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Object Categorization in Real-World 
Scenes

• How to recognize ANY car

• How to recognize ANY cow
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Object Categorization and Segmentation



Overview

• Implicit Shape Model:
 Hough transform idea
 Non-parametric object model
 Voting scheme for detection
 Detection and segmentation
 Limitations and outlook



Hough Transform

• Simple Examle: find lines in image
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Hough Transform

• example:
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Codebook Representation

• Extraction of local object patches
 scale-invariant interest points (difference of gaussian)

• Collect patches from whole training set

• Example:
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Codebook Representation

 50 car images
 only side views were used

…
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Implicit Shape Model (ISM)

• For every codebook entry, store possible “occurrences”
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Implicit Shape Model (ISM)

• For every codebook entry, store possible “occurrences”

• For new image, let the matched patches vote for 
possible object positions
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Object Categorization Procedure
Interest 
Points
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Original image

Results on Cows
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Interest points

Results on Cows
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Matched 

Results on Cows
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Probability 

Results on Cows
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1’st hypothesis

Results on Cows
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2’nd hypothesis

Results on Cows
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Results on Cows

3’rd hypothesis
17
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Motorbikes: Detection/Segmentation Results
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Results on New Sequences

• Object Detections
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Results on New Sequences

• Segmentation
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• Secondary hypotheses
 Desired property of algorithm!  ⇒ robustness to occlusion
 Standard solution: reject based on bounding box
 ⇒ Problematic - may lead to missing detections!
    ⇒ Use segmentations to resolve ambiguities instead defining 

costs and savings for acceptance of hypotheses

Segmentation Based Hypothesis Verification
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Formalization in MDL Framework

• Savings of a hypothesis

• with
 Sarea  : #pixels N in segmentation
 Smodel: model cost, assumed constant
 Serror  : estimate of error, according to

• Savings of combined hypothesis

• -> greedy optimization of total savings
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Extension to Scale Invariance
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Extension to Scale Invariance

scale = 3.71

scale = 0.75



25

• Generate scale votes
 Scale as 3rd dimension in voting space

 Search for maxima in 3D voting space

Extensions to Scale Invariance

Search 
windo

w

x

y

s

train
test

codebook entry
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Extension to Rotation Invariance 
[Mikolajczyk06]
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Complexity of Recognition: 
Local Voting vs. Global Cosistency
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Complexity of Recognition: 
Local Voting vs. Global Cosistency
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Complexity of Recognition: Local vs. 
Global

star model



Outlook to Lecture on 3rd March

• Recovering global consistency

• Adding discriminance to the model


