review of powerful roll-back methods in the
context of computer security and electronic commerce,
see [25], [26], and [27].) The “A” in

ACID Transactions

stands for “atomic”, no non-atomic distributed
transaction system would ever be tolerated by customers
of data processing.

However, as we shall see below, the story is quite
different in the world of electronic commerce protocols.
Most of the proposed protocols are not atomic. For
example, if I interrupt a communication between a
merchant and a customer, I can often throw an
electronic commerce protocol, into an ambiguous state.
Money or electronic cash tokens may be copied (with
different parties each believing that it has the true, valid
copy) or destroyed.

I define three levels of atomicity to protect
electronic commerce protocols.

2.1.1. Money Atomicity

Money atomic protocols effect the transfer of funds
from one party to another without the possibility of the
creation or destruction of money.

For example, a cash transaction is usually money
atomic (unless the possibility exists of counterfeiting or
destruction of money).

This is a basic level of atomicity that each
electronic commerce protocol should satisfy.

2.1.2. Goods Atomicity

Goods-atomic protocols are money atomic, and also
effect an exact transfer of goods for money. That is, if I
buy a good using a goods-atomic protocol, I will receive
the good if and only if the money is transferred. For
network protocols, goods atomicity is especially
important for information goods. There must be no
possibility that I can pay without getting the goods, or
get the goods without paying. (Anyone who has had an
interrupted file transfer while downloading information
on the Internet is aware of the importance of goods
atomicity.)

For example, a cash-on-delivery parcel delivery is a
good real-world approximation to an electronic
commerce protocol. I get the parcel exactly when I have
paid the delivery agent.

Goods atomicity is an important property that each
electronic commerce protocol intended for information
goods should satisfy.

2.1.3. Certified Delivery

Certified delivery protocols are money atomic and
goods atomic protocols that also allow both a merchant
and a customer to prove exactly which goods were
delivered. If I buy a document entitled “How to make a
million dollars fast on the Internet” and receive an
electronic copy of some unrelated or garbage material, I
will want to complain to an authority. To rapidly resolve
the question, both the merchant and the customer will
want to be able to prove the exact contents of what was
delivered.

For example, a certified delivery protocol
corresponds to a cash-on-delivery parcel delivery where
the contents of the parcel is opened in front of a trusted
third-party who immediately records in an indestructible
form the exact contents of the parcel.

Certified delivery protocols are helpful for
scenarios where merchants and customers may be
untrusted. Today, there is no effective way to distinguish
a large trusted WWW merchant from a fly-by-night
impressive electronic storefront that actually connects to
a shop that contains a fraudulent operation.

2.2. Anonymity

Some people want to keep their purchases private. They
do not want to have third-parties (or even merchants)
know their identity. This concern may arise because the
customer is buying a good of questionable social value
(e.g., pornography); or because the customer does not
want to have his name added to a marketing or mailing
list; or for illegal reasons (e.g., to evade taxes); or
simply because the customer personally values privacy.

Although most paper money contains serial
numbers, cash transactions can often have anonymous
properties. Serial numbers are rarely traced and
recorded, and if I buy something from a merchant who
does not know me or from a vending machine, my
purchase is often effectively anonymous.

David Chaum has been the most influential
advocate of anonymous electronic commerce protocols.
He has written a number of highly influential papers on
topics such as “anonymous digital cash”, these in turn
have inspired all electronic commerce researchers.
Modern researchers have improved his protocols; a
representative sophisticated example of the current
version of his protocols can be found in [4].

Here is the way these protocols work:

a) a customer withdraws money from the bank,
receiving a cryptographic token which can be used
as money;

b) the customer applies a cryptographic transforma-
tion to the money that still allows a merchant to
checks its validity, but make it impossible to trace
the customer’s identity;

c) the customer spends the money with the merchant.
(in doing so, she applies a further cryptographic
transformation so that the merchant’s identity is
used in the data);

d) the merchant checks to make sure that he has not
received the token previously;

e) the merchant sends the goods to the customer;

f) at a later point, the merchant deposits his electronic
tokens at the bank; and

g) the bank checks the tokens for uniqueness; the iden-
tities of the customers remain anonymous except in
the case when a customer had double-spent a
token—if a token was double-spent, the identity of
the customer is revealed and the network police are
notified of attempted counterfeiting.

Now consider when a communication failure
happens around step (c). The customer has no way of
knowing if a merchant has received her token or not.
The customer has two options:

• The customer can return her electronic token to the
bank (or spend it on a different merchant.) If she
does this, and the merchant actually received her
token, then when the merchant cashes in the token,
the customer’s anonymity will be revealed. Even
worse, the customer will be likely to be accused of
fraud.

• The customer can take no action, failing to return
her token. If she does this, and the merchant never
received her token, then she is in danger of losing
her money. She will have never received the good
she attempted to purchase, and she will be unable to
use her money.

In either case, money atomicity breaks down.
In many countries, most anonymous transactions

are illegal. For example, in the United States, the Money
Laundering Act (12 USC §1829) requires that electronic
commerce systems should both

• promptly report any transaction over $3000 (this is
the figure effective January 1, 1996; prior to that,
the limit was $10,000)

• store a copy of any transaction over $100.

These requirements have not been tested in court
for digital cash systems. However, it is clear that it is

arguable that, as currently proposed, digital cash
systems may be illegal.

I also note that it is often possible to achieve a
limited form of anonymity by having a proxy agent
complete purchases for the customer. In this case, the
transaction may be easily traced to the proxy agent,
which keeps private the identity of the true customer.

2.3. Security

Can we trust anyone in cyberspace? Communications
can be easily intercepted, messages can be inserted, and
the absolute identity of other parties may be uncertain.
Clearly, security will be important for any electronic
commerce protocol.

By contemporary standards, the current form of
credit cards, which reveal a customer’s identity and
charge numbers to a merchant and to anyone who can
obtain a copy of the receipt, would be unlikely to be
accepted if they were introduced newly today.

Many electronic commerce systems depend on
some ultimate, trusted authority. For example, NetBill
depends on the trustworthiness of a central server.
However, even in the case where one uses a trusted
server, one can minimize the effects of the security
failures of that server. For example, in NetBill, detailed
cryptographically-unforgeable records are kept so that if
the central server was ever corrupted, it would be
possible to unwind all corrupted actions and restore any
lost money.

2.4. Transaction size

The average credit card transaction has typically been
estimated to be on the order of $50. Depending on the
arrangements made with a bank, a merchant payd
approximately 30¢ plus 2% of the purchase price for
each and every transaction. For many telephone or mail
order businesses, the actual rate is closer to 50¢ plus
2.25%.

If one is engaging in a transaction that is only worth
10¢ or even 1¢, the standard credit card rates would
dominate the cost of the item. Thus, a number of parties
have proposed support for

microtransactions

or
transactions less than $1. (By no means is 1¢ the
minimum transaction value of interest; Mark Manasse’s
electronic commerce system is named Millicent [14].)

Both NetBill and cryptographic postage indicia are
motivated by the idea of supporting microtransactions.
Some of the design decisions made for those systems
can only be understood by the microtransaction
requirement. However, a detailed discussion of
microtransactions is beyond the scope of this paper.

(For those who are curious: the key idea behind
most microtransaction protocols is to aggregate many
small transactions charged using specially optimized
protocols; then charge the aggregated total as a large
value transaction. This idea is a beautiful application of
protocol nesting. For a discussion of microtransactions
in NetBill, see [23]; for a completely different approach,
see [14].)

3. Non-atomic Electronic Commerce Proto-
cols

3.1. Digicash

Digicash uses an anonymous digital cash protocol. As
discussed in Section 2.2, digital cash protocols are not
money atomic; indeed, in the event of communication
failure, they can fail to be anonymous as well. Finally,
digital cash protocols use several rather computationally
intensive cryptographic operations and are thus quite
expensive. I estimate that the real cost of processing a
single digital cash transaction would be on the order of
$1 per transaction; Digicash reportedly has relatively
high fees, suggesting that this expectation is correct.
Digicash in its current form is not useful for
microtransactions.

3.2. First Virtual

First Virtual allows users to freely buy goods. First
Virtual then uses e-mail to confirm each and every
transaction with the customer. Setting aside the
acceptability of flooding a user with e-mail for
purchases in this way, this model clearly preserves
money atomicity, although it clearly fails goods
atomicity (since the customer can buy an item without
paying for it.) First Virtual apparently considers goods
atomicity to be relatively unimportant. (Indeed, First
Virtual takes a dim view of communications security
and encryption in any form; in [3], they argue that
communications security is “irrelevant” and they
dismiss electronic commerce designers who postpone
deployment of their systems to perfect strong security
guarantees.)

First Virtual’s system can easily be a target of fraud
and atomicity failures. It is somewhat better than digital
cash, but inferior to other electronic commerce systems.

Ultimately, First Virtual translates each electronic
commerce transaction into a credit card transaction,
making First Virtual in its current form of limited value
for microtransactions. (First Virtual suggests using
aggregation, but they can not aggregate across different
merchants in a single credit card transaction.)

3.3. SSL

The Secure Socket Layer (SSL) approach sets up a
secure communication channel (using cryptography) to
transfer a customer’s credit card number to the
merchant. This approach is equivalent to reading your
credit card number over the phone to a merchant using a
secure telephone connection.

This approach offers money atomicity to the extent
that credit card transactions are money atomic.
However, its security properties are less clear; for
example, since a (potentially unscrupulous) merchant
has the customer’s credit card number, he can use it to
commit fraud. (Merchant fraud is one of the most
serious problems facing the credit card industry [31].
Lyndon LaRouche is a well-known example of a person
who committed merchant credit card fraud.)

Goods atomicity is not addressed by SSL.
In its current form SSL is clearly of limited value

for microtransactions.

3.4. STT/SEPP/iKP

STT (Visa/Microsoft), SEPP (Mastercard), and the iKP
family of protocols (IBM) are examples of a secure
credit-card based protocols. Each of these protocols are
slightly different, but they have a common structure: the
customer digitally signs (using, for example, public key
cryptography) a purchase request together with a price
and then encrypts the request in a bank’s public key.
Similarly, the merchant prepares and submits a sales
request with a price for the bank. The bank compares the
purchase and sales request — if the prices match, the
bank charges the customer’s account and instructs the
merchant to complete the sale.

Like SSL, this approach offers money atomicity to
the extent that credit card transactions are money
atomic. However, the security properties of STT

et al

are superior since they prevent merchant fraud.
Goods atomicity is not addressed by STT

et al

.
In their current form STT

et al

 are clearly of limited
value for microtransactions.

4. NetBill

My co-researchers and I developed NetBill to provide
all three levels of atomic transactions. Here, I give a
broad sketch of the NetBill format and some rough
arguments of why it satisfies all three atomicity
conditions: money atomicity, goods atomicity, and
certified delivery. However, to keep my explanation
simple, I do not cover the details of the protocol, leaving
that for Appendix A (Section 8). For example, I do not
discuss here how NetBill protects against message

replay, communication security, or various timing
attacks.

The NetBill protocol is between three parties: a
customer, a merchant, and the NetBill server. Think of a
NetBill account held by a customer as equivalent to a
virtual electronic credit card account.

Here is the outline of the NetBill protocol

a) The customer requests a price from the merchant
for some goods. (This step is necessary because the
price of a good may depend on the identity of the
customer; for example, a student ACM member
may qualify for a discount on some items)

b) The merchant makes an offer to the customer

c) The customer tells the merchant that she accepts the
offer.

d) The merchant sends the information goods
requested encrypted by key

K

.

e) The customer prepares an electronic purchase order
(EPO) containing a digitally signed value for:
<price, cryptographic-checksum of encrypted
goods, time-out>. The customer sends the signed
EPO to the merchant

f) The merchant countersigns the EPO. The merchant
also signs the value of

K

. The merchant sends both
values to the NetBill server.

g) The NetBill server checks the signature and
counter-signature on the EPO. It then checks the
customer’s account to ensure that sufficient funds
exist to approve the transaction, and also checks
that the time-out value in the EPO has not expired.
Assuming that all is OK, the NetBill server trans-
fers price funds from the customer’s account to the
merchant’s account. It stores

K,

and the crypto-
graphic-checksum of the encrypted goods. It then
prepares a signed receipt that includes the value

K.

It sends this receipt to the merchant.

h) The merchant records the receipt, and forwards it to
the customer (who can then decrypt her encrypted
goods.)

This protocol thus transfers an encrypted copy of
the information goods, and records the decryption key in
escrow at the NetBill server. Now let us see how this
protocol provides various types of atomicity protection.

Money atomicity:

 all funds transfers occur at the
NetBill server, and since the NetBill server uses a local
atomic database to store fund values, no money can be
created or destroyed.

Goods atomicity:

if the protocol fails as a result of
communications failure or processor failure before the

NetBill server atomically processes the transaction in
step (g), then no money changes hands, and the
customer never receives the decryption key — he gains
no access to the encrypted information goods. On the
other hand, if step (g) succeeds, then both the merchant
and NetBill server will record the value of

K.

Normally,
these values would be forwarded back to the customer
as a result of step (h), but if something goes wrong, the
customer can obtain

K

 from either the merchant or
NetBill server at any time.

Certified delivery:

since we have goods atomicity,
we know that the customer received something in
exchange for money. Now, suppose that the customer
claims that he receives goods different from what she
ordered. Then, since NetBill server has a cryptographic
checksum of the encrypted goods that is countersigned
by both the customer and the merchant, the customer
can present her encrypted goods to a judge and verify
that she has not tampered with the goods. Now, since a
merchant-signed value of

K

is stored at both the
customer and the merchant, the judge can decrypt the
goods and determine whether the goods were as
advertised as not.

Thus NetBill presents an example of a highly-
atomic electronic commerce protocol. We have
currently built an alpha version of NetBill at Carnegie
Mellon (in conjunction with our development and
operations partners, Mellon Bank and Visa
International), and we hope to prove that NetBill is not
only highly-atomic but that it has the performance,
scalability, and efficiency to handle a large number of
microtransactions

5. Cryptographic Postage Indicia

Is it possible to achieve money atomicity without using
a central server? Yes, one way to do this is to use secure
hardware. For example, FIPS 140-1 [16] specifies
support for tamper-proof and tamper-resistant devices
that can store information and perform processing tasks.
These devices are secure in the sense that any attempt to
penetrate them will result in erasure of all information
stored inside them. We could use this to store an
electronic wallet; when a charge is made, the electronic
wallet withdraws funds.

We call these tamper-proof devices

secure-
coprocessors

.
Now the design of such a system is not easy [32],

and there are quite a few risks associated with customer
approval of transactions [8]. However, with careful
design it can be made to work.

My research group has been working with the US
Postal Service to develop standards for PC-generated
laser printed indicia for postage meters. These are

designed to meet the needs of the Postal Service
Information-Based Indicia Program [29].

As Figure 3 shows, it is trivial to copy traditional
indicia using a scanner and a computer. It is equally easy
to forge dates and postage values on counterfeited
indicia. (Note: if you ever decide to take up the life a
criminal and forge indicia, make sure to add smudges to
the indicia —indicia that are reproduced too clearly can
easily be recognized as forged.)

Using a secure coprocessor, it is easy to store an
account balance for postal customers. This account
balance is decremented whenever postage is printed.
Now, the secure coprocessor prepares a
cryptographically signed message that contains
envelope data (sender address, receiver address, date
sent, and sequence number). This information is then
printed on the envelope using an efficient data
representation such as PDF-417 [11]. Figure 3 shows
Lincoln’s Gettysburg address encoded in PDF 417. PDF
417 normally encodes 400 bytes per square inch.

When mail is received at a postal sorting facility,
the data block is checked to see if they match the
address used for sorting, and to verify the uniqueness of
the sequence number. (Note that all mail to given
address will be processed by a single sorting station.)
Indicia remain valid for six months. (The US Postal
Service claims to deliver more than 90% of all first class

Figure 1: Traditional indicia are easy to copy.

Figure 2: PDF 417 encoding of Abraham
Lincoln’s Gettysburg Address.

mail within three days of being sent and more than 99%
in seven days. Thus, six months would appear to be a
generous bound for mail delivery.) The database stored
at a local sorting station can regularly be purged of
entries with a date older than six months

If an adversary attempts to break money atomicity
by forging indicia, he must do one of two things:

• copy existing indicia, which then will only be valid
for the encrypted delivery address, and will be
caught at the sorting station; or

• attempt to find the value used to digitally sign the
cryptographic indicia, which will require opening
the secure coprocessor, erasing all the vulnerable
data within.

For a more technical exposition on secure
coprocessors, see [10], [32], and [33].

6. Open Problems

The field of electronic commerce has many open
problems. Here are some of my favorites:

• What is the relationship between atomicity and ano-
nymity? Can they be mutually compatible?

• What is the relationship between atomicity and
security? Can they be separated?

• What other atomicity models exist in electronic
commerce (besides money atomicity, goods atomic-
ity, and certified delivery)? Is there a general
schema?

• What is the minimum number of message
exchanges necessary in an atomic purchase?

• What atomic electronic commerce mechanisms can
be built for multiple banks or billing servers?

• Can atomicity be used for continuously delivered
information (such as continual stock market
updates) or very large objects (such as video pro-
grams)?

• Can we give a formal definition for atomicity?

• How can we prove that a protocol is atomic?

• Is it possible to express atomic properties in terms
of model checking?

• Can we extend electronic commerce models to auc-
tions? Can we make them efficient and fair?

• Can we extend electronic commerce models to auc-
tion markets, such as stock markets?

• Can we protect redistributed information or resell-
ing of information? (This is the so-called superdis-
tribution of Mori and Kawahara [15].)

• Can we devise effective

digital watermarks

 that
clearly indicate the purchaser of illegally pirated or
redistributed information?

• How can we represent and enforce electronic con-
tracts governing the use, distribution, and payment
conditions for information goods and software?

• Can we make a fault-tolerant version of electronic
commerce protocols that remain stable even when
banks fail? (The results of T. Rabin and Ben-Or
[20] seem to be appropriate here.)

• Can we build systems to allow anonymous charita-
ble contributions? Can we extend them to allow
documentation so that one can take a tax credit?

• What is the minimum level microtransaction that
can be supported in electronic commerce? The min-
imum level atomic microtransaction?

• We can express money as tokens or as entries in a
server (see [5]) — is there anyway to express a for-
mal equivalence between these two methods?

7. Acknowledgments and Further Sources
of Information

Bennet Yee has been my primary collaborator for
electronic commerce work. All of the work described
regarding secure coprocessors and cryptographic
postage indicia is joint work with Bennet. Bennet and I
jointly observed that Chaum-like digital cash protocols
fail to work properly if communications are interrupted,
prompting this line of work. Bennet is always a pleasure
to work with; I owe him a tremendous intellectual debt.
Portions of our work previously appeared in [32] and
[33].

Nevin Heintze contributed to the later development
of cryptographic postage indicia as represented in [10].

Ali Bahreman began thinking about certified
delivery mechanisms while working on his master’s
thesis at CMU in the context of certified electronic mail;
together, we came up with several initial protocols
described in [1].

Ben Cox, Tom Wagner, and I first thought of
building on Ali’s protocols for a practical electronic
commerce protocol in the course of Ben and Tom’s
brilliant project in my distributed systems class in
Spring 1994. Their project introduced the notion of
certified delivery electronic commerce protocols. At the
same time, Carnegie Mellon’s Information Networking
Institute, under the direction of Marvin Sirbu, had been

pursuing an “internet billing server.” All parties quickly
recognized the superiority of the protocol developed by
Ben, Tom, and I; and that protocol became the basis of
the newly named NetBill project.

Marvin Sirbu and I then became the principal
investigators in building the NetBill system. Our basic
presentation of NetBill’s properties is contained in [23].
Marvin and I, together with a joint student Jean Camp,
made a preliminary distinction between money
atomicity and goods atomicity in [5], although that
paper is flawed and did not properly distinguish between
certified delivery and goods atomicity.

Michael Rabin gave me many helpful suggestions
throughout this project. All of his advice and ideas were
important, but I especially appreciated his enthusiastic
encouragement during the early stages of this research.

Maurice Herlihy and Mark Tuttle gave me useful
feedback on a preliminary version of the presentation
that inspired this paper.

Sean Smith and David Johnson have had many
important conversations with me on the topic of atomic
transactions and rollback.

Students and colleagues at CMU have given me a
number of specific useful suggestions for this research.
In additions to those named above, I would like to thank
Thomas Alexandre, Brad Chen, Howard Gobioff, Mike
Harkavy, Mahadev Satyanarayanan, Alfred Spector,
Jiawen Su, Jeannette Wing, and Hao-Chi Wong.

More information on NetBill can be found at

http://www.ini.cmu.edu/netbill/

.
More information on cryptographic postage indicia

and secure coprocessors can be found at

http://
www.cs.cmu.edu/afs/cs/project/dyad/
www/

.

8. Appendix A

My description above of the NetBill protocol was, as
noted, only an informal description. Below I present a
more formal description of the protocol, excerpted and
revised from [7]. This is a revision of material originally
written by me together with Benjamin Cox and Marvin
Sirbu, and I gratefully thank them for permission to
reprint this material here.

8.1. The NetBill Transaction Model

The NetBill transaction model involves three parties:
the customer, the merchant and the NetBill transaction
server. A transaction involves three phases: price
negotiation, goods delivery, and payment. For
information goods which can be delivered over the
network, the NetBill protocol links goods delivery and
payment into a single atomic transaction.

In a NetBill transaction, the customer and merchant
interact with each other in the first two phases; the
NetBill server is not involved until the payment phase,
when the merchant submits a transaction request. The
customer contacts the NetBill server directly only in the
case of communications failure or when requesting
administrative functions. Figure 3 shows the
relationships among parties in a NetBill transaction.

8.1.1. Transaction Objectives

For a NetBill transaction, we have the following set of
objectives. (Similar versions of objectives (a)–(d) below
can be found in [2].)

a) Only authorized customers can charge against a
NetBill account.

b) The customer and merchant must agree on the item
to be purchased and the price to be charged.

c) A customer can optionally protect her identity from
merchants.

d) Customers and merchants are provided with proof
of transaction results from NetBill.

In addition, we have the following objectives to support
price negotiation and goods delivery.

e) There is an offer and acceptance negotiation phase
between customer and merchant.

f) A customer may present credentials identifying her
as entitled to special pricing or treatment.

g) A customer receives the information goods she pur-
chases if and only if she is charged (and thus the
merchant is paid) for the goods.

Customer Merchant

NetBill

Figure 3: Parties in a NetBill Transaction.

Transaction Protocol

Auxiliary Messages

h) A customer may need approval from a fourth
(access control) party before the NetBill server will
allow a transaction.

Finally, we add as a general objective for all phases of
the purchase process:

i) The privacy and integrity of communications is
protected from observation or alteration by external
parties.

To achieve these goals, the NetBill protocol provides for
strong authentication and privacy, atomic payment and
delivery protocols, and a flexible access control system.

In the price negotiation phase, the customer
presents evidence of her identity, and (optionally)
supplemental credentials, and requests a price quote on
an item. The customer may also include a bid for the
item. The merchant responds with a price offer.

In the second phase, the customer accepts or
declines the offer. In the case of information goods,
acceptance constitutes an order for network delivery.
The merchant provisionally delivers the goods, under
encryption, but withholds the key.

Key delivery is linked to completion of the third
phase, the payment protocol. In this phase, the customer
constructs, and digitally signs, an electronic payment
order (or

EPO

) and sends it to the merchant. The
merchant appends the key to the EPO and

endorses

(digitally signs) the EPO, forwarding it to the NetBill
server. The NetBill server returns a digitally signed
receipt, which includes the key, to the merchant, who
forwards a copy to the customer.

8.2. The Transaction Protocol

We use the notation “X

⇒

 Y” to indicate that

X

 sends
the specified message to

Y

. The basic protocol consists
of eight steps, which are:

1. C

⇒

 M Price request

2. M

⇒

 C Price quote

3. C

⇒

 M Goods request

4. M

⇒

 C Goods, encrypted with a key

K

5. C

⇒

 M Signed Electronic Payment Order

6. M

⇒

 N Endorsed EPO (including

K

)

7. N

⇒

 M Signed result (including

K

)

8. M

⇒

 C Signed result (including

K

)

Objective (a) from Section 8.1.1 is realized because
the customer must be authenticated to NetBill before the
EPO (generated in step 5) will be accepted (in step 6).

Objective (b) is achieved because the relevant
information is included in the EPO which must be
signed by the customer in step 5 and endorsed by the
merchant in step 6.

Section 8.3.2 presents a mechanism implementing
objective (c).

Objective (d) is realized through the digitally
signed receipt from NetBill in step 7.

Objective (e) is achieved by the exchange in steps 1
and 2 of the protocol.

Section 8.4.1 presents a solution implementing
objective (f).

Objective (g) is realized by the exchange in steps 4–
8, which we call

certified delivery

. The customer first
gets a version of the goods encrypted with a key

K

. The
goods are also cryptographically checksummed. In this
way, the customer uses the checksum to confirm that she
received the goods without transmission error. The
customer returns the checksum to the merchant together
with other information, and that message is forwarded to
the NetBill server. The key

K

 that is needed to decrypt
the goods is registered with the NetBill server and also
sent to the customer (step 8). The exchange in steps 4–8
provides protection to the customer against fraud by the
merchant. For example, suppose there is a discrepancy
between what the customer ordered and what the
merchant delivered. The customer can easily
demonstrate the discrepancy to a third party (such as a
judge). The customer has NetBill’s receipt (step 7,
forwarded in step 8) indicating what was ordered, the
amount charged and the key

K

 reported to NetBill by the
merchant. The customer also has registered with NetBill
the checksum of the encrypted goods. Thus if the goods
are faulty (

e.g.,

 purchased software doesn’t run), it is
easy to demonstrate that the problem lies with the goods
as sent and not with any subsequent alteration. This
certified delivery technique also protects the merchant
by requiring the customer to pay and the payment to
clear through the NetBill server before the customer
gets the use of the goods.

Section 8.4.2 presents a solution for objective (h).
Objective (i) is realized by encrypting

communications between all pairs of parties and
providing integrity checks on those messages.

8.2.1. Notation

We use the following notation to denote cryptographic
operations.

X

 and

Y

 always represent communicating
parties.

K

 always represents a cipher key. The protocol
is a sequence of messages exchanged among three

parties:

C

, the customer;

M

, the merchant; and

N

, the
NetBill server.

T

XY

(Identity) A Kerberos ticket proving to

Y

that

X

 is named by

Identity

, and
establishing a session key

XY

shared between them.

CC(

Message

) A cryptographic checksum of

Message

, using an algorithm
such as the Secure Hash Algo-
rithm (SHA) hash function pre-
sented in [17].

E

K

(

Message

)

Message

, encrypted by a sym-
metric cipher using key

K

. The
key

K

 may be denoted as

XY

,
meaning that it is known only to
parties

X

 and

Y

. The encrypted
message implicitly includes a
nonce.

E

X-PUB(Message) Message, encrypted in party X’s
public key using the RSA cryp-
tosystem as presented in [21].

EX-PRI(Message) Message, encrypted in party
Y’s private key using RSA.

[Message]X Message, clearsigned by X
using RSA public key cryptog-
raphy. Clearsigning is imple-
mented by forming Message,
Timestamp, EX-PRI(CC(Mes-
sage, Timestamp)). This is com-
putationally efficient and allows
any party to read the Message
text without needing X’s public
key. The clearsigned item
implicitly includes a nonce.

[Message]X-DSA Message, signed and times-
tamped by X using the Digital
Signature Algorithm (DSA) as
described in [18].

8.2.2. The Price Request Phase

This section assumes possession of tickets; the method
for obtaining tickets is shown in Section 8.3. The
Identity item may actually be a pseudonym, as shown in
Section 8.3.2.

These two steps represent a request/response
message pair in which the customer requests a price
quote of the merchant. The customer presents an
identifying ticket (the identity presented may be a
pseudonym; see Section 8.3.2 for details on
pseudonyms) to the merchant, along with some optional
credentials establishing her membership in groups
which may make her eligible for a discount. (We discuss
these credentials in Section 8.4.1.)

The customer passes parameters indicating Product
Request Data (PRD, an arbitrary stream of application-
specific data which the customer and merchant use to
specify the goods) and some flags. These RequestFlags
are the customer’s indication of her request for the
disposition of the transaction (i.e., delivery instructions;
see Section 8.2.5.1 for different transaction options).

The customer may also optionally include a Bid,
indicating to the merchant a price she may be willing to
pay for the item.

The Transaction ID, TID, is optional in step 1. Steps
1 and 2 may be repeated as needed until the customer
and merchant can agree on a price; the TID is present to
indicate to the merchant that this is a repeated request.

The merchant stores the PRD for later use in
delivering the goods, generates a new set of
RequestFlags based on its response to the customer’s
RequestFlags, and generates a price quote and a TID (if
one was not supplied in step 1) to identify this
transaction in later steps. The TID is not globally

{Message}X Message, encrypted for X using
RSA public key cryptography.
For computational efficiency,
this is implemented by forming
EK(Message), EX-PUB(K). The
encrypted message implicitly
includes a nonce.

1. C ⇒ M TCM(Identity), ECM(Credentials,
PRD, Bid, RequestFlags, TID)

2. M ⇒ C ECM(ProductID, Price, Request-
Flags, TID)

unique; it is used only by the customer and merchant to
maintain context between them.

The ProductID returned by the merchant in step 2 is
a human-readable product description that will appear
on the customer’s NetBill statement.

8.2.3. The Goods Delivery Phase

Once the customer and merchant have negotiated a price
for the goods in question, the customer directs the
merchant to deliver the goods by supplying the TID that
was used in the price request phase:

The merchant generates a unique symmetric cipher
key K, encrypts the goods using this key and sends the
encrypted goods to the customer, along with a
cryptographic checksum computed on the encrypted
goods, so that the customer will immediately detect any
discrepancy before proceeding. The merchant also sends
an Electronic Payment Order ID, or EPOID, with the
goods.

The EPOID is a globally unique identifier which
will be used in the NetBill server’s database to uniquely
identify this transaction. It consists of three fields: a field
identifying the merchant, a timestamp marking the time
at the end of goods delivery, and a serial number to
guarantee uniqueness.

The specification that the EPOID must be globally
unique is used to prevent replay attacks, in which
unscrupulous merchants reuse customers’ old signed
payment instructions. The timestamp portion of the
EPOID is used to expire stale transactions; it must be
generated at the end of goods delivery because the
delivery (especially for very large goods) may take
longer than the payment expiration time.

Because the goods are delivered encrypted in step
4, the customer cannot use them. The key K needed to
decrypt the goods will be delivered in the payment
phase, which follows.

8.2.4. The Payment Phase

After the encrypted goods are delivered, the customer
submits payment to the merchant in the form of a signed
Electronic Payment Order, or EPO. At any time before
the signed EPO is submitted, a customer may abort the
transaction and be in no danger of its being completed
against her will. The submission of the signed EPO
marks the “point of no return” for the customer.

3. C ⇒ M TCM(Identity), ECM(TID)

4. M ⇒ C EK(Goods),
ECM(CC(EK(Goods)), EPOID)

An EPO consists of two sections, a clear part
containing transaction information which is readable by
the merchant and the NetBill server, and an encrypted
part containing payment instructions which is readable
only by the NetBill server. The clear part of the EPO
includes:

• The customer’s (possibly pseudonymous) identity

• The human-readable Product ID (from step 2)

• The negotiated price (from step 2)

• The merchant’s identity

• The cryptographic checksum of the encrypted
goods, to forestall debate over the content of the
goods or whether they were received completely
and correctly

• The cryptographic checksum of the Product
Request Data (from step 1), to forestall debate over
the details of the order

• The cryptographic checksum of the customer’s
account number with an account verification nonce,
so that the merchant may verify that any supplied
credentials (see Section 8.4.1) were used correctly

• The globally-unique EPOID

The encrypted part of the EPO includes:

• A ticket proving the customer’s true identity

• Any required authorization tokens (see Section
8.4.2)

• The customer’s NetBill account number

• The account verification nonce

• A customer memo field

The EPO is a tuple:

Identity,
ProductID,
Price,
M,
CC(EK(Goods)),
CC(PRD),
CC(CAcct, AcctVN),
EPOID,
TCN(TrueIdentity),
ECN(Authorization,

CAcct,
AcctVN,
CMemo)

Henceforth, we use the terminology EPO to denote
this tuple.

After the customer presents the signed EPO to the
merchant, the merchant endorses it and forwards the
endorsed EPO to the NetBill server. The endorsed EPO
adds the merchant’s account number, the merchant’s
memo field, and the goods decryption key, as well as the
merchant’s signature:

[[EPO]C, MAcct, MMemo, K]M

At any time before the endorsed EPO is submitted
to the NetBill server, the merchant may abort the
transaction and be in no danger of its being completed
against his will. The submission of the endorsed EPO
marks the “point of no return” for the merchant.

The phase containing the submission and
endorsement of the EPO is denoted:

Upon receipt of the signed and endorsed EPO, the
NetBill server makes a decision about the transaction
and returns the result to the merchant, who in turn
forwards it to the customer.

The NetBill server makes its decision based on
verification of the signatures, the privileges of the users
involved, the customer’s account balance, and the
uniqueness and freshness of the EPOID. It then issues a
receipt containing the result code, the identities of the
parties, the price and description of the goods, the
EPOID, and the key K needed to decrypt the goods. The
receipt is digitally signed by the NetBill server, using
the Digital Signature Algorithm (DSA). The receipt is
denoted:

Result, Identity, Price, ProductID, M, K, EPOID

For this step, DSA is used rather than RSA because
of its relative performance. While RSA signatures may
be verified quickly, they are time-consuming to create;
DSA signatures, on the other hand, may be created
quickly. By using RSA for customer and merchant
signatures and DSA for NetBill signatures, we may shift
some computing load away from the NetBill server.

Some of the resulting burden on the merchant can
be lifted by recognizing that, from a business risk
perspective, it may be sufficient for a merchant to verify
only a random sample of receipts signed by the NetBill
server. Since integrity and authenticity are assured by
the symmetric key encryption protocol, only
accountability is at stake.

This receipt is returned to the merchant, along with
an indication of the customer’s new account balance

5. C ⇒ M TCM(Identity), ECM([EPO]C)

6. M ⇒ N TMN(M), EMN([[EPO]C, MAcct,
MMemo, K]M)

(encrypted so that only she may read it). The EPO ID is
repeated in the customer-specific data to ensure that the
merchant cannot replay data from an earlier transaction.

The Flags included in the customer-specific data
indicate simple messages from the NetBill server to the
customer; for example, that the account balance has
reached a “low-water mark” and should be replenished
soon.

In step 8, the merchant responds to the request from
the customer in step 5, forwarding the messages
returned by the NetBill server in step 7.

8.2.5. Status Query Exchange

In the event of communications failure after step 5 of
the protocol, the customer or merchant may be unaware
of the transaction’s status. (Before step 5, the transaction
may be aborted with no difficulty, as no parties have yet
signaled their commitment.) The system supports a
status query exchange for delivery of this information.

The request and response proceed as one of the
following exchanges, assuming the information is
available. In each case, an alternate response is possible,
indicating that the queried party does not have the
requested information (possibly indicating why).

• The merchant requests the transaction status from
the NetBill server:

• The customer requests the transaction status from
the merchant:

7. N ⇒ M EMN([Receipt]N-DSA,
ECN(EPOID, CAcct, Bal, Flags))

8. M ⇒ C ECM([Receipt]N-DSA,
ECN(EPOID, CAcct, Bal, Flags))

1. M ⇒ N TMN(M), EMN(EPOID)

2. N ⇒ M EMN([Receipt]N-DSA,
ECN(EPOID, CAcct, Bal, Flags))

1. C ⇒ M TCM(Identity), ECM(EPOID)

2. M ⇒ C ECM([Receipt]N-DSA,
ECN(EPOID, CAcct, Bal, Flags))

• The customer requests the transaction status from
the NetBill server:

• The customer requests the transaction status from
the merchant for a Non-NetBill transaction (see
Section 8.2.5.1):

8.2.5.1. Handling Zero-Priced Goods

We anticipate that many NetBill transactions will be for
subscription goods; i.e., goods for which the customer’s
marginal price is zero. With zero-priced goods, fraud is
less important, and so we make several refinements to
make our protocol more efficient in these cases.

First, we include a flag in the RequestFlags field of
the price request (step 1) informing the merchant “If the
price for this product is zero, treat this message as an
automatic request for the goods.”

Zero-priced transactions do not need to go through
the NetBill server, as long as both parties agree. We can
put another flag in the RequestFlags that informs the
merchant “I require a NetBill receipt for this
transaction.” If this flag is present, the merchant must
submit the transaction to the NetBill server, even if the
price is zero. (The merchant may also decide to submit a
zero-price transaction to the NetBill server.)

A customer or merchant may want to use the
NetBill server on a zero-priced transaction if they
require a signed receipt from a third party confirming
the transaction. While subscription goods may not
require a receipt, a merchant may decide to put a zero-
priced purchase through NetBill in a “buy ten, get one
free” situation so as to be able to prove that he actually
provided the free item.

The merchant may change his price quote
depending on this flag; if NetBill charges the merchant
for billing services, the merchant may want to recover
this cost if the customer requests a NetBill receipt for
what might otherwise be a zero-priced transaction.

Combinations of these flags allow us to support
four basic types of zero-price delivery:

1. C ⇒ N TCN(TrueIdentity), ECN(EPOID)

2. N ⇒ C ECN([Receipt]N-DSA,
EPOID, CAcct, Bal, Flags)

1. C ⇒ M TCM(Identity), ECM(EPOID)

2. M ⇒ C ECM(Result, K)

8.2.5.2. Type I: Zero-Price Certified Deliv-
ery

This protocol eliminates the separate product request
phase. Because steps 2 and 4 from the original protocol
are combined, we indicate that by making steps 2 and 4
into a single step labeled 2/4.

8.2.5.3. Type II: Certified Delivery without
NetBill Server

This protocol improves on Type I by further eliminating
the call to the NetBill server. With this modification, the
payment phase becomes little more than an
acknowledgment.

8.2.5.4. Type III: Verified Delivery

This protocol is nearly the same as the Type II protocol,
except that the goods are encrypted in the shared session
key CM. This bypasses the certified delivery
mechanism, allowing the customer’s software to begin
streaming the goods to a viewer rather than being

1. C ⇒ M TCM(Identity), ECM(Credentials,
PRD, Bid, RequestFlags, TID)

2/4. M ⇒ C ECM(ProductID, Price(=0),
RequestFlags, TID), EK(Goods),
ECM(CC(EK(Goods)), EPOID)

5. C ⇒ M TCM(Identity), ECM([EPO]C)

6. M ⇒ N TMN(M), EMN([[EPO]C, MAcct,
MMemo, K]M)

7. N ⇒ M EMN([Receipt]N-DSA,
ECN(EPOID, CAcct, Bal, Flags))

8. M ⇒ C ECM([Receipt]N-DSA,
ECN(EPOID, CAcct, Bal, Flags))

1. C ⇒ M TCM(Identity), ECM(Credentials,
PRD, Bid, RequestFlags, TID)

2/4. M ⇒ C ECM(ProductID, Price(=0),
RequestFlags, TID), EK(Goods),
ECM(CC(EK(Goods)), EPOID)

5. C ⇒ M TCM(Identity), ECM(EPOID,
CC(EK(Goods)))

8. M ⇒ C ECM(Result, K)

obliged to wait until all the goods have been delivered
before receiving the key.

8.2.5.5. Type IV: Unverified Delivery

This protocol improves on Type III by eliminating the
acknowledgment of goods delivery in the payment
phase if the merchant does not need it.

8.3. Identities and Authentication

When a customer creates a NetBill account, she receives
a unique User ID and generates the RSA public key pair
associated with that User ID. This key pair is certified
by NetBill, and is used for signatures and authentication
within the system. (See [12] for a discussion of public
key certification.)

Section 8.2.4 showed how these signatures will be
used in the payment phase of the protocol. However, our
protocol also uses Kerberos tickets. The NetBill
transaction protocol involves several phases, for price
negotiation, goods delivery, and payment; only the last
of these phases requires nonrepudiable signatures.
Instead of using public key cryptography for message
authentication and encryption throughout the NetBill
system, we use symmetric cryptography because it
offers significant performance advantages.

We use the public key cryptography infrastructure
to alleviate problems with traditional symmetric-key
Kerberos (see [28]):

Kerberos uses a two-level ticket scheme; to
authenticate oneself to a Kerberos service, one must
obtain a service ticket, which establishes a shared
symmetric session key between the client and server,
and establishes that the Kerberos Ticket Granting Server

1. C ⇒ M TCM(Identity), ECM(Credentials,
PRD, Bid, RequestFlags, TID)

2/4. M ⇒ C ECM(ProductID, Price(=0),
RequestFlags, TID, Goods,
CC(Goods), EPOID)

5. C ⇒ M TCM(Identity), ECM(EPOID,
CC(Goods))

8. M ⇒ C ECM(Result)

1. C ⇒ M TCM(Identity), ECM(Credentials,
PRD, Bid, RequestFlags, TID)

2/4. M ⇒ C ECM(ProductID, Price(=0),
RequestFlags, TID, Goods,
CC(Goods))

believes the client’s identity. To obtain a service ticket, a
client must first obtain a ticket-granting ticket (or TGT),
which proves the client’s identity to the Ticket Granting
Server. A client obtains a TGT via request from a Key
Distribution Center, or KDC.

The Kerberos KDC/TGT arrangement introduces
two significant problems that we may alleviate using
public key cryptography. First, because it maintains a
shared symmetric cipher key with every principal in the
system, it is an attractive target for attack; recovering
from compromise of the KDC requires establishing new
shared keys with all users of the system. Second, a KDC
and TGT will be a communications or processing
bottleneck if a large number of users present a heavy
traffic load.

To eliminate the Ticket Granting Server, we replace
the TGT with a public key certificate, allowing each
service to act as its own Ticket Granting Server. That is,
a user presents a service ticket request encrypted with a
certified public key (we call this a Public Key-based
TGT, or PKTGT), and receives in response a symmetric-
cipher-based service ticket. This service ticket is
identical in form to a Kerberos service ticket. The Key
Distribution Center is replaced by a key repository. The
protocol for a customer to obtain a service ticket for a
merchant M is as follows (before this step occurs, the
customer requests the merchant’s public key certificate
over any available channel—such as an unsecured
remote procedure call):

This model preserves the efficiency of symmetric
ciphers for most communication and repeated
authentication, and isolates the computational expense
of public key cryptography to initial authentication
between parties. We refer to this model as “Public Key
Kerberos,” or “PK Kerberos.”

In the NetBill system, a customer obtains Kerberos
tickets for the NetBill transaction server at the
beginning of a session and obtains Kerberos tickets for
merchants as she needs them. Merchant servers will
continually maintain their own tickets for the NetBill
transaction server.

8.3.1. Key Repository

Private keys are large, so users cannot be expected to
remember them. Permanently storing private keys at a
user’s workstation poses security risks and restricts the
user’s electronic commerce activities to a single
workstation. NetBill uses a key repository to optionally

1. C ⇒ M [{Identity, M, Timestamp, K}M]C

2. M ⇒ C EK(TCM(Identity), CM)

store customers’ private keys. These keys are encrypted
by a symmetric key derived from a passphrase known
only to the customer.

8.3.1.1. Key Validation and Revocation Cer-
tificates

We use a public key certificate scheme (like that
presented in [12]) to bind User IDs to keys, with NetBill
as the certifying authority. NetBill generates a certificate
when a customer first proves her identity and begins
using NetBill.

However, allowing merchants, as services, to grant
their own tickets based on these certificates poses a
problem: NetBill is no longer involved in ticket-
granting, and cannot prevent a ticket from being issued
to a user with a compromised key. NetBill needs to
invalidate compromised keys as quickly as possible.

NetBill maintains a Certificate Revocation List
(CRL) at its server. When a key is compromised, the
owner creates a Revocation Certificate and places it in
the key repository along with her key. Any party can
check that a given key has not been compromised by
examining the revocation list.

Initially, it would seem that it is necessary for the
customer and merchant to contact the server to check
CRLs on each transaction. However, it is possible to
eliminate this check by allowing the NetBill transaction
server to do it when it processes the payment
transaction. By delaying the CRL check to late in the
protocol, we introduce some minor risks. Customers and
merchants may disclose information such as their
preference for particular items or special prices to bogus
peers, but there is no financial risk.

8.3.2. Pseudonyms

Some customers want to disguise their identities.
NetBill provides two pseudonym methods to protect the
privacy of the customer’s identity: a per-transaction
method that uses a unique pseudonym for each
transaction, and a per-merchant method that uses a
unique pseudonym for each customer-merchant pair.
(See [6] for a full discussion of privacy protection with
pseudonyms.) The per-merchant pseudonym is useful
for customers who wish to maintain a consistent
pseudonymous identity to qualify for frequent-buyer
discounts.

These pseudonym schemes are implemented by
introducing a pseudonym-granting server, P, to create
pseudonymous PKTGTs for the customer. The protocol
for obtaining and using a pseudonymous PKTGT is as
follows. The customer obtains the pseudonymous

PKTGT in steps 1–2, and uses it with a merchant in
steps 3–4 exactly as she would use a normal PKTGT:

The protocol is the same for both kinds of
pseudonyms; the desired type of pseudonym (per-
merchant or per-transaction) is indicated in the Type
field in step 1. The extra message [TrueIdentity, M,
Pseudonym, Timestamp]P in step 2 is the customer’s
receipt proving that she was using the pseudonym
Pseudonym with the named merchant at the time
indicated. This may be useful to the customer in
conjunction with the receipt received in step 8 of the
transaction (which contains only the pseudonym) to
later prove that she was involved in the transaction.

8.4. Credentials and Authorizations

In [19], Neuman presents a system of using restricted
proxies for authorization. A restricted proxy is a ticket
giving the bearer authority to perform certain operations
named in the ticket. NetBill uses a similar construct to
implement credentials to prove group membership (to
allow merchants to provide discounts to special groups)
and to implement access control mechanisms.

8.4.1. Credentials for Group Membership

An organization can provide a credential server which
issues credential proxies proving membership in a
group. In this case, the credential server is asserting a
fact (membership in a group) about which it is
authoritative. For example, an auto club may provide a
credential server which issues credentials to the
members of the club; merchants who offer discounts to
the club’s members will accept these credentials as
proof of membership. The protocol for obtaining a
credential (assuming the customer has already obtained
a service ticket for the credential server) from a
credential server, G, is as follows:

1. C ⇒ P [{TrueIdentity, M, Timestamp, K1,
Type}P]C

2. P ⇒ C EK1(K2, [{Pseudonym, M, Times-
tamp, K2}M]P, [TrueIdentity, M,
Pseudonym, Timestamp]P)

3. C ⇒ M [{Pseudonym, M, Timestamp,
K2}M]P

4. M ⇒ C EK2(TCM(Pseudonym), CM)

Credentials obtained in this manner are presented to
merchants in the price request phase of the transaction
protocol, step 1.

A credential issued to a customer may be
unrestricted, or it may optionally be restricted for use on
a specific account (for example, in order to prevent
corporate employees from taking advantage of
corporate discounts for personal purchases). This is
accomplished by passing the account number to the
group server as part of the request. If the account
number is appropriate for this group, the credential will
be issued. The credential contains a cryptographic
checksum of the account number and an “Account
Verification Nonce,” which is also returned to the
customer along with the credential.

This nonce is a pseudorandom number ensuring
that merchants can neither determine which different
customers (or the same customer in repeated sessions)
are using the same account nor easily verify guesses of
the customer’s account number. The nonce is passed
along to the NetBill server in the encrypted part of the
EPO so that the NetBill server can verify that the
checksum passed to the merchant (for his comparison to
the credential) corresponds to the account number
actually being used.

The Detail field allows a credential server to
include additional information in a format specific to the
credential server. This would allow, for example, a
multiple-journal subscription credential server to issue a
single credential for all subscribers, using the Detail
field to specify which journal subscriptions the customer
holds.

Credentials can also be used by cooperating
merchants to restrict information access. In this way,
merchants only sell to approved customers: those who
can present a certain credential. This offers a solution
for merchants who, for example, can restrict distribution
of sensitive documents only to individuals whose
credentials verify a need-to-know.

8.4.2. Access Control Mechanism

As noted in [19], proxies can implement access control.
An account owner (such as a parent) may have a
restriction on the account such that no purchases can be

1. C ⇒ G TCG(Identity), ECG(Group, CAcct)

2. G ⇒ C ECG([Group, Detail, Identity,
CC(CAcct, AcctVN), Times-
tamp]G, AcctVN)

completed by a given customer (such as a child) without
approval from an access control server. This allows
different organizations to provide access control
services. For example, both the PTA and a church group
could offer competing access control services.

To obtain an access control authorization, a
customer C must present details of a specific transaction
to the access control server A, who grants a single-use
proxy authorizing the given transaction. The protocol is
as follows:

The item returned in step 2 is the Authorization
item used in step 5 of the transaction protocol (see
Section 8.2.4).

8.5. Complaints and Failure Analysis

The NetBill protocols are robust against failures, and
retain essential information to protect customers and
merchants against fraud. Our system can respond to
complaints made by either the customer or the
merchant. In this section, we examine those complaints
and discuss how they are handled. First, we look at
potential customer complaints, and then at potential
merchant complaints.

8.5.1. Customer Complaints

8.5.1.1. Incorrect or Damaged Goods

• “This isn’t the product I specified.”

• “The goods arrived broken or incomplete.”

• “The decryption key I was given was wrong.”

In the event that the decrypted goods do not match
the product description as given by the merchant, the
dispute must be brought to the attention of a human
arbitrator, who will determine the validity of the
customer’s complaint and, if appropriate, direct the
merchant to provide a refund.

The arbitrator uses the registered copies at NetBill
of the customer’s signed EPO containing a
cryptographic checksum of the encrypted goods, and the
merchant’s signed endorsement indicating his
agreement with that cryptographic checksum and

1. C ⇒ A TCA(Identity), ECA(M, ProductID,
Price, CC(EK(Goods)), EPOID,
CAcct)

2. A ⇒ C ECA(EA-PRI(CC(Identity, M, Pro-
ductID, Price, CC(EK(Goods),
EPOID, CAcct)))

attesting to the decryption key. The arbitrator compares
these registered values against the copy of the encrypted
goods and decryption key provided by the customer in
her complaint. The arbitrator can easily determine
whether the purported problem with the goods is the
fault of the merchant or an error by the customer.

• “The goods are not as advertised.”

The protocol can be used to demonstrate whether
the goods delivered are the goods ordered, as shown
above. However, if the customer was induced to buy the
goods by false advertising claims, this protocol provides
no help. The customer must lodge a complaint with the
Federal Trade Commission or other appropriate agency.
It is important for billing servers to monitor these
charges and assist with their resolution.

• “I bought this but never got the decryption key.”

This complaint may be answered by directing the
customer to perform a status query (see Section 8.2.5) to
retrieve the key. In the event that the decryption key
does not yield a satisfactory decryption, the dispute will
change to one of the other complaints listed.

8.5.1.2. Transaction Disputes

• “I agreed to pay $X, but was charged $Y instead.”

• “I’ve only bought $X worth of goods, but my bal-
ance has gone down by $Y.”

Because the NetBill server has a signed EPO from
the customer, it can prove that the customer approved
the purchase(s) for $Y. In the event that the NetBill
server cannot provide the signed EPO(s), the customer’s
money is refunded. This protects customers against
fraud by the operators of the NetBill server.

• “I never bought this, but it appears on my state-
ment.”

• “I told the merchant no, but he put it through any-
way.”

Because the NetBill server has signed EPOs from
the customer, it can prove that the customer approved
the purchases. In the event that the NetBill server cannot
provide the signed EPOs, the customer’s money is
refunded.

• “You told me this transaction didn’t go through, but
I got charged anyway.”

Because the NetBill server provides signed receipts
even for failed transactions, the customer can present
these receipts to prove that the transactions were
declined. If the customer cannot produce these receipts
and the NetBill server claims to have approved the

transactions, it must provide the decryption keys for the
information goods (via status query exchange).

8.5.2. Merchant Complaints

8.5.2.1. Insufficient Payment

• “I sold $X worth of goods but only received $Y.”

• “You told me this transaction went through, but I
never got paid for it.”

In all transactions, the NetBill server provides a
signed receipt indicating the success or failure of a
transaction. In the event that a merchant is not properly
credited, he can prove the error by presenting these
signed receipts.

References
[1] A. Bahreman and J. D. Tygar. “Certified

Electronic Mail.” In Proceedings of the Internet
Society Symposium on Network and Distributed
System Security, pages 3–19, San Diego, CA,
February 1994.

[2] M. Bellare, et al. “iKP Family of Secure
Electronic Payment Protocols.” In Proceedings of
the First USENIX Workshop on Electronic
Commerce, pages 89–106, July 1995.

[3] N. Borenstein. “Perils and Pitfalls of Practical
Cyber Commerce: the Lessons of First Virtual’s
First Year.” Presented at Frontiers in Electronic
Commerce, Austin, TX, October 1994.

[4] E. Brickell, P. Gemmell, and D. Kravitz.
“Trustee-based Tracing Extensions to
Anonymous Cash and the Making of Anonymous
Change.” In Proceedings of the Sixth ACM-SIAM
Symposium on Discrete Algorithms, pages 457–
466, 1995.

[5] L. Camp, M. Sirbu, and J. D. Tygar. “Token and
Notational Money in Electronic Commerce.” In
Proceedings of the First USENIX Workshop on
Electronic Commerce, pages 1–12, July 1995.

[6] B. Cox. Maintaining Privacy in Electronic
Transactions. Information Networking Institute
Technical Report TR 1994–8, Fall 1994.

[7] B. Cox, J. D. Tygar, and M. Sirbu. “NetBill
Security and Transaction Protocol.” In
Proceedings of the First USENIX Workshop on
Electronic Commerce, pages 77–88, July 1995.

[8] H. Gobioff, S. Smith, and J. D. Tygar. Smart
Cards in Hostile Environment. CMU-CS
Technical Report CMU-CS-95-188, September
1995.

[9] J. Gray and A. Reuter. Transactions Processing:
Techniques and Concepts. Morgan Kaufmann,
San Mateo, CA, 1994.

[10] N. Heintze, J. D. Tygar, and B. Yee.
“Cryptographic Postage Indicia.” To appear.

[11] S. Itkin and J. Martell. A PDF417 Primer: A
Guide to Understanding Second Generation Bar
Codes and Portable Data Files. Technical Report
Monograph 8, Symbol Technologies. April 1988

[12] S. Kent. RFC 1422: Privacy Enhancement for
Electronic Mail: Part II: Certificate-Based Key
Management. Internet Activities Board Request
For Comments 1422, February 1993.

[13] N. Lynch, M. Merritt, W. Weihl, A. Fekete.
Atomic Transactions. Morgan Kaufmann, San
Mateo, CA, 1994.

[14] M. Manasse. “The Millicent Protocols for
Electronic Commerce.” In Proceedings of the
First USENIX Workshop on Electronic
Commerce, pages 117–123, July 1995.

[15] R. Mori and M. Kawahara. “Superdistribution:
the Concept and the Architecture.” In
Transactions of the Institute of Electronics,
Information, and Communication Engineers
(Japan), E73(7) pages 1133–1146.

[16] National Institute of Standards and Technology.
FIPS 140-1: Security Requirements for
Cryptographic Modules. January 1994

[17] National Institute of Standards and Technology.
FIPS 180: Federal Information Processing
Standard: Secure Hash Standard (SHS). April
1993.

[18] National Institute of Standards and Technology.
FIPS 186: Federal Information Processing
Standard: Digital Signature Standard (DSS).
May 1994.

[19] B. Neuman. “Proxy-Based Authorization and
Accounting for Distributed Systems.” In
Proceedings of the 13th International Conference
on Distributed Computing Systems, pages 283–
291, May 1993.

[20] T. Rabin and M. Ben-Or. “Verifiable Secret
Sharing and Multiparty Protocols with Honest
Majority.” In Proceedings of the 21st ACM
Symposium on Theory of Computing, pages 73–
85, May 1989.

[21] R. Rivest, A. Shamir, L. Adleman. “A Method for
Obtaining Digital Signatures and Public-Key
Cryptosystems.” In Communications of the ACM,
21(2), February 1978.

[22] B. Schneier. Applied Cryptography: Protocols,
Algorithms, and Source Code in C. New York:
John Wiley & Sons, 1994.

[23] M. Sirbu and J. D. Tygar. “NetBill: An Internet
Commerce System Optimized for Network
Delivered Services.” In IEEE Personal
Communications, 2(4) pages 34–39, August
1995.

[24] A. Somogyi, T. Wagner, et al. NetBill.
Information Networking Institute Technical
Report TR 1994–11, Fall 1994.

[25] S. Smith. Secure Distributed Time for Secure
Distributed Protocols. Ph.D. Thesis, CMU-CS
Technical Report CMU-CS-94-177, September
1994.

[26] S. Smith, D. Johnson, and J. D. Tygar.
“Completely Asynchronous Optimistic Recovery
with Minimal Rollbacks.” In Proceedings of the
25th International IEEE Symposium on Fault-
Tolerant Computing, pages 362–372, June 1995.

[27] S. Smith and J. D. Tygar. “Security and Privacy
for Partial Order Time.” In Proceedings of the
ISCA International Conference on Parallel and
Distributed Computing Systems, pages 70–79,
October 1994.

[28] J. Steiner, B. Neuman and J. Schiller. “Kerberos:
An Authentication Service for Open Network
Systems.” In USENIX Winter Conference, pages
191–202, February 1988.

[29] US Postal Service. Information Based Indicia
Program (IBIP) New Direction Metering
Technology. May 1995.

[30] USENIX Association. Proceedings of the First
USENIX Workshop on Electronic Commerce,
July 1995.

[31] Visa USA and Anderson Consulting. 1992 Credit
Card Functional Cost Study. September 1992.

[32] B. Yee. Using Secure Coprocessors. Ph.D.
Thesis, CMU-CS Technical Report CMU-CS-94-
149, May 1994.

[33] B. Yee and J. D. Tygar. “Secure Coprocessors in
Electronic Commerce Applications.” In
Proceedings of the First USENIX Workshop on
Electronic Commerce, pages 155–170, July 1995.

