Implicit Shape Model [Leibe,Schiele04]

Mario Fritz

Object Categorization in Real-World Scenes

• How to recognize ANY car

• How to recognize ANY cow

Overview

• Implicit Shape Model:

- Hough transform idea
- Non-parametric object model
- > Voting scheme for detection
- > Detection and segmentation
- Limitations and outlook

• example:

Codebook Representation

- Extraction of local object patches
 - > scale-invariant interest points (difference of gaussian)

- Collect patches from whole training set
- Example:

Codebook Representation

- > 50 car images
- only side views were used

• For every codebook entry, store possible "occurrences"

6.0

• For every codebook entry, store possible "occurrences"

• For every codebook entry, store possible "occurrences"

• For new image, let the matched patches vote for possible object positions

• For every codebook entry, store possible "occurrences"

• For new image, let the matched patches vote for possible object positions

Interest Points

Interest Points Matched Codebook Entries

Interest Points

Matched Codebook Entries

Probabilistic Voting

Interest Points Matched Codebook Entries

Probabilistic Voting

Interest Points

Matched Codebook Entries

Probabilistic Voting

Voting Space (continuous)

Interest Points

Matched Codebook Entries

Probabilistic Voting

Voting Space (continuous)

Backprojection of Maximum

Interest Points

Matched Codebook Entries

Probabilistic Voting

Voting Space (continuous)

Backprojected Hypothesis

Backprojection of Maximum

Interest **Points**

(uniform sampling)

Matched Codebook Entries

Probabilistic Voting

Voting Space (continuous)

Hypothesis

of Maximum

10

Interest Points

Matched Codebook Entries

Probabilistic Voting

of Maximum

Voting Space (continuous)

Backprojected Hypothesis

Object Categorization Procedure

Interest **Points**

Matched Codebook Entries

Probabilistic Voting

Voting Space (continuous)

Backprojection of Maximum

Segmentation

Refined Hypothesis (uniform sampling)

Backprojected Hypothesis

Object Categorization Procedure

Interest Points

Matched Codebook Entries

Probabilistic Voting

Voting Space (continuous)

Backprojection of Maximum

Segmentation

Backprojected Hypothesis

Motorbikes: Detection/Segmentation Results

Results on New Sequences

• Object Detections

Results on New Sequences

Segmentation

Secondary hypotheses

- > Desired property of algorithm! \Rightarrow robustness to occlusion
- Standard solution: reject based on bounding box
 - \Rightarrow Problematic may lead to missing detections!

- Secondary hypotheses
 - > Desired property of algorithm! \Rightarrow robustness to occlusion
 - Standard solution: reject based on bounding box

 \Rightarrow Problematic - may lead to missing detections!

- Secondary hypotheses
 - > Desired property of algorithm! \Rightarrow robustness to occlusion
 - Standard solution: reject based on bounding box

 \Rightarrow Problematic - may lead to missing detections!

- Secondary hypotheses
 - > Desired property of algorithm! \Rightarrow robustness to occlusion
 - Standard solution: reject based on bounding box
 Declaration may lead to missing datastic relevant

 \Rightarrow Problematic - may lead to missing detections!

- Secondary hypotheses
 - > Desired property of algorithm! \Rightarrow robustness to occlusion
 - Standard solution: reject based on bounding box
 Problematic may lead to missing detections!

- Secondary hypotheses
 - > Desired property of algorithm! \Rightarrow robustness to occlusion
 - Standard solution: reject based on bounding box

 \Rightarrow Problematic - may lead to missing detections!

- Secondary hypotheses
 - > Desired property of algorithm! \Rightarrow robustness to occlusion
 - Standard solution: reject based on bounding box

 \Rightarrow Problematic - may lead to missing detections!

- Secondary hypotheses
 - > Desired property of algorithm! \Rightarrow robustness to occlusion
 - Standard solution: reject based on bounding box
 - \Rightarrow Problematic may lead to missing detections!

- Secondary hypotheses
 - > Desired property of algorithm! \Rightarrow robustness to occlusion
 - Standard solution: reject based on bounding box
 - \Rightarrow Problematic may lead to missing detections!

- Secondary hypotheses
 - > Desired property of algorithm! \Rightarrow robustness to occlusion
 - Standard solution: reject based on bounding box
 - \Rightarrow Problematic may lead to missing detections!

Formalization in MDL Framework

Savings of a hypothesis

$$S_h = K_0 S_{area} - K_1 S_{model} - K_2 S_{error}$$

- with
 - > S_{area} : #pixels N in segmentation
 - ▹ S_{model}: model cost, assumed constant
 - > S_{error} : estimate of error, according to

$$S_{error} = \sum_{\mathbf{p} \in Seg(h)} (1 - p(\mathbf{p} = figure|h))$$

Savings of combined hypothesis

$$S_{h_1 \cup h_2} = S_{h_1} + S_{h_2} - S_{area}(h_1 \cap h_2) + S_{error}(h_1 \cap h_2)$$

-> greedy optimization of total savings

Extension to Scale Invariance

Extension to Scale Invariance

Extension to Scale Invariance

Extensions to Scale Invariance

• Generate scale votes

> Scale as 3rd dimension in voting space

$$x_{vote} = x_{img} - x_{occ}(s_{img}/s_{occ})$$

$$y_{vote} = x_{img} - y_{occ}(s_{img}/s_{occ})$$

$$s_{vote} = (s_{img}/s_{occ})$$

Search for maxima in 3D voting space

Extension to Rotation Invariance [Mikolajczyk06]

Complexity of Recognition: Local Voting vs. Global Cosistency

Complexity of Recognition: Local Voting vs. Global Cosistency

Complexity of Recognition: Local vs. Global

star model

Outlook to Lecture on 3rd March

- Recovering global consistency
- Adding discriminance to the model