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Abstract [Cootes93, Blake94, Terzopolous92]. We could also track
Dynamic contours, or snakes, provide an effective methoanultiple hypotheses [Isard96] and use future shape distor-
for tracking complex moving objects for segmentation andtions to select the correct tracking sequences. These
recognition tasks, but have difficulty tracking occluding approaches require detailed shape and motion models for
boundaries on cluttered backgrounds. To compensate foeach object that we hope to track.
this shortcoming, dynamic contours often rely on detailed In this paper, we propose an alternative to using simple
object-shape or -motion models to distinguish between theontrast measures for the external-energy term of dynamic-
boundary of the tracked object and other boundaries in thecontour models. Our image model describes the local con-
background. In this paper, we present a complementantrast pattern but is largely insensitive to changes in back-
approach to detailed object models: We improve the dis-ground contrast. After reviewing previous image models
criminative power of the local image measurements thatused in tracking in Section 2, we describe this new image
drive the tracking process. We describe a new, robust extermodel, called radial cumulative similarity (RCS), in Sec-
nal-energy term for dynamic contours that can track tion 3. In Sections 4 and 5, we develop an external-force
occluding boundaries without detailed object models. Weterm based on the RCS transform. In Section 6, we demon-
show how our image model improves tracking in clutteredstrate the potential of this RCS-based force in tracking and
scenes, and describe how a fine-grained image-segmentan rotoscoping. Finally, we summarize and conclude in Sec-
tion mask is created directly from the local image measure-ion 7.

ments used for tracking.
2 Local Image Models

1 Tracking Boundaries There are two independent choices that we must make

Tracking visual features in a series of images is anwhen implementing dynamic contours: the nature of the
important task both for vision-based control and for external-force term, which responds to the structure of the
rotoscoping applications. Dynamic contours [Kass87], andimage, and the nature of internal-force term, which cap-
related active tracking techniques, are well suited for bothtures the global shape or dynamics model. Our image
applications because they combine simple, light-weightmodel improves the external-force or image-structure term.
object models with rapid updates. Therefore, in this section, we review previous work in local

Dynamic contours track boundaries by minimizing the image models.
sum of an external force, from a local image measure, and Most dynamic contours use a simple edge-based model
an internal force, from a shape-dynamics model. Aas their external-force term [Kass87, Yuille89]. The magni-
dynamic contour tracks the indicated boundary by findingtude of the external force on a node is directly related to the
the shape that minimizes the combined external and interdistance between the node and the nearest edge. These
nal forces. The external force drives the dynamic contouredge-based forces are largely invariant to illumination and
according to the current image appearance. The internalo background color at occlusions. This invariance is
force increases the spatial and temporal continuity of the
tracked boundary.

Dynamic contours usually employ a simple image-con- [b edge-based tracking
trast measure to define the external forces on the mode Q
This approach works well as long as the boundary being
tracked is not an occluding boundary, such as that of a sil-
houette. However, for tasks such as rotoscoping, it is the Co"%cack
occluding boundaries that must be tracked.

When the boundary to be tracked is an occluding
boundary, the dynamic contour often confuses backgrounc C\.
texture for the desired boundary. Figure 1 shows a tracking ~
failure when a dynamic contour originally marking the

edge of the pen cap instead sticks to the edge of the book. Figure 1: Tracking errors. Edge-based dynamic contours tend to

To help us disambiguate the contrast edges, of COUrSEgick to whichever each edges are closest. When the pen moves
we could use better models of how books and pens movedown rapidly, the edge-based dynamic contour finds the solution
Recent work has improved the shape-dynamics model:ithat tracks the background edges instead of the pen itself.




tion using two distinct parts: a local cotand a similarity
pattern. Figure 2 shows the RCS transform of the three
points marked in Figure 1.

The local color provides point information about the
image. Its value is not influenced by nearby background
regions. Thus, the local color is a reliable—but not a dis-
tinctive—description of each location.

Figure 2: The RCS transforms for points a, b, and ¢ in Figure 1. The similarity pattern further distinguishes locations
The color shown in each lower-left corner is the local color for ~ from one another by capturing patterns of change in the
the RCS transform of that point; the remainder of each image  |ocal color. The similarity pattern highlights occlusion
shows the similarity pattern for that point. boundaries, while removing the effects of background pix-
bought by discarding considerable image information andels. Conceptually, it measures similarity between the center
results in the tracking ambiguities discussed in Section 1. color and colors at nearby points, then reduces the effects

Image patches are an alternative to an edge-based extepf similarity values that lie beyond contrast boundaries.
nal force term. To use image patches as the basis for ahhis remapping of similarity values reduces the influence
external-force term, we first associate a desired appearaned# background pixels, since the intervening occlusion
with each node of the dynamic contour. The external forceboundary will typically be marked by a contrast boundary.
is then computed according to the vector distance betweekurthermore, the remapping creates a rapid transition, from
the desired appearance and the patch underlying each nodiégh to low similarity, which actually highlights occlusion
[Wiskott95] or according to optical flow [Peterfreund97]. boundaries (as well as other contrast boundaries).

This external-force model has the advantage of potentially = This approach is formalized in the following definitions

using all the available color and texture information. It is, and equations. First, we define a mixed-indexing notation.

however, unreliable near occlusions, due to mismatchedsiven a 2D imagel , whose values are normalized to

backgro_und pixels within. the image patch. Since one-halfbetween 0 and 11X0’ ) is the image value that is

of thg plxels. near occlusions are from the background, the,nits away from(x,, y,) , in the directiod

Ligtglitrrgr?gc:ar;febc?t;vne?hr}s@;gﬁ{gﬁ;g:i;dte?rrhd background. The RCS transform associates with each image loca-
We can reduce the influence of mismatche-d back é|on, (xy) , & local color,C,(x y) , and a similarity pat-

groun L

pixels by using robust matching techniques [Black93]. For€™M: Ni(x y.r.8) . The local colorC,(x.y) , is simply the

highly textured foreground objects, dynamic contours usingimage color smoothed over a compact region. We define the

robust matching track the object outline well. However, similarity pattern,N,(x, y, r,8) , by using point dissimilari-

when the foreground object has little texture, the robust-ties.

matching dynamic contour will drift away from the occlu- The point dissimilarity,D, (x, y, r,8) , measures the dis-

sion boundary, toward the object interior. To see why it .
does, we consider the examples in Figure 1. With robusf2nc€ between the local colog (x,y) , and the image val-

matching, the match error in Figure 1 from point a to b isUes, I, \(r,6) :
essentially the same as the match error from a to c: The 0 = g2IC 2
same background pixels around in point a are discarded as Di(x y,1,8) = a”[Ci(x, y) =1, (r, O)[".
outlier_s, and 'ghe untextured foreground gives little align-  Note that the point dissimilarityD,(x, y, r,8) , depends
ment information. ___on only the magnitude, and not on the direction, of the
In summary, simple edge-based measures cannot distinsp|or change.
guish between edges, due to lost color and texture informa- We combpute the similarity patter 0 from
tion. Matching local image patches suffers from outliers . .p . yp m'(x' 8 )
due to changes in background attributes. Matching usingh® point d!§5|m|lar|t|es by propagating, (x y, r,6)  radi-
robust norms avoids the outlier problem but introducesally. Specifically,
ambiguities when the foreground object has little texture. _ g O
We need an image model that Ny r.8) = eXpB_Ip<rdp Dilx ¥, 9’5
1. Captures foreground attributes (as does patch matching
2. Captures the occlusion structure (as does edge matchin

3. Ignores background attributes (as does robust matching reduces the influence of the similarity values farther
In Section 3, we describe the matching based on RCS long that ray, by whitening them toward 0. The point dis-

X ; similarity on the background side of the occluding bound-
The RCS transform has all three of these desired Im""geéry is expected to be large due to its arbitrary changes from

model properties. the foreground color. Cumulative integration and negative

nce the similarity pattern encounters a large dissimilarity,

3 Radial Cumulative Similarity

The RCS transform [Darrell98] captures occlusion- 1 \ye yse color in our descriptions of RCS for the remainder

boundary information and foreground attributes while  of this paper. Other image properties, such as texture, can
ignoring background pixels. It describes each image loca- also be used as the basis of RCS transforms.



exponentiation lessens the influence of these backgrounthe RCS appearance along the full length of the contour.
fluctuations: The larger the intervening dissimilarities, the ~ The RCS profile betwee(x,, y,)  ané;, y;) has two
less background patterns affect the RCS similarity. arts: a local-color line and a similarit
a . . : p Ci (S| X Yor X1, Y1) y
With isolated points, matching using RCS transforms
outperforms matching using conventional L2 or Lorenzian
norms on several difficult cases [Darrell98]. In the remain-the previously defined local color, sampled on the line seg-
der of this paper, we describe modifications to the RCSment from(x,, y,) to(x,,y;) . The argumestindexes dif-
transform, for use in occlusion tracking and in rotoscoping.ferent locations along the line segment. The local-color line
is given by
4 Dynamic Occluding-Contour Models C,(S]%: Yo X1 Y1) = C(%g Yo)
This section describes three ways to use RCS trans- 10 T0r T T 1M 7s
forms: (1) as the external-force term in a sparsely sampledVhere x; = x5(1-s) +x;s andyg = yo(1-5s) +y;s
version of dynamic contours, (2) as the external-force term  The similarity profile contains samples from the RCS
in a densely sampled version of dynamic contours, and (3imilarity patterns. The RCS similarity patterns are sam-
as an object-profile description in automatic rotoscoping. pled along the line segment, then these selected similarity

profile, N, (s, r[xy Yo, X1, Y1) - The local-color line is simply

4.1 Sparse-RCS Dynamic Contours patterns are themselves sampled along the angle perpendic-
In its simplest form, tracking using RCS dynamic con- ular to that line segment:
tours is similar to matching isolated RCS samples Ny (S, %o Yor X1, Y1) = Ni(Xg Y 1, 8)

[Darrell98]. First, we associate each node of the dynamiGynerex and, are as before, a0)d s the left-perpendic-
- . : S S !
contour with a desired RCS value, taken directly from the . angle to the vecto (x; - xo). (¥, - Yo}

image pattern at the inital nodal points of the user-drawn Wi iate with h node of the d . i
contour. The external force in subsequent frames is then, ‘'c aSSOCIAlE with €ach node or the dynamic contour a
esired RCS profile, taken along the line segments between

computed according to the vector distance between th h t nod dt iahb Th i | £ ;
desired RCS and the RCS of the proposed node location. € current node and two neignbors. The external force In
subsequent frames is the vector distance between the

This approach to RCS dynamic contours is fast, since>~ . X ) .
only sparse RCS samples (those at the nodal points) alxgeswgd RdCSI pr(t)_flle and the RCS profile, using the pro-
needed and since the external force at each node is indepeﬂgs_?h n% € chggsd . . " ational
dent of the locations of the other nodes. This approach to__' "€ U€NSe-RLS dynamic contour provides rotationa
image matching outperforms isolated-point RCS matching,Nvariance and avoids local minima that can distract the
since the internal-energy term helps to disambiguate alter§parse'RCS dyngm_lc contour. It handle_s rotations, since the
native matches. axes of the similarity profiles are defined relative to the

There are two shortcomings to the sparse-RCS dynami@Odal locations. It avoids local minima that can trap the
contour. The first is the lack of rotational invariance: The SParse-RCS dynamic contour, since it relies on the match
RCS coordinates are tied to the image-plane coordinate rror along the full length of the contour, instead of just at
instead of rotating with the rotation of the dynamic contour. € nodal points. Also, the external-energy term of the

We can correct this shortcoming by resampling the similar—dense'R.CS. dynamic contour _accommodates stretphmg
ity patterns, using the rotation implied by the new contour(and shrinking) of the contour, since the sample density of

orientation. A second, more fundamental, shortcoming ist"€ RCS profile is normalized by the segment length. This
operty is useful for matching certain types of nonrigid

the sparseness of RCS samples that the dynamic conto . -
uses to determine the external forces. If the nodal point&i€formations, such as the stretching that occurs along the
happen to fall in an extremely low- or extremely high-con- edg_lghof tge I'pSSééh%mOUth openf. . I suited f
trast area, the very sparseness that makes this dynamic copn- he aense- ynamic contour 1S well suited for
tour fast makes it vulnerable to false minima. racking in sequences. In this case, we use the contour con-
Even with these shortcomings, sparse-RCS dynamir‘f'gth Cr T W tion of bootion
contours are well suited for matching over large areas, suc € current frame. 10 avoid accumulation of positioning

as the search windows within isolated images or coarsely""0rS: When the maiching error exceeds a given threshold,
sampled sequences. The sparse-RCS dynamic conto e archive the current RCS profile and then update the pro-

often gives a good coarse level match, which we can refin lle being used. The updated profile is a previously archived
using a dense-RCS dynamic contour ' profile, if there is an archived profile with a low enough

matching error; if not, a new profile is created from the pat-
4.2 Dense-RCS Dynamic Contour terns in the current image [Huttenlocher93].

We can avoid the shortcomings of the sparse-RCS The dense-RCS dynamic contour is well suited for
dynamic contour by using a ray from each RCS transformyefining a coarse match given by a sparse-RCS dynamic
along the full length of the dynamic contour. This sampling contour. By initially using the sparse-RCS match, we
of the RCS provides rotational invariance, since we usereduce the search area needed for the dense-RCS dynamic
rays that are perpendicular to the local contour orientationcontour. The dense-RCS dynamic contour then improves
It also avoids the ambiguities introduced by matching onlythe detailed alignment along the full length of the contour.
nodal points, since the external-force term is determined by



Figure 3: Construction of the alpha series of straight line segments, rather than the curved
channel. Starting from (a) the dynamic  object boundaries that we want.
%%‘éougbmgs(?ngx(tg“gllt?net;]"eas';”ss'”g Instead of using spatial integration, we use temporal
with tﬁe RCS transform Va|uesg_ P integration to keep the rotoscoping mask from overexpand-
ing. In particular, we construct the alpha-channel values
b c using the minimum values of the RCS profile images across
the consecutive frames. We then use this (temporal-)mini-
. ‘ . mum similarity profile to form the alpha-channel mask.
RCS rotoscoping is appropriate for most rotoscoping
applications. In addition, we can use these alpha-channel
4.3 RCS Rotoscoping masks to separate disconnected layers of an image, prior to

RCS dynamic contours, along with their associatedmorphlng [Litwinowitz94].
RCS profiles, can be used for semi-automatic rotoscoping
of foreground objects. The artist draws a dynamic contour
in the first frame of the sequence. The drawn contour
should lie fairly close to the outer boundary of the object
but with the full length of the contour completely inside the
object’s occluding boundary. We then close the dynamic

5 Implementation Details
We implemented our dynamic contours using a
ynamic-programming method [Amini90]. We modified
'the basic implementation of this method [Bregler95] to find
optimal solutions for closed contours: We added a layer of
contour by logically connecting the first and final nodes todefer_red deq|S|ons 1o account for the different Iast—nc_)de
positions. This modification increases the memory require-

make them neighboring nodes. s . ;
We propagate this closed dynamic contour through therments but does not significantly increase the computational

entire sequence using dense-RCS dynamic contours or Ifeqwrement_s. : ;
the temporal sampling is coarse, using sparse—Ré% As described in Section 4, the external-energy term of
dynamic contours (to update) foIIdvved by dense-RCS ur RCS dynamic contours uses the match error between
. ; .~ the current and the desired RCS transforms:
dynamic contours with a smaller search area (to refine).
Then, we rotoscope the selected object out of the sequence Ee(SIl1g) = ZnAC(“‘S I.1g) +AAN([S 1.1 4)
automatically, using a continuous-valued alpha-channe
sequence created from the contour position and from th(ke'\lher(_a A_C(ms h1q) andAN(ms I1q) a're the c'olor and
RCS profiles along the contour. the similarity errors, respectively, associated with ritie
The alpha channel for each frame is initially set to 1 node under the current contour configurati®, . For
inside the dynamic contour and to O outside (Figure 3-a)sparse-RCS dynamic contours, the color error is the sum
The alpha-channel values are then modified according tsquared difference between the local color in imageder
the RCS profile values. Taking each line segment of thehe nth node and the desired local color for tiie node.
dynamic contour in turn, we set the alpha-channel value afrhe similarity error is the mean, over all radii belgy of
each location to the maximum similarity-profile value (Fig- the squared difference between the similarity pattern in
ure 3-b). Finally, we increase the alpha-channel values neamagel under thenth node and the desired similarity pat-
the contour nodes according to the RCS similarity patterngern for thenth node. For dense-RCS dynamic contours, the
for the nodal point, so as to fill in the sharp angles that oth-color error is the sum, over the segment, of the sum squared
erwise occur at convex contour nodes (Figure 3-c). difference between the color profile in imagend the
This process extends the edges of the selected region igesired color profile, both on the line segment frormthe
the nearest edge in the image. This extension softens theode to ther{+1)th node. The similarity error is the mean,
hard edges of the selected region providing a_smooth rolbver all radii belowRy, of the squared difference between
off. It also allows the edges of the selected region to curvene similarity profile in imagé and the desired similarity
according to the details of the object’s shape, instead Obattern, both on the line segment from tite node to the

being formed from straight line segments. _ (n+1)th node. For all our RCS dynamic contouRs=3,
The resulting rotoscoping masks may be too large if the =10, andRy=12

background region near the object’s outer boundary is simi—a Wi K ‘ ih th
lar in color to the object itself, such as the colors of the lips V& compare our tracking performance with that
and gums. The dense-RCS dynamic contour does not mig2btained with edge-based and_ patch-based dynamic con-
take these regions for object points, since it integrates th&®Urs- F;or bqgh the latter, we((jjefme trr]‘e I?);Iternal energy term
match error along the full length of each line segment. Touswllgt € e‘é' erg)ce w:jt%grate | over the uhcontour. |

create the alpha channel using a similar spatially integrat: " Our edge-based dynamic contour, the external energy
ing philosophy, we could modify the alpha channel using is th_e sum, over the_ segment, of the squared Laplacian of
the 1D average of the RCS profile, instead of using the full® imagel, on the line segment from thgh node to the

2D appearance. This 1D average would still allow the (M*1)th node. In our patch-based dY_”am'C contour, the
boundaries of the alpha-channel mask to roll-off gradually.EXt€rnal energy is the sum, over the image patch, of the

Unfortunately, it would also create mask edges that are gauared differences between the imagend the desired
appearancéy on the rectangular image patch taken along



(a) Related stills (b) A sequence wititoarseemporal sampling(c) A sequence with fine temporal samplin
(nonconsecutive frames are shown).

Figure 4: Examples of the types of frames used in testing

the line segment from th@h node to thent1)th node and The corresponding rotoscoping results are shown in
extending to a distand&y to either side of the line seg- Figure 8.
ment. 6.1 Tracking Results

The internal-energy termEg(s g) , for all of our The RCS dynamic contours performed best on the clut-
dynamic contours is a simple second-order model of shap¢ered-background tests (Figures 5 and 6). In these cases,
dynamics: there is a consistently high contrast across the occluding

_ _ boundary. The dynamic contour tended to drift more on the
SICRY -Zn(d(n\ S)—d(n\s)))z+ﬂc(n\s e(n| %»2 mouth sequence (Figure 7), particularly When_ the lower
wheres, ands are the previous and current contour congums were visible. Even so, the RCS dynamic contours

fi fi is the di h reme_lined attached to the lips throughout the sequence. It
igurations, d(n§ is the distance between ftfeand the archived four updates over the course of 115 frames, and

(n+1)th nodes, ance(n|§  is related to the curvature at thegsed two of the archived patterns (for a total of six

nth node. Specifically,c(n|§ is the minimum distance updates in 115 frames).

between theith node and the line segment connecting the  The patch-based dynamic contour did well at matching

(n=1)th and ther(+1)th nodes. still images (Figure 5): The dynamic contour was far
We combined linearly the internal- and external-energyenough inside the object boundary that the (background)

terms of the dynamic contours to get the total energy of theputliers within the match integral did not throw it too far

dynamic contour. For simplicity, we used the same combi-off. However, for coarsely and finely sampled sequences,

nation weights at all nodes. the patch-based dynamic contour did not track well. Its
tracking errors in the coarsely sampled sequence accumu-
6 Results lated over the sequence, distorting the expected shape of

We tested our tracking and rotoscoping on three typeghe contour. On the finely sampled sequence, the patch-
of input samples (Figure 4): related stills, a coarsely sambased dynamic contour tracked the innermost boundary of
pled sequence; and a finely sampled sequence. either teeth or lips, instead of remaining attached to the lips

The related stills and the coarsely sampled sequencehen the teeth appeared.
show large displacements in a cluttered environment. For As expected, the edge-based dynamic contour gave
these images, we used the sparse-RCS followed by thpoor matches when confronted with a cluttered background
dense-RCS, as outlined in Section 4.2. Our results from th¢Figure 5). This poor performance continued, even when
stills are shown in Figure 5. Samples from the coarselythe edge-based dynamic contour was initialized near the
sampled sequences are shown in Figure 6. correct solution and, more surprising, even in the weakly

The finely sampled sequence shows a low-texturetextured mouth example. In light of this consistently poor
deformable occlusion (the inside boundary of the lips), performance, we omitted the edge-based dynamic contour
with a similarly colored background (the teeth, gums, andresults from Figures 6 and 7.
the opposite lip) along a related but distinct path. We  The improvements provided by the RCS dynamic con-
tracked the finely sampled sequence using dense-RC®urs do not accrue without a cost: The RCS external
dynamic contours with template updating. These results arenergy model is more expensive computationally than are
shown in Figure 7. the classic edge- and patch-based dynamic-contour models.

“:{Q

dense RCS sparse RCS patch-based edge-based

Figure 5: Dynamic-contour tracking between still frames. The reference for
RCS and patch-based tracking was taken from the frame shown at the right.
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dense RCS

patch-based

Figure 6: Dynamic-contour tracking on
a coarsely sampled sequence.

sequence. In contrast, on the mouth sequence, the rotoscop-
ing mask tended to associate too much of the interior of the
mouth (the background) with the surrounding lips (the fore-
ground). Most of this over-inclusion was removed by the
temporal integration described in Section 6.2.

7 Conclusions

We have presented a new external-energy model for
dynamic contours, based on the RCS profile, which is both
stable and distinctive at object’s outer boundaries. Using
this model, RCS dynamic contours tracked occluding
boundaries in cluttered scenes, with the simplest of inter-
nal-energy terms. The RCS profile is also useful in semi-
automatic rotoscoping: The artist marks the object outline

In sparse-RCS dynamic contours, the computational comjust once, in only the first frame of the movie sequence.

plexity of the external energy term isNIMIR?), whereN is From that starting position, the RCS dynamic contours
the number of nodes in the contolMr,s the search area in track the outline in subsequent frames. Finally, the
the target image, anié? is the size of the RCS similarity rotoscpping mask itself is tfailored to the detailed outline of
pattern. With dense-RCS dynamic contours, the complexityne object by the RCS profile. The strength of our external-

. 2 . energy model is illustrated by the results shown in Figures
can be as high as .D(/I R), whereL is the total length of 5 through 7. The quality of our rotoscoping method is illus-
the contour. This increased complexity results from the

dense RCS sampling (changing the dependence Nrom trated in Figure 8.
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(a) Related stills.
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Figure 8: Results from automatic rotoscoping. We generated these examples using RCS dynamic contours (Sections 4.1 and 4.2)
to track and using approach described in Section 4.3 to create the alpha-channel.



