Lecture 5: Approximate Sampling of Spanning Trees via Matroid Basis Exchange

Warning: These lecture notes have not been proofread by a second human being, nor passed the scrutiny one expects from formal publications. If you find errors, please do not hesitate to contact the instructor.

Throughout this lecture, we'll take G = (V, E) to be a connected graph, and let's adopt the notation |V| = n, |E| = m, and $\mathcal{T}_G = \{T : T \text{ is a spanning tree of } G\}$. We let $\mu : \{0, 1\}^E \to \mathbb{R}_+$ be the uniform distribution over spanning trees of G.

In the last lecture, we saw Wilson's Algorithm for sampling a UST (uniformly random spanning tree) $T \sim \mu$. Though we did not prove it, the expected running time is $O(n^3)$ and in some graphs can be as large as $\Omega(n^3)$.

Today, we will see an algorithm that *approximately samples* from a distribution v which is close to μ in *total variation distance*, in the sense that for any $\varepsilon > 0$,

$$\mathsf{d}_{\mathsf{TV}}(\mu,\nu) = \frac{1}{2} \sum_{T \in \mathcal{T}_G} |\mu(T) - \nu(T)| \leqslant \varepsilon,$$

in time $O(m \log m \log \frac{m}{s})$. Bibliographic remarks will be mostly reserved for the end of the notes.

1 The Matroid Basis Exchange Algorithm

In fact, this algorithm will sample a uniformly random basis of any matroid:

Definition 1.1 (Matroid). A *matroid* $\mathcal{M} = (E, \mathcal{I})$ consists of a *ground set* E and a collection \mathcal{I} of *independent* subsets of E which are:

- 1. *Downward-closed*: if $S \subset T$ and $T \in \mathcal{I}$ then $S \in \mathcal{I}$.
- 2. *Exchange*: if $S, T \in \mathcal{I}$ and |T| > |S|, then there exists $i \in T \setminus S$ such that $S \cup \{i\} \in \mathcal{I}$.

The *rank r* of a matroid is the size of the maximum set in \mathcal{I} , and any set $S \in \mathcal{I}$ with |S| = r is called a *basis* of \mathcal{M} .

As the terminology suggests, matroids generalize linear independence in vector spaces:

Example 1.2. The set $\mathcal{M} = (\mathbb{R}^d, \mathcal{I})$ forms a matroid for \mathcal{I} the set of linearly independent subsets of vectors in \mathbb{R}^d .

Of relevance to us is the fact that the set of spanning forests of a graph is a matroid, the bases of which are precisely the graph's spanning trees.

Example 1.3 (The Graphic Matroid). If G = (V, E) is a graph, then $\mathcal{M} = (U, \mathcal{F}_G)$ forms a matroid for \mathcal{F}_G the set of spanning forests of *G* (recall a spanning forest of *G* is an edge-induced subgraph of *G* containing no cycles).

Sampling a random basis. A classical algorithmic task is to sample a random basis of a matroid \mathcal{M} . Suppose we have access to a matroid $\mathcal{M} = (E, \mathcal{I})$ via a *independence oracle* \mathcal{O} , which given $S \subseteq E$, returns 'yes' if $S \in \mathcal{I}$ and returns 'no' otherwise.a Consider the following Markov-Chain based algorithm:

Algorithm 1.4 (Basis Exchange Algorithm). Input: a basis S_0 of $\mathcal{M} = (E, \mathcal{I})$, and an integer $T \in \mathbb{Z}_+$.

- 1. For t = 0, 2, ..., T 1:
 - (a) Choose a uniformly random element $e \in S_t$.
 - (b) Choose S_{t+1} to be a uniformly random basis containing $S_t \setminus \{e\}$.
- 2. Return S_T .

For example, in the case of the graphical matroid, this algorithm starts at an arbitrary spanning tree S_0 of G, then at each step t, removes an edge e from S_t , then chooses S_{t+1} uniformly from all trees containing $S_t \setminus \{e\}$. Notice we can implement step (b) using m calls to \mathcal{O} , since we can just check for each $f \in E$ if $S_t \setminus \{e\} \cup \{f\} \in \mathcal{I}$.

Generalizing our notation from above, consider the distribution v_T of S_T , and call μ to be the uniform distribution over the bases of \mathcal{M} . If $d_{\mathsf{TV}}(v_T, \mu) \leq \varepsilon$, we will say that the Markov Chain is " ε -mixed." In the 80's, Mihail and Vazirani [MV89] conjectured that running the basis exchange algorithm for $T = \text{poly}(m, \frac{1}{\varepsilon})$ steps guarantees that $d_{TV}(v_T - \mu) \leq \varepsilon$. This was shown for a special class of matroids known as *balanced matroids* in the early 90's [FM92], which are matroids which exhibit the following *negative correlation* property: for any $e, f \in E$ and a randomly chosen basis X of \mathcal{M} ,

$$\Pr[e \in X \mid f \in X] \leq \Pr[e \in X],$$

and furthermore this must hold for any *minor* of \mathcal{M} , which is a matroid formed by restricting \mathcal{I} to sets containing *S* and excluding *T* for any disjoint *S*, $T \subset E$.

Recently, there has been a lot of activity on this front. This theorem was proven in 2019 (and a more general version was proven just last year).

Theorem 1.5. There exists a constant C such that if $\mathcal{M} = (E, \mathcal{I})$ is a matroid with rank r and |E| = m, taking $T > C \cdot r \log \frac{r}{c}$ ensures that $d_{\mathsf{TV}}(\mu, \nu_T) \leq \varepsilon$.

Today, we will prove a weaker theorem using similar (but slightly simpler) techniques:

Theorem 1.6. There exists a constant C such that if $\mathcal{M} = (E, \mathcal{I})$ is a matroid with rank r and |E| = m, taking $T > C \cdot r^2 \log \frac{m}{\varepsilon}$ ensures that $d_{TV}(\mu, v_T) \leq \varepsilon$.

In fact, a generalization of both theorem is proven for any *log-concave* measure μ -more on this below.

Uniform Spanning Trees. To get from Theorem 1.5 to an algorithm for approximate sampling of a UST in time $O(m \log^2 \frac{m}{\epsilon})$ is not completely straightforward, since even though the rank of the graphic matroid is n - 1 (so that running the algorithm for $T = O(n \log \frac{n}{\epsilon})$ suffices), step (b) of the algorithm may take time m. To get a time $O(m \log m \log \frac{m}{\epsilon})$ algorithm, one must instead consider the *dual* of the graphic matroid, which has rank $\leq m$, and in which step (b) may be implemented in time $O(\log m)$ using a special data structure called a *link-cut tree*.

2 Mixing and the Spectral Gap of the Up-Down Operator

Let \mathcal{B} be the set of bases of \mathcal{I} , and for convenience let $N = |\mathcal{B}|$. Notice that $N \leq \binom{m}{r} \leq m^r$. Let $\{P_{S,T}\}_{S,T \in \mathcal{I}}$ be the transition operator of the basis exchange algorithm. For $S \in \mathcal{I}$ with |S| = r - 1, let $w(S) = |\{T \in \mathcal{I} \mid S \subset T\}|$.

It is helpful to think of *P* as the composition of two operators: the "down" operator P_{\downarrow} , which maps sets of size *r* in \mathcal{I} to sets of size r - 1 in \mathcal{I} by dropping a uniformly random element, and the "up" operator $P_{r-1 \rightarrow r}$ which maps sets *S* of size r - 1 in \mathcal{I} to sets *T* of size *r* in \mathcal{I} by choosing a uniformly random *T* containing *S*.

$$(P_{\downarrow})_{S,T} = \frac{\mathbf{1}[T \subset S]}{r}$$
$$(P_{\uparrow})_{S,T} = \frac{\mathbf{1}[S \subset T]}{w(S)}.$$

We have defined *P* so that $P_{S,T} = (P_{\downarrow}P_{\uparrow})_{S,T}$. From this we can see that *P* has the same eigenvalues as $P_{\uparrow}P_{\downarrow}$, and also

$$P_{S,T} = \begin{cases} \frac{1}{r \cdot w(S \cap T)} & |S \bigtriangleup T| = 2\\ \frac{1}{r} \sum_{e \in S} \frac{1}{w(S \setminus \{e\})} & S = T\\ 0 & \text{otherwise.} \end{cases}$$

Claim 2.1. *P* is reversible, irreducible, and aperiodic, and the uniform measure over bases, μ , is a stationary measure of *P*.

Proof. Since $\frac{1}{N}P_{S,T} = \frac{1}{N}P_{T,S}$, *P* is reversible with respect to $\mu = \frac{1}{N}\vec{1}$. To see that *P* is irreducible, consider two bases *S*, *T*, and note that the exchange property of matroids implies that if we remove an element $e \in S \setminus T$, there must exist an element $f \in T \setminus S$ such that $S_1 = S \setminus \{e\} \cup \{f\} \in B$, and $P_{S,S_1} > 0$; this argument can be repeated until we reach *T*. To see that *P* is aperiodic, note that we can write $P = \delta \cdot 1 + (1 - \delta)P'$ for $\delta \in (0, 1]$ and *P'* another Markov Chain. Since *P* is reversible with respect to μ , we also have that μ is stationary:

$$(\mu^{\top} P)_T = \sum_{S \in \mathcal{B}} \mu_S P_{S,T} = \mu_T \sum_{S \in \mathcal{B}} P_{T,S} = \frac{1}{N} = \mu_T,$$

concluding the proof.

Since *P* is aperiodic and irreducible with stationary measure μ , we know that starting from any basis S_0 , $\lim_{t\to\infty} 1_{S_0}^{\top} P^t = \mu$. Now, we'll make this more quantitative, using properties of the spectrum of *P*. Let $1 = \lambda_1 > \lambda_2 \ge \cdots \ge \lambda_N > -1$ be the eigenvalues of *P* (we have that $|\lambda_2|, |\lambda_N| < 1$ since *P* is irreducible and reversible and aperiodic). We have the following lemma:

Lemma 2.2. Letting $\lambda^* = \max(\lambda_2, |\lambda_N|)$, for any $T > \frac{1}{1-\lambda^*}(\log \frac{1}{\varepsilon} + \frac{1}{2}\log N)$, $\mathsf{d}_{\mathsf{TV}}(\nu_T, \mu) \leq \varepsilon$.

Proof. Since the unit left-eigenvectors v_1, \ldots, v_N of P form an orthonormal basis for \mathbb{R}^N , we can write $1_{S_0} = \sum_{i=1}^N \langle v_i, 1_{S_0} \rangle \cdot v_i$.

$$\mathbf{1}_{S_0}^{\top} P^t = \sum_{i=1}^N \langle v_i, \mathbf{1}_{S_0} \rangle \cdot v_i^{\top} P_t = \sum_{i=1}^N \langle v_i, \mathbf{1}_{S_0} \rangle \lambda_i^t \cdot v_i.$$

In particular, $v_1 = \frac{1}{\sqrt{N}}\vec{1} = \sqrt{N}\mu$, and also $\langle v_1, 1_{S_0} \rangle = \frac{1}{\sqrt{N}}$. Hence $1_{S_0}^\top P^t = \mu$. So we have

$$\mathsf{d}_{\mathsf{TV}}(\nu_t,\mu) = \|\mathbf{1}_{S_0}^{\mathsf{T}}P^t - \mu\|_1 = \left\|\sum_{i=2}^N \langle \upsilon_i, \mathbf{1}_{S_0} \rangle \cdot \lambda_i^t \cdot \upsilon_i\right\|_1 \leqslant \sqrt{N} \max(\lambda_2, |\lambda_N|)^t.$$

The conclusion follows by noting that for $T = \frac{1}{1-\lambda^*} (\log \frac{1}{\varepsilon} + \frac{1}{2} \log N)$,

$$\mathsf{d}_{\mathsf{TV}}(\nu_T,\mu)\leqslant \sqrt{N}(1-(1-\lambda^*))^T\leqslant \sqrt{N}\exp(T(1-\lambda^*))\leqslant \varepsilon.$$

So to prove Theorem 1.6 it is sufficient to show that $\lambda^* \leq 1 - \frac{c}{r}$ for some constant *c*, since by Lemma 2.2 and the bound $N \leq m^r$ it is sufficient to take *T* to be

$$\frac{1}{1-\lambda^*}\left(\log\frac{1}{\varepsilon}+\frac{1}{2}r\log m\right)\leqslant \frac{1}{c}r^2\log\frac{m}{\varepsilon}.$$

Remark 2.3. The proof of Theorem 1.5 differs from the proof of Theorem 1.6: rather than using a bound on the mixing time based on the spectrum of P as in Lemma 2.2, it uses a stronger mixing time bound implied by a *log-Sobolev* inequality for P. The method by which this log-Sobolev inequality is proved bears some resemblance to the bound on the spectrum of P; if you are interested in investigating further, this may be a good topic for the course final project.

3 Bounding the eigenvalues of the up-down walks

Our goal is now to show that

$$1-\lambda^*(P)=\Omega(\frac{1}{r}).$$

It is not difficult to bound $|\lambda_N(P)|$. To see this, notice that *P* is a diagonal block of B^2 for the selfadjoint matrix (with respect to the inner product induced by its stationary measure π , $\langle f, g \rangle_{\pi} = \mathbf{E}_{i \sim \pi} f_i g_i$) $B = \begin{bmatrix} 0 & P_{\uparrow} \\ P_{\downarrow} & 0 \end{bmatrix}$. This implies that *P* is positive-semidefinite, since for any vector $v, \langle v, Pv \rangle_{\pi} = \langle v, B^2v \rangle_{\pi} = \langle Bv, Bv \rangle_{\pi} \ge 0$, where the first equality follows since v can be padded with 0's on the entries outside of the support of *B*, and the second inequality is because *B* is self adjoint. In conclusion, $\lambda_N(P) \ge 0$.

Therefore we turn our attention to upper bounding $\lambda_2(P)$. Here, we will make use of the *generating polynomial* of μ , which is the *m*-variate polynomial

$$g_{\mu}(z) = \sum_{S \in \mathcal{B}} \mu(S) \prod_{i \in S} z_i = \sum_{S \in \mathcal{B}} \frac{1}{N} \prod_{i \in S} z_i.$$

That is, $g_{\mu}(z)$ is the homogeneous degree-*r* polynomial supported on monomials corresponding to bases, with coefficient of z^{S} equal to $\mu(S)$.

Definition 3.1 (Log-Concave Polynomial). A multivariate polynomial $p \in \mathbb{R}[z_1, ..., z_m]$ with non-negative real coefficients is said to be *log-concave* on a subset $K \subseteq \mathbb{R}_{\geq 0}^m$ if log p is a concave function on K, that is, if $\nabla^2 \log p$ is negative-semidefinite. It is said to be *strongly log-concave* on K if for any sequence of integers $1 \leq i_1, ..., i_k \leq m, \frac{\partial}{\partial z_{i_1}} \cdots \frac{\partial}{\partial z_{i_k}} p$ is log-concave on K.

The following theorem, which we will not prove, will be crucial in our bound on the eigenvalues of *P*:

Theorem 3.2. For any matroid, g_{μ} is strongly log-concave at K = 1.

Let us see how it will help us bound the eigenvalues of *P* in the special case where r = 2, so *p* is a degree-2 polynomial. Recall that $P = P_{\downarrow}P_{\uparrow}$ has the same eigenvalues (up to zero eigenvalues) as $P_{\uparrow}P_{\downarrow}$ with respect to the inner product induced by *w*. Notice that at z = 1, strong log-concavity implies that $0 \ge \nabla^2 \log p$ at z = 1, and we can directly compute the entries by differentiating and evaluating at 1:

$$(\nabla^2 \log p)_{ij}|_{z=1} = (\frac{p \cdot \partial_i \partial_j p - \partial_i p \partial_j p}{p^2})|_{z=1} = \frac{\mathbf{1}[\{i, j\} \in \mathcal{I}]}{N} - \frac{1}{N^2} w(i) w(j).$$

Now, notice that $(P_{\uparrow}P_{\downarrow})_{ij} = \frac{1}{2}(\frac{1}{w(i)}\mathbf{1}[\{i, j\} \in \mathcal{B}\}]) + \frac{1}{2}\mathbf{1}[i = j]$, and $P_{\uparrow}P_{\downarrow}$ is reversible with respect to *w*. So we can re-write $\nabla^2 \log p|_{z=1}$ using $P_{\uparrow}P_{\downarrow}$, which in turn implies that

$$N \cdot w w^{\top} \ge (D_w (P_{\uparrow} P_{\downarrow} - \frac{1}{2} \mathbb{1})),$$

and in particular, $D_w(P_{\uparrow}P_{\downarrow} - \frac{1}{2}\mathbb{1})$ can have only have one positive eigenvalue, in the direction *w*. All other eigenvalues of $P_{\uparrow}P_{\downarrow}$ (with respect to the *w*-inner-product) are at most $\frac{1}{2}$. This now implies that $P = P_{\downarrow}P_{\uparrow}$ has only one eigenvalue larger than $\frac{1}{2}$, and $\lambda_2(P) \leq \frac{1}{2}$.

Larger *r* via matroid contraction. To address the r > 2 case,¹ we use the fact that matroids are closed under *contraction*. Previously, we defined the up and down walks for the full matroid \mathcal{M} . But now, for any $A \subset E$, consider the *contracted* matroid \mathcal{M}_A given by restricting \mathcal{I} to the set of all subsets containing A. We may as well consider P_A and P_{\uparrow}^A and P_{\downarrow}^A , the basis exchange matrix and up and down walks on \mathcal{M}_A . Notice also that $\partial_A g_{\mu} = g_{w(A)}!$ In particular, $g_{w(A)}$ is log-concave by the strong log-concavity of g_{μ} . Using reasoning identical to the above, we can conclude that $P_{\uparrow}^A P_{\downarrow}^A$ has only one eigenvalue larger than $\frac{1}{2}$, in the direction of its stationary measure μ_A .

Again, we will bound the eigenvalues of $P_{\uparrow}P_{\downarrow} - \frac{1}{r}\mathbb{1}$. For any function f on independent sets of size r - 1 which is orthogonal to 1, we'll relate $\langle f, (P_{\uparrow}P_{\downarrow} - \frac{1}{r}\mathbb{1})f \rangle$ to an average over $\langle f, (P_A - 1\mu_A^{\top})f \rangle$, from which we will be done by the observation above. For each $A \subset E$, let $X_A(\ell) = \{B \in \mathcal{I} \mid A \subset B, |B| = \ell + 1\}$; borrowing terminology from simplicial complexes, we call $X_A(\ell)$ the " ℓ -link of A. Let $S \sim_w X(\ell)$ denote a sample from the measure over \mathcal{I} supported on S of $|S| = \ell + 1$ where $\Pr[S] \propto w(S) = \sum_{T \supset S, |T| = |S| + 1} w(T)$.

Now, for any eigenfunction *f* of $P_{\uparrow}P_{\perp}$ we have that

$$\langle f, (P_{\uparrow}P_{\downarrow} - \frac{1}{r}\mathbb{1})f \rangle = \mathbf{E}_{S\sim_{w}X(r-1)}\mathbf{E}_{e\sim X_{S}(0)}\mathbf{E}_{f\sim X_{S\cup\{e\}}(0), f\neq e}f_{S+e}f_{S+e-f}$$

$$= \mathbf{E}_{A\sim_{w}X(r-2)}\mathbf{E}_{\{i,j\}\sim X_{A}(1)}f_{A+e}f_{A+f}$$

$$= \mathbf{E}_{A\sim_{w}X(r-2)}\langle f, (P_{A} - \operatorname{diag}(P_{A}))f \rangle_{w}.$$

By the above, P_A – diag(P_A) has only one eigenvalue exceeding 0, in the direction of μ_A . One can then show (via the fact that the eigendecomposition of P_A is orthonormal, plus algebra) that for f orthogonal to 1, this direction does not contribute too much. A later version of these notes may flesh this out in more detail; for now, consult [ALGV19] or the lecture notes [Gha].

Bibliographic remarks. In preparing this lecture I heavily consulted the lecture notes [Gha]. Theorem 1.6 and Theorem 3.2 are originally from [ALGV19]; see also [BH18, ALGV18, AGV18] for results related to Theorem 3.2. Theorem 1.5 is from [CGM19], and a stronger statement (which holds for general log-concave measures) is proven in [ALG⁺21].

¹Note: this portion of the note is less polished than the rest; it may be improved in a future edition.

Contact. Comments are welcome at tselil@stanford.edu.

References

- [AGV18] Nima Anari, Shayan Oveis Gharan, and Cynthia Vinzant. Log-concave polynomials, entropy, and a deterministic approximation algorithm for counting bases of matroids. In *2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS)*, pages 35–46. IEEE, 2018. 5
- [ALG⁺21] Nima Anari, Kuikui Liu, Shayan Oveis Gharan, Cynthia Vinzant, and Thuy-Duong Vuong. Logconcave polynomials IV: approximate exchange, tight mixing times, and near-optimal sampling of forests. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages 408–420, 2021. 5
- [ALGV18] Nima Anari, Kuikui Liu, Shayan Oveis Gharan, and Cynthia Vinzant. Log-concave polynomials III: Mason's ultra-log-concavity conjecture for independent sets of matroids. arXiv preprint arXiv:1811.01600, 2018. 5
- [ALGV19] Nima Anari, Kuikui Liu, Shayan Oveis Gharan, and Cynthia Vinzant. Log-concave polynomials II: high-dimensional walks and an fpras for counting bases of a matroid. In *Proceedings of the* 51st Annual ACM SIGACT Symposium on Theory of Computing, pages 1–12, 2019. 5
- [BH18] Petter Brändén and June Huh. Hodge-Riemann relations for Potts model partition functions. *arXiv preprint arXiv:1811.01696*, 2018. 5
- [CGM19] Mary Cryan, Heng Guo, and Giorgos Mousa. Modified log-Sobolev inequalities for strongly log-concave distributions. In 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), pages 1358–1370. IEEE, 2019. 5
- [FM92] Tomás Feder and Milena Mihail. Balanced matroids. In *Proceedings of the twenty-fourth annual ACM symposium on Theory of computing*, pages 26–38, 1992. 2
- [Gha] Shayan Oveis Gharan. Polynomial paradigm in algorithms lecture 12-15: Simplicial complexes. homes.cs.washington.edu/~shayan/courses/polynomials/poly-lecture-12.pdf. 5
- [MV89] Milena Mihail and Umesh Vazirani. On the expansion of 0-1 polytopes. preprint, 1989. 2