
STATS 319: Literature of Statistics
The Sum-of-Squares Algorithmic Paradigm in Statistics
Instructor: Tselil Schramm

Lecture 0
January 11, 2021

Scribe: Tselil Schramm

Lecture 0: The Sum-of-Squares “proofs to algorithms” paradigm

In this introductory lecture, we will introduce the sum-of-squares (SoS) hierarchy and the “proofs to
algorithms” paradigm. We’ll cover the topics in this order:

1. Estimation and proofs of identi�ability, brute force algorithms (example: robust mean estimation)
2. Polynomial optimization, sum-of-squares relaxations, and sum-of-squares proofs
3. The “proofs to algorithms” paradigm illustrated for robust mean estimation

Some bibliographic remarks will be deferred to the end.

1 Estimation

A focus of this course will be on estimation problems. At a high level, estimation is the following task: we
have a distribution � over pairs (u, y) ∈ Rd ×RN . We are given the observable y from a sample (u, y) ∼ �,
and our goal is to estimate the unknown u, or to return a quantity which is close to argmaxu∗ �(u∗, y).
Rather than giving a more formal de�nition, let’s see an example:

Example 1.1 (Robust Mean Estimation). Let D be a distribution over Rd with mean u and covariance
Σ ⪯ 1. Let " > 0 be a real number. Our goal is to estimate the mean u from "-corrupted samples: we
observe y1,… , ym ∈ Rd , a (1 − ")-fraction sampled iid from D and the remaining "-fraction are arbitrary
vectors in Rd .

To cast robust mean estimation as an “estimation problem” as described above, the distribution “�”
can be de�ned by taking any distribution � over bounded-covariance distributions D, then a sample (u, y)
from � is generated by sampling D ∼ � , setting u = Ea∼Da, then independently sampling a1,… , am ∼ D and
setting y = y1,… , ym to be any set of vectors in Rd with yi = ai for (1 − ")m indices i ∈ [m].1

2 Identi�ability

When is estimation possible? One concern is that there may be be more than one maximizer ofmaxu∗ �(u∗, y)
(as is the case, for example, in robust mean estimation when all of the samples are corrupted, " = 1).

De�nition 2.1. For a pair (u, y) ∼ �, we say that y identi�es u up to error � if for any u′ which occurs with
y with probability �(u′, y) ≈ maxu∗ �(u∗, y),2 ‖u − u′‖ 6 � .

A proof of identi�ability for an estimation problem establishes that (with high probability) for (u, y) ∼ �,
y (approximately) identi�es u. Let’s see an example for robust mean estimation.

Lemma 2.2. Let D be a distribution overRd with mean u and covariance ⪯ 1. If m is su�ciently large then
with high probability, for a set of "-corrupted samples y = y1,… , ym, y identi�es u up to error O(√").

1To make this formal, the corruptions can also be chosen according to some distribution.
2The use of ≈ here is informal; we could replace it with a more formal condition like �(u′, y) > (1 − ") argmaxu∗ �(u, y) at the

cost of introducing an additional parameter ".

1



Proof. We’ll show that any set of vectors z1,… , zm ∈ Rd which agree with a (1− ")-fraction of the observed
yi’s and have bounded covariance have empirical mean z = 1

m ∑m
i=1 zi which is close to u. Such a set always

exists (as witnessed by the uncorrupted samples), so this is enough to establish that y identi�es u.
Now, suppose that z1,… , zm ∈ Rd are vectors such that zi = yi for a (1 − ") fraction of i ∈ [m], and

further Σz = Cov(z1,… , zm) ⪯ 1. Let a1,… , am be the uncorrupted samples from D, such that ai = yi for a
(1 − ") fraction of i ∈ [m]. Let a = 1

m ∑m
i=1 ai , and assume for simplicity that a ≈ u and that the empirical

covariance Σa = Cov(a1,… , am) ⪯ 1 (this is the only place where we use the assumption that m is large;
we take m is large enough so that the empirical mean and covariance will be close to D’s true mean and
covariance). Then

‖a − z‖2 = ⟨a − z, a − z⟩

= 1
m

m
∑
i=1
(1 − 1ai=yi1yi=zi )⟨ai − zi , a − z⟩ +

1
m

m
∑
i=1

1ai=yi1yi=zi⟨ai − zi , a − z⟩

= 1
m

m
∑
i=1
(1 − 1ai=yi1yi=zi )⟨ai − zi , a − z⟩

6

√

(
1
m

m
∑
i=1
(1 − 1ai=yi1yi=zi ))(

1
m

m
∑
i=1

⟨ai − zi , a − z⟩2),

where the inequality was by Cauchy-Schwarz. Now, there are at most 2"m indices i ∈ [m] for which ai ≠ yi
or yi ≠ zi , so the �rst parenthesized term is at most 2". We’ll bound the second term using our assumption
that D has bounded covariance and that the zi have bounded covariance. Using the shorthand b = a − z,
we expand

⟨ai − zi , b⟩ = ⟨ai − zi + b − b, b⟩ = ⟨ai − a, b⟩ − ⟨zi − z, b⟩ + ‖b‖2,
and now we have

1
m

m
∑
i=1

⟨ai − zi , a − z⟩2 =
1
m

m
∑
i=1

(⟨ai − a, b⟩ − ⟨zi − z, b⟩ + ‖b‖2)
2

6
1
m
10
3

m
∑
i=1

⟨ai − a, b⟩2 + ⟨zi − z, b⟩2 + ‖b‖4

= 103 (b⊤Σab + b⊤Σzb + ‖b‖4)

6
10
3 (2‖b‖2 + ‖b‖4) ,

Where in the second step we have used that for real A, B, C , (A + B)2 6 2A2 + 2B2 (since 2A2 + 2B2 =
(A + B)2 + (A − B)2, and by similar reasoning (A + B + C)2 6 2A2 + 4B2 + 4C2, which can be improved to
a uniform 10

3 by averaging over permutations of A, B, C), in the third step we have rearranged to obtain
quadratic forms with the covariance matrices of the ai and zi , and in the �nal step we have used that
Σa,Σz ⪯ 1. So, picking back up where we left o� above, we conclude that for b = a − z,

‖b‖4 6 2" ⋅ 103 (2‖b‖2 + ‖b‖4) ,

and rearranging we have that ‖a − z‖ = ‖b‖ 6 O(√"), as desired.

2



Algorithms. The proof above shows us that estimation is information-theoretically possible, but what
about algorithmic e�ciency? All we have learned is that, if we do an exhaustive search for a set of vectors
z1,… , zm with the properties above, we can estimate u. We would like e�cient algorithms for this task.

The sum-of-squares algorithmic paradigm gives us a formulaic way to transform the above proof of
identi�ability into an e�cient algorithm. We will write down a polynomial optimization program to search
for this set of zi’s, and then we will replace it with a semide�nite programming relaxation (the sum-of-
squares semide�nite program. Finally, we’ll observe that each step in our proof was a sum-of-squares proof,
from which it will automatically follow that our relaxation to the polynomial optimization problem is
exact.

3 Polynomial optimization

We are now in the position of having a system of polynomial equations, to which we would like one
solution. We can express this problem (and many others) as a polynomial feasibility problem.

De�nition 3.1 (Polynomial feasibility/optimization program). A polynomial system in variables x1,… , xn
is a set of polynomial equations {fi(x) = 0}mi=1.3 A polynomial feasibility program asks for an assignment to
x in Rn which satis�es all equations in a polynomial system S (if one exists). A polynomial optimization
program asks for an assignment x which maximizes the polynomial ℎ(x) subject to satisfying all equations
in a polynomial system S.

Following our proof of identi�ability, we can write down a polynomial system, a solution to which will
solve the robust mean estimation problem:

Problem 3.2 (Polynomial feasibility program for robust mean estimation). We de�ne a polynomial system
in the following variables: Z1,… , Zm ∈ Rd represent the vectors z1,… , zm; W1,… ,Wm ∈ R with Wi
representing the indicator that zi = yi ; B ∈ Rd×d is a matrix of “slack” variables. We include the following
polynomial constraints:

W 2
i = Wi ∀ i ∈ [m] (1)

m
∑
i=1

Wi = (1 − ")m (2)

Wi(Zi − yi) = 0 ∀ i ∈ [m] (3)

Z = 1
m

m
∑
i=1

Zi ,
1
m

m
∑
i=1
(Zi − Z )(Zi − Z )⊤ = 1 − BB⊤. (4)

The constraints from (1) enforce that the Wi are 0/1 valued. The constraints from (2) and (3) together
ensure that (1 − ")m of the Zi are equal to the corresponding yi . Finally, the constraint (4) ensures that the
covariance matrix of the Zi is bounded by 1.

In general, we do not have e�cient algorithms for solving polynomial feasibility programs (in fact it is
NP-hard as problems such as 3SAT can be encoded as a polynomial system). So, we will use a relaxation.

3In general inequalities may also be allowed, but we ignore them for simplicity.

3



4 Sum-of-Squares relaxations

We would like to solve for a solution x to a polynomial system S. The Sum-of-Squares relaxations are a
family of convex relaxations for polynomial optimization programs. Rather than solving for a solution
(or distribution over solutions) to a polynomial system in variables x , we will solve for a linear operator
Ẽ ∶ x6d → R where x6d is the set of monomials of degree at most d in x .

De�nition 4.1. A degree-d pseudoexpectation operator for a polynomial system S = {fi(x) = 0} is a linear
operator Ẽ ∶ x6d → R which enjoys the following properties:

1. “Scaling:” Ẽ[1] = 1.

2. “Non-negativity of squares:” Ẽ[p(x)2] > 0 whenever deg(p) 6 d/2.

3. “Feasibility:” for all i ∈ [m], Ẽ[fi(x) ⋅ p(x)] = 0 whenever deg(pfi) 6 d .

A pseudoexpectation operator for a polynomial optimization problem “maxx ℎ(x) s.t. S(x)” is one which
maximizes the value Ẽ[ℎ(x)] subject to the above constraints.

Notice that if a polynomial system S (with constraints of degree at most d) is feasible, then there exists
a degree-d pseudoexpectation for S as witnessed by taking Ẽ to be the expectation over any distribution
over solutions to S. If S is not feasible, then there may be or may not be a degree-d pseudoexpectation
for S. In this way, the pseudoexpectation relaxes the notion of a distribution over solutions to S. And
for well-conditioned polynomial systems [O’D17, RW17] there exists a time (mn)O(d) algorithm, based on
semide�nite programming, for �nding a pseudoexpectation operator for S, when such an operator exists.

What good is a relaxation? Why is having such a pseudoexpectation operator useful? If we had access
to E�x or E�xx⊤ for � an actual distribution over solutions to our program, we might be able to recover
some actual feasible solution x . But when d is small,4 Ẽ is merely a pseudodistribution, and just because
we have access to the object Ẽ[x] does not mean that we can �nd a solution.

In the following section we will show that the pseudoexpectation operator respects a class of proofs
called sum-of-squares proofs. So, if our proof of identi�ability of the statement “u∗ satisfying the polyno-
mial system S must be �-close to u” is a degree-d sum-of-squares proof, then Ẽ[u] will be close to u.

Solving for pseudoexpectations with semide�nite programming. Here we will see how to solve
for a pseudoexpectation operator using a semide�nite program (in the lecture we will likely not have time
for this). Recall that a semide�nite program is an optimization problem over symmetric matrices, of the
form

max
X∈RN ×N

⟨C, X⟩ (5)

s.t. ⟨X, Ai⟩ = bi ∀i ∈ [M]
X ⪰ 0,

4If the variable x takes values over a discrete domain An with |A| = t , then a degree-O(tn) pseudodistribution corresponds to
the expectation over an actual distribution of solutions x , since the indicator 1x=a can be written as a degree-n polynomial from
which one can calculate Ẽ[1x=a]. But we are interested in high-dimensional settings, where a runtime of nO(n) is unacceptable.

4



For matrices C, A1,… , AM ∈ RN ×N and b1,… , bM ∈ R. In words, we are optimizing a linear objective over
the cone of positive semide�nite matrices subject to linear constraints. A well-conditioned program of
this form can be solved using the Ellipsoid algorithm (see e.g. [LGS88]) in time poly(N ,M), since we can
implement a separation oracle for the positive semide�nite cone in time O(N 3) by computing an eigende-
composition.

To implement the computation of Ẽ ∶ x6d → R for the system S = {fi(x) = 0}mi=1 with variables
x ∈ Rn as a semide�nite program, we take our variable matrix X ∈ RN ×N for N = 1 + [n] + ([n]2 ) +⋯ ([n]d/2);
that is, the rows and columns of X are indexed by subsets of [n] of size at most d/2. For A, B ∈ [n]6d , we
will set Ẽ[xAxB] = XA,B. So, to ensure that Ẽ is well-de�ned and also to ensure that the scaling property
holds, we enforce the following linear constraints on X :

X∅,∅ = 1, and XA,B = XU ,V ∀A, B, U , V ⊂ [n]6d s.t. A ∪ B = U ∪ V ,

where we are taking the union as multisets. In order to ensure that we meet the feasibility constraints
of the system S, we also add linear constraints for each fi(x) = ∑U∈[n]6d (f̂i)U xU . First, we expand our
set S to a system S′ which includes {x� fi(x) = 0}i∈[m],�⊂[n]6d ,deg(fix� )6d ; that is, we add to the polynomial
system the (redundant) constraints that fi(x) ⋅ x� = 0 for any monomial x� with deg fi(x)x� 6 d . Now,
for each g(x) = ∑U∈[n]6d ĝU xU in this extended system, we let Mg ∈ RN ×N be some matrix for which
Ẽ[g(x)] = ⟨X,Mg⟩,5 we add the constraints

⟨X,Mg⟩ = 0 ∀g ∈ S′.

Claim 4.2. Taking Ẽ[xAxB] = XA,B for X a solution to the program above yields a valid degree-d pseudo-
expectation for the system S.

Proof. By construction, linearity and scaling hold for the operator Ẽ de�ned in this manner. For feasibility,
notice that for any polynomial p(x) with deg(pfj) 6 d , we can write p(x)fj(x) = ∑�∈[n]6d−deg(fj ) p̂�x� fj(x),
and now by linearity

Ẽ[p(x)fj(x)] = ∑
�∈[n]6d−deg(fj )

p̂� Ẽ[x� fj(x)] = ∑
�∈[n]6d−deg(fj )

p̂�⟨X,Mx� fj⟩ = 0,

since the constraint x� fj(x) = 0 is in the system S′. To see that non-negativity of squares holds, consider
any polynomial p(x) = ∑A∈[n]6d/2 p̂AxA of degree at most d/2. Let p̂ ∈ RN be the vector of p’s coe�cients.
We can verify that

Ẽ[p(x)2] = p̂⊤Xp̂ > 0,
by the positive semide�niteness of X . This completes the proof.

5 Sum-of-Squares proofs

De�nition 5.1 (Sum-of-Squares inequality). We will say that a polynomial inequality f (x) 6 g(x) is a
degree-d sum-of-squares inequality if one can write f (x) + s(x) = g(x) for a sum of square polynomials
s(x) = ∑k

i=1 ℎ2i (x) with deg(s) 6 d . For a set S = {fi(x) = 0} of polynomial constraints, we say that it is
5For example, one can construct Mg by taking for each U ∈ [n]6d , (Mg )A,B = (ĝ)A∪B for the lexicographically �rst A, B such

that A ∪ B = U , and all other entries of G equal to 0.

5



a degree-d sum-of-squares inequality modulo S if one can write f (x) + s(x) + ∑m
j=1 cj(x)fj(x) = g(x), with

deg(s), deg(cjfj) 6 d . We write
S ⊢d f (x) 6 g(x)

to denote that f (x) 6 g(x) is a degree-d SoS inequality mod S.

Notice that if Ẽ ∶ x6d → R is a degree-d pseudoexpectation operator for S, then when f (x) 6 g(x) is
a degree-d SoS inequality mod S we automatically have that

Ẽ[f (x)] = Ẽ[g(x)] − Ẽ [
k
∑
i=1

ℎ2i (x)] − Ẽ [
m
∑
j=1

cj(x)fj(x)] 6 Ẽ[g(x)],

by linearity, feasibility, and by the non-negativity of squares. So pseudoexpectation operators respect
sum-of-squares proofs. We will utilize this to our advantage.

It turns out that many oft-used inequalities are also sum-of-squares inequalities. For example, the
Cauchy-Schwarz inequality is sum-of-squares:

Claim 5.2 (SoS Cauchy-Schwarz). Let p, q be vectors with polynomial-valued entries of degree at most d .
Then For any " > 0,

⊢2d ⟨p, q⟩ 6 "
2 ‖p‖

2 + 1
2" ‖q‖

2, and ⊢4d ⟨p, q⟩2 6 ‖p‖2‖q‖2.

Proof. We can write ⟨p, q⟩+ 12 ‖
√"p− 1√" q‖2 = "

2 ‖p‖2+ 1
2" ‖q‖2, and ⟨p, q⟩2 = ‖p‖2‖q‖2− 12 (∑i,j(qipj − qjpi)2).

Remark 5.3. For any pseudoexpectation Ẽ we can conclude that Ẽ[⟨p, q⟩] 6
√
Ẽ[‖p‖2]Ẽ[‖q‖2] by applying

the claim above and choosing " =
√
Ẽ[‖q‖2]/Ẽ[‖p‖2]. One can obtain some Hölder’s inequalities by applying

the claim inductively and following a similar logic.

The fact that a matrix scales a vector by at most its operator norm is also sum-of-squares.

Claim 5.4 (SoS operator norm). Let x ∈ Rn, M ∈ Rn×n, and B ∈ Rn×k . Then

M = �1 − BB⊤ ⊢d x⊤Mx 6 �‖x‖2,

for d > deg(x⊤Mx + x⊤BB⊤x).

Proof. Our axioms imply that x⊤Mx = �x⊤1x − x⊤BB⊤x = �‖x‖2 − ‖B⊤x‖2, which is a sum-of-squares proof
that x⊤Mx 6 �‖x‖2.

Armed with these facts, we are now ready to transform our proof of Lemma 2.2 into a sum-of-squares
proof, and immediately obtain an algorithm!

6 SoS-izing our proof of identi�ability

Claim 6.1. Any degree-6 pseudoexpectation Ẽ over variables W1,… ,Wm, Z1,… , Zm, and B satisfying the
polynomial constraints (1)-(4) also satis�es ‖Ẽ[Z ]−u‖2 = O(√")with high probability so long as m is taken
su�ciently large.

6



Proof. Recall Z = 1
m ∑m

i=1 Zi , and de�ne ΣZ = 1
m ∑m

i=1(Zi − Z )(Zi − Z )⊤. Recall also that Wi is our variable
which represents 1Zi=yi . Let a1,… , am be the uncorrupted samples from D, such that ai = yi for a (1 − ")
fraction of i ∈ [m]. Let a = 1

m ∑m
i=1 ai , and as before we’ve assumed m is large enough so that a = u and

also that Σa = Cov(a1,… , am) ⪯ 1. We have that

‖a − Z ‖4 = ⟨a − Z, a − Z⟩2 = (
1
m

m
∑
i=1
(1 −Wi1ai=yi )⟨ai − Zi , a − Z⟩ +

1
m

m
∑
i=1

Wi1ai=yi⟨ai − Zi , a − Z⟩)

2

.

Since we have enforced the constraint Wi(yi − Zi) = 0 in (3), the second term is 0. So we have

= (
1
m

m
∑
i=1
(1 −Wi1ai=yi )⟨ai − Zi , a − z⟩)

2

Now, we apply the ⊢ ⟨p, q⟩2 6 ‖p‖2‖q‖2 version of degree-6 SoS Cauchy-Schwarz (Claim 5.2),

6 (
1
m

m
∑
i=1
(1 −Wi1ai=yi )2)(

1
m

m
∑
i=1

⟨ai − Zi , a − Z⟩2)

If A 6 B is an SoS inequality, then so is As 6 Bs for any sum-of-squares s, since Bs − As = (B − A)s. So,
we can bound the parenthesized terms one at a time. For the �rst term, notice that (1) ⊢2 (1 −Wi1ai=yi )2 =
1 −Wi1ai=yi .6 Also, (2), (1) ⊢1 1

m ∑m
i=1(1 −Wi1ai=yi ) 6 2".7 So (1), (2) ⊢ 1

m ∑m
i=1(1 −Wi1ai=yi )2 6 2".

We bound the second term almost exactly as in the proof of Lemma 2.2. Using the shorthand b = a −Z
and applying the same manipulations as previously,

1
m

m
∑
i=1

⟨ai − Zi , a − Z⟩2 =
1
m

m
∑
i=1

(⟨ai − a, b⟩ − ⟨Zi − Z, b⟩ + ‖b‖2)
2

6
1
m
10
3

m
∑
i=1

⟨ai − a, b⟩2 + ⟨Zi − Z, b⟩2 + ‖b‖4,

where as in the proof of Lemma 2.2 the inequality is a degree-4 SoS inequality. Proceeding,

= 103 (b⊤Σab + b⊤ΣZb + ‖b‖4) ,

And applying Claim 5.4 we have that (4) ⊢4 b⊤ΣZb 6 ‖b‖2, b⊤Σab 6 ‖b‖2, so we conclude that

6
10
3 (2‖b‖

2 + ‖b‖4).

So, putting everything together, we conclude that Ẽ[‖a −Z ‖4] 6 O(") ⋅ Ẽ[2‖a −Z ‖2 + ‖a −Z ‖4]. Rearranging,
we have Ẽ[‖a − Z ‖4] 6 O(") ⋅ Ẽ[‖a − Z ‖2], and because

0 6 Ẽ [(‖a − Z ‖
2 − Ẽ[‖a − Z ‖2])

2
] = Ẽ[‖a − Z ‖4] − Ẽ[‖a − Z ‖2]2 6 Ẽ[‖a − Z ‖2](O(") − Ẽ[‖a − Z ‖2]),

we have thatO(") > Ẽ[‖a−Z ‖2] > ‖a−Ẽ[Z ]‖2 (one can verify that the last inequality is sum-of-squares).
6Since (1 −Wi1ai=yi )2 = 1 − 2Wi1ai=yi +W 2

i 12ai=yi = 1 −Wi1ai=yi .
7Since 1 −Wi1ai=yi = 1 −Wi +Wi1ai≠yi , (2) ⊢1 ∑i Wi = m(1 − ") and (1) ⊢2 Wi1ai≠yi 6 1ai≠yi .

7



7 Conclusion

We have seen how a proof of identi�ability which is captured by low-degree sum-of-squares proofs can au-
tomatically yield a polynomial time algorithm via sum-of-squares relaxations. This is the “sum-of-squares
algorithmic paradigm” after which the course is named. The theme of proofs-to-algorithms will show up
again and again throughout the course.

Many issues remain to be discussed. A semide�nite program in a number of variables which is linear in
the input size is often prohibitively slow in practice; could there be more e�cient implementations which
build on these algorithms? What can be done in settings where there is no proof of identi�ability? How
does the power of sum-of-squares algorithms vary as a function of the degree d? These questions are all
part of an active area of research; stay tuned for the best answers that science has mustered so far.

Bibliographic remarks. The problem of estimating the mean under adversarial corruptions goes back
as far as the 1960’s (e.g. [Ans60, Tuk60]). The �rst polynomial-time algorithm with dimension-independent
error was given by Diakonikolas, Kamath, Kane, Li, Moitra, and Stewart [DKK+19] (see also [LRV16]); their
convex programming approach bears some similarity to the SoS program that we use here, but the analysis
is more complicated. Since then there have been numerous works on this topic, including the time- and
sample-e�cient algorithms [DL19, DHL19, CDGS20]. See e.g. [Li18] for a more complete survey. The
presentation in this lecture was based on the works of Hopkins-Li [HL18] and Kothari-Steinhardt-Steurer
[KSS18], with invaluable advice from Sam B. Hopkins. Thanks also to Sam for suggesting robust mean
estimation as a topic for the introductory lecture.

Sum-of-squares programming originated in several independent works by Lasserre [Las01], Nesterov
[Nes00], Parrilo [Par00], and Shor [Sho87] near the end of the 20th century. The proofs-to-algorithms
paradigm was popularized in the algorithms community starting with the work of Barak, Brandao, Harrow,
Kelner, Steurer and Zhou [BBH+12] (see also [OZ13, BKS14, BKS15]). The proof of the SoS Cauchy-Schwarz
inequality ⟨a, b⟩2 6 ‖a‖2‖b‖2 is taken from Ma-Shi-Steurer [MSS16], Lemma A.1.

Thanks to Jay Mardia for helpful suggestions in improving the presentation of these notes.

Contact. Comments are welcome at tselil@stanford.edu.

8


