STATS 221: Random Processes on Graphs and Lattices Lecture 5
Instructor: Tselil Schramm January 19, 2022

Lecture 5: Approximate Sampling of Spanning Trees via Matroid

Basis Exchange

Warning: These lecture notes have not been proofread by a second human being, nor passed the scrutiny
one expects from formal publications. If you find errors, please do not hesitate to contact the instructor.

Throughout this lecture, we’ll take G = (V, E) to be a connected graph, and let’s adopt the notation
|V| = n, |[E| = m,and Tg = {T : T isa spanning tree ofG}. We let  : {0,1}f) — R, be the uniform
distribution over spanning trees of G.

In the last lecture, we saw Wilson’s Algorithm for sampling a UST (uniformly random spanning tree)
T ~ p. Though we did not prove it, the expected running time is O(n®) and in some graphs can be as large
as Q(n%).

Today, we will see an algorithm that approximately samples from a distribution v which is close to p
in total variation distance, in the sense that for any ¢ > 0,

drv(s ) = 5 3 (T) - WD) < e
TGTG

in time O(mlog mlog 7). Bibliographic remarks will be mostly reserved for the end of the notes.

1 The Matroid Basis Exchange Algorithm

In fact, this algorithm will sample a uniformly random basis of any matroid:

Definition 1.1 (Matroid). A matroid M = (E, T) consists of a ground set E and a collection T of independent
subsets of E which are:

1. Downward-closed: if Sc Tand T € T then S € T.
2. Exchange: if S, T € T and |T| > |S|, then there exists i € T\ S such that Su {i} € T.

The rank r of a matroid is the size of the maximum set in Z, and any set S € T with |S| = r is called a basis
of M.

As the terminology suggests, matroids generalize linear independence in vector spaces:

Example 1.2. The set M = (R¢, T) forms a matroid for T the set of linearly independent subsets of vectors
in R

Of relevance to us is the fact that the set of spanning forests of a graph is a matroid, the bases of which
are precisely the graph’s spanning trees.

Example 1.3 (The Graphic Matroid). If G = (V, E) is a graph, then M = (U, F) forms a matroid for Fg
the set of spanning forests of G (recall a spanning forest of G is an edge-induced subgraph of G containing
no cycles).



Sampling a random basis. A classical algorithmic task is to sample a random basis of a matroid M.
Suppose we have access to a matroid M = (E, I) via a independence oracle O, which given S c E, returns
‘yes‘ if S € T and returns ‘no’ otherwise.a Consider the following Markov-Chain based algorithm:

Algorithm 1.4 (Basis Exchange Algorithm). Input: a basis Sy of M = (E, I), and an integer T € Z,..
1. Fort=0,2,...,T - 1:

(a) Choose a uniformly random element e € S;.

(b) Choose S;.1 to be a uniformly random basis containing S; \ {e}.
2. Return St.

For example, in the case of the graphical matroid, this algorithm starts at an arbitrary spanning tree S,
of G, then at each step ¢, removes an edge e from S;, then chooses S;.; uniformly from all trees containing
St \ {e}. Notice we can implement step (b) using m calls to O, since we can just check for each f € E if
S\ {etu{f}el.

Generalizing our notation from above, consider the distribution v of St, and call y to be the uniform
distribution over the bases of M. If drv(vr, p) < ¢, we will say that the Markov Chain is “e-mixed.” In the
80’s, Mihail and Vazirani [MV89] conjectured that running the basis exchange algorithm for T = poly(m, %)
steps guarantees that dry(vr — ) < e. This was shown for a special class of matroids known as balanced
matroids in the early 90’s [FM92], which are matroids which exhibit the following negative correlation
property: for any e, f € E and a randomly chosen basis X of M,

Prlee X | f € X] < Prle€ X],

and furthermore this must hold for any minor of M, which is a matroid formed by restricting T to sets
containing S and excluding T for any disjoint S, T c E.

Recently, there has been a lot of activity on this front. This theorem was proven in 2019 (and a more
general version was proven just last year).

Theorem 1.5. There exists a constant C such that if M = (E, I) is a matroid with rank r and |E| = m, taking
T > C-rlog? ensures that drv(u, vr) < €.

Today, we will prove a weaker theorem using similar (but slightly simpler) techniques:

Theorem 1.6. There exists a constant C such that if M = (E, T) is a matroid with rank r and |E| = m, taking
T>C-r*log % ensures that dry(y, vr) < e.

In fact, a generalization of both theorem is proven for any log-concave measure y—more on this below.

Uniform Spanning Trees. To get from Theorem 1.5 to an algorithm for approximate sampling of a UST
in time O(m log? %) is not completely straightforward, since even though the rank of the graphic matroid
is n - 1 (so that running the algorithm for T = O(nlog %) suffices), step (b) of the algorithm may take time
m. To get a time O(mlog mlog ) algorithm, one must instead consider the dual of the graphic matroid,
which has rank < m, and in which step (b) may be implemented in time O(log m) using a special data
structure called a link-cut tree.



2 Mixing and the Spectral Gap of the Up-Down Operator

Let 13 be the set of bases of 7, and for convenience let N = |B|. Notice that N < (T) < m'". Let {Ps1}s1er
be the transition operator of the basis exchange algorithm. For S € T with S| = r - 1,let w(S) = {T € T |
ScT}.

It is helpful to think of P as the composition of two operators: the “down” operator P|, which maps
sets of size r in T to sets of size r - 1 in T by dropping a uniformly random element, and the “up“ operator
P._1—,, which maps sets S of size r — 1 in T to sets T of size r in T by choosing a uniformly random T
containing S.

1[T < S]
(P)sr = ———
1[Sc T]
P =
(Ppst )
We have defined P so that Ps 1 = (PlPT) s.7- From this we can see that P has the same eigenvalues as PP,
and also
1
r-w(SnT) |S o T| =2
Psr=1 1 Yees wmey S=T
0 otherwise.

Claim 2.1. Pisreversible, irreducible, and aperiodic, and the uniform measure over bases, i, is a stationary
measure of P.

Proof. Since %Ps,T = %PT,S, P is reversible with respect to y = %_1) To see that P is irreducible, consider
two bases S, T, and note that the exchange property of matroids implies that if we remove an element
e € S\ T, there must exist an element f € T\ S such that S; = S\ {e} u{f} € B, and Pss, > 0; this argument
can be repeated until we reach T. To see that P is aperiodic, note that we can write P = § - 1 + (1 - §)P’
for § € (0,1] and P’ another Markov Chain. Since P is reversible with respect to p, we also have that y is
stationary: 1
.
(u' P)r SeZB#SPS,T HT SEZBPT,S N = HT

concluding the proof. O

Since P is aperiodic and irreducible with stationary measure p, we know that starting from any basis
So, lim; e 15 P* = p1. Now, we’ll make this more quantitative, using properties of the spectrum of P. Let
1=2A > A = - = Ay > —1 be the eigenvalues of P (we have that |1;|,|An| < 1 since P is irreducible and
reversible and aperiodic). We have the following lemma:

Lemma 2.2. Letting A" = max(Ay, |An|), forany T > ﬁ(log% + %log N), drv(vr, p) < e

Proof. Since the unit left-eigenvectors vy, ..., vy of P form an orthonormal basis for RN, we can write
N
1s, = Yisikvi 1s,) - vi.

N N
15,P" = Y (015 0 Py = ) (0, 15,0A! - v,
i=1 i=1



In particular, v; = ﬁf = \/Np, and also (v, 1g,) = ﬁ Hence 1§0Pt = p1. So we have

drv(ve ) = |15, P" = ply = < VN max(2s, |An])".

N
Z<Ui: 15,0~ Af -
iz

1

The conclusion follows by noting that for T = #(log % + % log N),
drv(vr, 1) < VN1 - (1 - )T < VNexp(T(1 - 1)) < e. O

So to prove Theorem 1.6 it is sufficient to show that A* < 1- f for some constant ¢, since by Lemma 2.2
and the bound N < m'" it is sufficient to take T to be
1
1-A

Remark 2.3. The proof of Theorem 1.5 differs from the proof of Theorem 1.6: rather than using a bound

1 1 1 m
-+ — < - 2 —
<log€ + 2r10gm) ST log .

on the mixing time based on the spectrum of P as in Lemma 2.2, it uses a stronger mixing time bound
implied by a log-Sobolev inequality for P. The method by which this log-Sobolev inequality is proved bears
some resemblance to the bound on the spectrum of P; if you are interested in investigating further, this
may be a good topic for the course final project.

3 Bounding the eigenvalues of the up-down walks

Our goal is now to show that
1-A"(P) = Q(-).

It is not difficult to bound |Ax(P)|. To see this, notice that P is a diagonal block of B? for the self-
adjoint matrix (with respect to the inner product induced by its stationary measure x, {f, g), = Ei.figi)
0
i
{(Bv, Bu); > 0, where the first equality follows since v can be padded with 0’s on the entries outside of

B:

T}. This implies that P is positive-semidefinite, since for any vector v, (v, Pv), = (v, B?v), =

the support of /3, and the second inequality is because B is self adjoint. In conclusion, Ax(P) > 0.

Therefore we turn our attention to upper bounding A,(P). Here, we will make use of the generating
polynomial of yi, which is the the m-variate polynomial

FOESWOIIEEDY % 11z
SeB i€S SenB i€S

That is, g,(z) is the homogeneous degree-r polynomial supported on monomials corresponding to bases,
with coefficient of z° equal to u(S).

Definition 3.1 (Log-Concave Polynomial). A multivariate polynomial p € R[z, ..., z,] with non-negative
real coefficients is said to be log-concave on a subset K ¢ RY, if log p is a concave function on K, that is, if

V2 log p is negative-semidefinite. It is said to be strongly log-concave on K if for any sequence of integers

. . 0 0
IS e S m, 5 3

p is log-concave on K.
The following theorem, which we will not prove, will be crucial in our bound on the eigenvalues of P:

Theorem 3.2. For any matroid, g, is strongly log-concave at K = 1.



Let us see how it will help us bound the eigenvalues of P in the special case where r = 2, so p is
a degree-2 polynomial. Recall that P = P|P; has the same eigenvalues (up to zero eigenvalues) as P1P|
with respect to the inner product induced by w. Notice that at z = 1, strong log-concavity implies that
0 = V2log p at z = 1, and we can directly compute the entries by differentiating and evaluating at 1:

_1[{ijlel] 1

p - 9i9ip - 9ipd;p o
N N2

pZ

(V2 1og p)ylz=1 = ( )z=1 (Dw()).
Now, notice that (P1P)); = %(ﬁl[{ i,j} € B}]) + %1[1’ = j], and P}P| is reversible with respect to w. So we

can re-write V2 log p|,-; using PyPj, which in turn implies that
N-ww' = (Dy(PP| - 111)),
2

and in particular, D,,(P}P| - %]1) can have only have one positive eigenvalue, in the direction w. All other
eigenvalues of P;P| (with respect to the w-inner-product) are at most % This now implies that P = P| P;
has only one eigenvalue larger than 7, and 4;(P) < %

Larger r via matroid contraction. To address the r > 2 case,! we use the fact that matroids are closed
under contraction. Previously, we defined the up and down walks for the full matroid M. But now, for any
A c E, consider the contracted matroid M, given by restricting 7 to the set of all subsets containing A.
We may as well consider P4 and P{‘ and Pf‘, the basis exchange matrix and up and down walks on M 4.
Notice also that dagy, = gw(4)! In particular, g,,4) is log-concave by the strong log-concavity of g,. Using
reasoning identical to the above, we can conclude that P{‘Pf‘ has only one eigenvalue larger than %, in the
direction of its stationary measure fi4.

Again, we will bound the eigenvalues of P, P| - %]l. For any function f on independent sets of size r - 1
which is orthogonal to 1, we'll relate {f, (P} P| - %]l) f > to an average over {f, (P4 - 1y1)f », from which we
will be done by the observation above. For each A c E, let X4(f) = {B€ I | Ac B, |B| = ¢ + 1}; borrowing
terminology from simplicial complexes, we call X4(¢) the “¢-link of A. Let S ~,, X(£) denote a sample from
the measure over 7 supported on S of |S| = £ + 1 where Pr[S] o« w(S) = ZTDS,\T\:\S\H w(T).

Now, for any eigenfunction f of P;P| we have that

1
o BrPy = —D)f> = Bse xr-nEe-xs0) B Xy 00 frefsrefsee-f

= Ea x(-2Bijy-xafarefars
= Ea-, x(r-2)<f> (Pa — diag(Pa))f >w-

By the above, P4 — diag(P4) has only one eigenvalue exceeding 0, in the direction of p4. One can then
show (via the fact that the eigendecomposition of Py is orthonormal, plus algebra) that for f orthogonal
to 1, this direction does not contribute too much. A later version of these notes may flesh this out in more
detail; for now, consult [ALGV19] or the lecture notes [Gha].

Bibliographic remarks. In preparing this lecture I heavily consulted the lecture notes [Gha]. The-
orem 1.6 and Theorem 3.2 are originally from [ALGV19]; see also [BH18, ALGV18, AGV138] for results
related to Theorem 3.2. Theorem 1.5 is from [CGM19], and a stronger statement (which holds for general
log-concave measures) is proven in [ALG*21].

!Note: this portion of the note is less polished than the rest; it may be improved in a future edition.



Contact.

Comments are welcome at tselil@stanford.edu.
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