
STATS 221: Random Processes on Graphs and Lattices
Instructor: Tselil Schramm

Lecture 5
January 19, 2022

Lecture 5: Approximate Sampling of Spanning Trees via Matroid
Basis Exchange

Warning: These lecture notes have not been proofread by a second human being, nor passed the scrutiny
one expects from formal publications. If you find errors, please do not hesitate to contact the instructor.

Throughout this lecture, we’ll take 𝐺 = (𝑉 , 𝐸) to be a connected graph, and let’s adopt the notation
|𝑉 | = 𝑛, |𝐸| = 𝑚, and 𝐺 = {𝑇 ∶ 𝑇 is a spanning tree of𝐺}. We let 𝜇 ∶ {0, 1}𝐸 → R+ be the uniform
distribution over spanning trees of 𝐺.

In the last lecture, we saw Wilson’s Algorithm for sampling a UST (uniformly random spanning tree)
𝑇 ∼ 𝜇. Though we did not prove it, the expected running time is 𝑂(𝑛3) and in some graphs can be as large
as Ω(𝑛3).

Today, we will see an algorithm that approximately samples from a distribution 𝜈 which is close to 𝜇
in total variation distance, in the sense that for any 𝜀 > 0,

dTV(𝜇, 𝜈) =
1
2
∑
𝑇∈𝐺

|𝜇(𝑇 ) − 𝜈(𝑇 )| ⩽ 𝜀,

in time 𝑂(𝑚 log𝑚 log 𝑚
𝜀 ). Bibliographic remarks will be mostly reserved for the end of the notes.

1 The Matroid Basis Exchange Algorithm

In fact, this algorithm will sample a uniformly random basis of any matroid:

Definition 1.1 (Matroid). Amatroid = (𝐸,) consists of a ground set 𝐸 and a collection  of independent
subsets of 𝐸 which are:

1. Downward-closed: if 𝑆 ⊂ 𝑇 and 𝑇 ∈  then 𝑆 ∈ .

2. Exchange: if 𝑆, 𝑇 ∈  and |𝑇 | > |𝑆|, then there exists 𝑖 ∈ 𝑇 ⧵ 𝑆 such that 𝑆 ∪ {𝑖} ∈ .

The rank 𝑟 of a matroid is the size of the maximum set in , and any set 𝑆 ∈  with |𝑆| = 𝑟 is called a basis
of.

As the terminology suggests, matroids generalize linear independence in vector spaces:

Example 1.2. The set = (R𝑑 ,) forms amatroid for  the set of linearly independent subsets of vectors
inR𝑑 .

Of relevance to us is the fact that the set of spanning forests of a graph is a matroid, the bases of which
are precisely the graph’s spanning trees.

Example 1.3 (The Graphic Matroid). If 𝐺 = (𝑉 , 𝐸) is a graph, then  = (𝑈 ,𝐺) forms a matroid for 𝐺

the set of spanning forests of 𝐺 (recall a spanning forest of 𝐺 is an edge-induced subgraph of 𝐺 containing
no cycles).
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Sampling a random basis. A classical algorithmic task is to sample a random basis of a matroid .
Suppose we have access to a matroid  = (𝐸,) via a independence oracle , which given 𝑆 ⊆ 𝐸, returns
‘yes‘ if 𝑆 ∈  and returns ‘no‘ otherwise.a Consider the following Markov-Chain based algorithm:

Algorithm 1.4 (Basis Exchange Algorithm). Input: a basis 𝑆0 of = (𝐸,), and an integer 𝑇 ∈ ℤ+.

1. For 𝑡 = 0, 2, … , 𝑇 − 1:

(a) Choose a uniformly random element 𝑒 ∈ 𝑆𝑡 .

(b) Choose 𝑆𝑡+1 to be a uniformly random basis containing 𝑆𝑡 ⧵ {𝑒}.

2. Return 𝑆𝑇 .

For example, in the case of the graphical matroid, this algorithm starts at an arbitrary spanning tree 𝑆0
of 𝐺, then at each step 𝑡 , removes an edge 𝑒 from 𝑆𝑡 , then chooses 𝑆𝑡+1 uniformly from all trees containing
𝑆𝑡 ⧵ {𝑒}. Notice we can implement step (b) using 𝑚 calls to , since we can just check for each 𝑓 ∈ 𝐸 if
𝑆𝑡 ⧵ {𝑒} ∪ {𝑓 } ∈ .

Generalizing our notation from above, consider the distribution 𝜈𝑇 of 𝑆𝑇 , and call 𝜇 to be the uniform
distribution over the bases of. If dTV(𝜈𝑇 , 𝜇) ⩽ 𝜀, we will say that the Markov Chain is “𝜀-mixed.” In the
80’s, Mihail and Vazirani [MV89] conjectured that running the basis exchange algorithm for 𝑇 = poly(𝑚, 1𝜀 )
steps guarantees that 𝑑𝑇𝑉 (𝜈𝑇 − 𝜇) ⩽ 𝜀. This was shown for a special class of matroids known as balanced
matroids in the early 90’s [FM92], which are matroids which exhibit the following negative correlation
property: for any 𝑒, 𝑓 ∈ 𝐸 and a randomly chosen basis 𝑋 of,

𝐏𝐫[𝑒 ∈ 𝑋 ∣ 𝑓 ∈ 𝑋] ⩽ 𝐏𝐫[𝑒 ∈ 𝑋],

and furthermore this must hold for any minor of , which is a matroid formed by restricting  to sets
containing 𝑆 and excluding 𝑇 for any disjoint 𝑆, 𝑇 ⊂ 𝐸.

Recently, there has been a lot of activity on this front. This theorem was proven in 2019 (and a more
general version was proven just last year).

Theorem 1.5. There exists a constant 𝐶 such that if = (𝐸,) is a matroid with rank 𝑟 and |𝐸| = 𝑚, taking
𝑇 > 𝐶 ⋅ 𝑟 log 𝑟

𝜀 ensures that dTV(𝜇, 𝜈𝑇 ) ⩽ 𝜀.

Today, we will prove a weaker theorem using similar (but slightly simpler) techniques:

Theorem 1.6. There exists a constant 𝐶 such that if = (𝐸,) is a matroid with rank 𝑟 and |𝐸| = 𝑚, taking
𝑇 > 𝐶 ⋅ 𝑟2 log 𝑚

𝜀 ensures that dTV(𝜇, 𝜈𝑇 ) ⩽ 𝜀.

In fact, a generalization of both theorem is proven for any log-concavemeasure 𝜇—more on this below.

Uniform Spanning Trees. To get from Theorem 1.5 to an algorithm for approximate sampling of a UST
in time 𝑂(𝑚 log2 𝑚

𝜀 ) is not completely straightforward, since even though the rank of the graphic matroid
is 𝑛 − 1 (so that running the algorithm for 𝑇 = 𝑂(𝑛 log 𝑛

𝜀 ) suffices), step (b) of the algorithm may take time
𝑚. To get a time 𝑂(𝑚 log𝑚 log 𝑚

𝜀 ) algorithm, one must instead consider the dual of the graphic matroid,
which has rank ⩽ 𝑚, and in which step (b) may be implemented in time 𝑂(log𝑚) using a special data
structure called a link-cut tree.
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2 Mixing and the Spectral Gap of the Up-Down Operator

Let  be the set of bases of , and for convenience let 𝑁 = ||. Notice that 𝑁 ⩽ (𝑚𝑟 ) ⩽ 𝑚𝑟 . Let {𝑃𝑆,𝑇}𝑆,𝑇∈
be the transition operator of the basis exchange algorithm. For 𝑆 ∈  with |𝑆| = 𝑟 − 1, let 𝑤(𝑆) = |{𝑇 ∈  ∣
𝑆 ⊂ 𝑇}|.

It is helpful to think of 𝑃 as the composition of two operators: the “down“ operator 𝑃↓, which maps
sets of size 𝑟 in  to sets of size 𝑟 − 1 in  by dropping a uniformly random element, and the “up“ operator
𝑃𝑟−1→𝑟 which maps sets 𝑆 of size 𝑟 − 1 in  to sets 𝑇 of size 𝑟 in  by choosing a uniformly random 𝑇
containing 𝑆.

(𝑃↓)𝑆,𝑇 =
𝟏[𝑇 ⊂ 𝑆]

𝑟

(𝑃↑)𝑆,𝑇 =
𝟏[𝑆 ⊂ 𝑇 ]
𝑤(𝑆)

.

We have defined 𝑃 so that 𝑃𝑆,𝑇 = (𝑃↓𝑃↑)𝑆,𝑇 . From this we can see that 𝑃 has the same eigenvalues as 𝑃↑𝑃↓,
and also

𝑃𝑆,𝑇 =

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

1
𝑟⋅𝑤(𝑆∩𝑇 ) |𝑆 △ 𝑇 | = 2
1
𝑟 ∑𝑒∈𝑆

1
𝑤(𝑆⧵{𝑒}) 𝑆 = 𝑇

0 otherwise.

Claim 2.1. 𝑃 is reversible, irreducible, and aperiodic, and the uniformmeasure over bases, 𝜇, is a stationary
measure of 𝑃 .

Proof. Since 1
𝑁 𝑃𝑆,𝑇 = 1

𝑁 𝑃𝑇 ,𝑆 , 𝑃 is reversible with respect to 𝜇 = 1
𝑁 1⃗. To see that 𝑃 is irreducible, consider

two bases 𝑆, 𝑇 , and note that the exchange property of matroids implies that if we remove an element
𝑒 ∈ 𝑆 ⧵ 𝑇 , there must exist an element 𝑓 ∈ 𝑇 ⧵ 𝑆 such that 𝑆1 = 𝑆 ⧵ {𝑒} ∪ {𝑓 } ∈ , and 𝑃𝑆,𝑆1 > 0; this argument
can be repeated until we reach 𝑇 . To see that 𝑃 is aperiodic, note that we can write 𝑃 = 𝛿 ⋅ 1 + (1 − 𝛿)𝑃 ′

for 𝛿 ∈ (0, 1] and 𝑃 ′ another Markov Chain. Since 𝑃 is reversible with respect to 𝜇, we also have that 𝜇 is
stationary:

(𝜇⊤𝑃)𝑇 = ∑
𝑆∈

𝜇𝑆𝑃𝑆,𝑇 = 𝜇𝑇 ∑
𝑆∈

𝑃𝑇 ,𝑆 =
1
𝑁

= 𝜇𝑇 ,

concluding the proof.

Since 𝑃 is aperiodic and irreducible with stationary measure 𝜇, we know that starting from any basis
𝑆0, lim𝑡→∞ 1⊤𝑆0𝑃

𝑡 = 𝜇. Now, we’ll make this more quantitative, using properties of the spectrum of 𝑃 . Let
1 = 𝜆1 > 𝜆2 ⩾ ⋯ ⩾ 𝜆𝑁 > −1 be the eigenvalues of 𝑃 (we have that |𝜆2|, |𝜆𝑁 | < 1 since 𝑃 is irreducible and
reversible and aperiodic). We have the following lemma:

Lemma 2.2. Letting 𝜆∗ = max(𝜆2, |𝜆𝑁 |), for any 𝑇 > 1
1−𝜆∗ (log

1
𝜀 +

1
2 log 𝑁 ), dTV(𝜈𝑇 , 𝜇) ⩽ 𝜀.

Proof. Since the unit left-eigenvectors 𝑣1, … , 𝑣𝑁 of 𝑃 form an orthonormal basis for R𝑁 , we can write
1𝑆0 = ∑𝑁

𝑖=1⟨𝑣𝑖 , 1𝑆0⟩ ⋅ 𝑣𝑖 .

1⊤𝑆0𝑃
𝑡 =

𝑁
∑
𝑖=1

⟨𝑣𝑖 , 1𝑆0⟩ ⋅ 𝑣
⊤
𝑖 𝑃𝑡 =

𝑁
∑
𝑖=1

⟨𝑣𝑖 , 1𝑆0⟩𝜆
𝑡
𝑖 ⋅ 𝑣𝑖 .
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In particular, 𝑣1 = 1√
𝑁 1⃗ =

√
𝑁𝜇, and also ⟨𝑣1, 1𝑆0⟩ =

1√
𝑁 . Hence 1

⊤
𝑆0𝑃

𝑡 = 𝜇. So we have

dTV(𝜈𝑡 , 𝜇) = ‖1⊤𝑆0𝑃
𝑡 − 𝜇‖1 =

‖‖‖‖‖

𝑁
∑
𝑖=2

⟨𝑣𝑖 , 1𝑆0⟩ ⋅ 𝜆
𝑡
𝑖 ⋅ 𝑣𝑖

‖‖‖‖‖1
⩽

√
𝑁 max(𝜆2, |𝜆𝑁 |)𝑡 .

The conclusion follows by noting that for 𝑇 = 1
1−𝜆∗ (log

1
𝜀 +

1
2 log 𝑁 ),

dTV(𝜈𝑇 , 𝜇) ⩽
√
𝑁(1 − (1 − 𝜆∗))𝑇 ⩽

√
𝑁 exp(𝑇 (1 − 𝜆∗)) ⩽ 𝜀.

So to prove Theorem 1.6 it is sufficient to show that 𝜆∗ ⩽ 1− 𝑐
𝑟 for some constant 𝑐, since by Lemma 2.2

and the bound 𝑁 ⩽ 𝑚𝑟 it is sufficient to take 𝑇 to be

1
1 − 𝜆∗ (

log
1
𝜀
+
1
2
𝑟 log𝑚) ⩽

1
𝑐
𝑟2 log

𝑚
𝜀
.

Remark 2.3. The proof of Theorem 1.5 differs from the proof of Theorem 1.6: rather than using a bound
on the mixing time based on the spectrum of 𝑃 as in Lemma 2.2, it uses a stronger mixing time bound
implied by a log-Sobolev inequality for 𝑃 . The method by which this log-Sobolev inequality is proved bears
some resemblance to the bound on the spectrum of 𝑃 ; if you are interested in investigating further, this
may be a good topic for the course final project.

3 Bounding the eigenvalues of the up-down walks

Our goal is now to show that
1 − 𝜆∗(𝑃) = Ω(

1
𝑟
).

It is not difficult to bound |𝜆𝑁 (𝑃)|. To see this, notice that 𝑃 is a diagonal block of 𝐵2 for the self-
adjoint matrix (with respect to the inner product induced by its stationary measure 𝜋 , ⟨𝑓 , 𝑔⟩𝜋 = 𝐄𝑖∼𝜋 𝑓𝑖𝑔𝑖)

𝐵 = [
0 𝑃↑
𝑃↓ 0 ]

. This implies that 𝑃 is positive-semidefinite, since for any vector 𝑣, ⟨𝑣, 𝑃𝑣⟩𝜋 = ⟨𝑣, 𝐵2𝑣⟩𝜋 =

⟨𝐵𝑣, 𝐵𝑣⟩𝜋 ⩾ 0, where the first equality follows since 𝑣 can be padded with 0’s on the entries outside of
the support of , and the second inequality is because 𝐵 is self adjoint. In conclusion, 𝜆𝑁 (𝑃) ⩾ 0.

Therefore we turn our attention to upper bounding 𝜆2(𝑃). Here, we will make use of the generating
polynomial of 𝜇, which is the the 𝑚-variate polynomial

𝑔𝜇(𝑧) = ∑
𝑆∈

𝜇(𝑆)∏
𝑖∈𝑆

𝑧𝑖 = ∑
𝑆∈

1
𝑁

∏
𝑖∈𝑆

𝑧𝑖 .

That is, 𝑔𝜇(𝑧) is the homogeneous degree-𝑟 polynomial supported on monomials corresponding to bases,
with coefficient of 𝑧𝑆 equal to 𝜇(𝑆).

Definition 3.1 (Log-Concave Polynomial). Amultivariate polynomial 𝑝 ∈ R[𝑧1, … , 𝑧𝑚]with non-negative
real coefficients is said to be log-concave on a subset 𝐾 ⊆ R𝑚

⩾0 if log 𝑝 is a concave function on 𝐾 , that is, if
∇2 log 𝑝 is negative-semidefinite. It is said to be strongly log-concave on 𝐾 if for any sequence of integers
1 ⩽ 𝑖1, … , 𝑖𝑘 ⩽ 𝑚, 𝜕

𝜕𝑧𝑖1
⋯ 𝜕

𝜕𝑧𝑖𝑘
𝑝 is log-concave on 𝐾 .

The following theorem, which we will not prove, will be crucial in our bound on the eigenvalues of 𝑃 :

Theorem 3.2. For any matroid, 𝑔𝜇 is strongly log-concave at 𝐾 = 1.
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Let us see how it will help us bound the eigenvalues of 𝑃 in the special case where 𝑟 = 2, so 𝑝 is
a degree-2 polynomial. Recall that 𝑃 = 𝑃↓𝑃↑ has the same eigenvalues (up to zero eigenvalues) as 𝑃↑𝑃↓
with respect to the inner product induced by 𝑤 . Notice that at 𝑧 = 1, strong log-concavity implies that
0 ⪰ ∇2 log 𝑝 at 𝑧 = 1, and we can directly compute the entries by differentiating and evaluating at 1:

(∇2 log 𝑝)𝑖𝑗 |𝑧=1 = (
𝑝 ⋅ 𝜕𝑖𝜕𝑗𝑝 − 𝜕𝑖𝑝𝜕𝑗𝑝

𝑝2
)|𝑧=1 =

𝟏[{𝑖, 𝑗} ∈ ]
𝑁

−
1
𝑁 2𝑤(𝑖)𝑤(𝑗).

Now, notice that (𝑃↑𝑃↓)𝑖𝑗 = 1
2 (

1
𝑤(𝑖)𝟏[{𝑖, 𝑗} ∈ }]) + 1

2𝟏[𝑖 = 𝑗], and 𝑃↑𝑃↓ is reversible with respect to 𝑤 . So we
can re-write ∇2 log 𝑝|𝑧=1 using 𝑃↑𝑃↓, which in turn implies that

𝑁 ⋅ 𝑤𝑤⊤ ⪰ (𝐷𝑤 (𝑃↑𝑃↓ −
1
2
1)),

and in particular, 𝐷𝑤 (𝑃↑𝑃↓ − 1
21) can have only have one positive eigenvalue, in the direction 𝑤 . All other

eigenvalues of 𝑃↑𝑃↓ (with respect to the 𝑤-inner-product) are at most 1
2 . This now implies that 𝑃 = 𝑃↓𝑃↑

has only one eigenvalue larger than 1
2 , and 𝜆2(𝑃) ⩽ 1

2 .

Larger 𝑟 via matroid contraction. To address the 𝑟 > 2 case,1 we use the fact that matroids are closed
under contraction. Previously, we defined the up and down walks for the full matroid. But now, for any
𝐴 ⊂ 𝐸, consider the contracted matroid 𝐴 given by restricting  to the set of all subsets containing 𝐴.
We may as well consider 𝑃𝐴 and 𝑃𝐴

↑ and 𝑃𝐴
↓ , the basis exchange matrix and up and down walks on 𝐴.

Notice also that 𝜕𝐴𝑔𝜇 = 𝑔𝑤(𝐴)! In particular, 𝑔𝑤(𝐴) is log-concave by the strong log-concavity of 𝑔𝜇 . Using
reasoning identical to the above, we can conclude that 𝑃𝐴

↑ 𝑃
𝐴
↓ has only one eigenvalue larger than 1

2 , in the
direction of its stationary measure 𝜇𝐴.

Again, we will bound the eigenvalues of 𝑃↑𝑃↓ − 1
𝑟 1. For any function 𝑓 on independent sets of size 𝑟 − 1

which is orthogonal to 1, we’ll relate ⟨𝑓 , (𝑃↑𝑃↓ − 1
𝑟 1)𝑓 ⟩ to an average over ⟨𝑓 , (𝑃𝐴 − 1𝜇⊤𝐴)𝑓 ⟩, from which we

will be done by the observation above. For each 𝐴 ⊂ 𝐸, let 𝑋𝐴(𝓁 ) = {𝐵 ∈  ∣ 𝐴 ⊂ 𝐵, |𝐵| = 𝓁 + 1}; borrowing
terminology from simplicial complexes, we call 𝑋𝐴(𝓁 ) the “𝓁 -link of 𝐴. Let 𝑆 ∼𝑤 𝑋(𝓁 ) denote a sample from
the measure over  supported on 𝑆 of |𝑆| = 𝓁 + 1 where 𝐏𝐫[𝑆] ∝ 𝑤(𝑆) = ∑𝑇⊃𝑆,|𝑇 |=|𝑆|+1 𝑤(𝑇 ).

Now, for any eigenfunction 𝑓 of 𝑃↑𝑃↓ we have that

⟨𝑓 , (𝑃↑𝑃↓ −
1
𝑟
1)𝑓 ⟩ = 𝐄𝑆∼𝑤𝑋(𝑟−1)𝐄𝑒∼𝑋𝑆 (0)𝐄𝑓 ∼𝑋𝑆∪{𝑒}(0),𝑓 ≠𝑒𝑓𝑆+𝑒𝑓𝑆+𝑒−𝑓

= 𝐄𝐴∼𝑤𝑋(𝑟−2)𝐄{𝑖,𝑗}∼𝑋𝐴(1)𝑓𝐴+𝑒𝑓𝐴+𝑓
= 𝐄𝐴∼𝑤𝑋(𝑟−2)⟨𝑓 , (𝑃𝐴 − diag(𝑃𝐴))𝑓 ⟩𝑤 .

By the above, 𝑃𝐴 − diag(𝑃𝐴) has only one eigenvalue exceeding 0, in the direction of 𝜇𝐴. One can then
show (via the fact that the eigendecomposition of 𝑃𝐴 is orthonormal, plus algebra) that for 𝑓 orthogonal
to 1, this direction does not contribute too much. A later version of these notes may flesh this out in more
detail; for now, consult [ALGV19] or the lecture notes [Gha].

Bibliographic remarks. In preparing this lecture I heavily consulted the lecture notes [Gha]. The-
orem 1.6 and Theorem 3.2 are originally from [ALGV19]; see also [BH18, ALGV18, AGV18] for results
related to Theorem 3.2. Theorem 1.5 is from [CGM19], and a stronger statement (which holds for general
log-concave measures) is proven in [ALG+21].

1Note: this portion of the note is less polished than the rest; it may be improved in a future edition.
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Contact. Comments are welcome at tselil@stanford.edu.
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