CS294-43: Visual Object and Activity Recognition

Prof. Trevor Darrell

Feb 17th: Generative Object Models

Today

Sudderth guest lecture:

- Constellation Models (Fergus)
- Unsupervised Object Discovery with pLSA (Sivic)
- Scene Models (Li)
- Transformed Models (Sudderth)

Daphna B. student presentation:

• pLSA models of activity (Neibles)

Moreels guest lecture:

 A probabilistic formulation of voting / SIFT (Moreels)

Today

Sudderth guest lecture:

- Constellation Models (Fergus)
- Unsupervised Object Discovery with pLSA (Sivic)
- Scene Models (Li)
- Transformed Models (Sudderth)

Daphna B. student presentation:

• pLSA models of activity (Neibles)

Moreels guest lecture:

 A probabilistic formulation of voting / SIFT (Moreels)

Object class recognition using unsupervised scale-invariant learning

Rob Fergus Pietro Perona Andrew Zisserman

Oxford University California Institute of Technology

Goal

- Recognition of object categories
- Unassisted learning

Some object categories

Learn from examples

Difficulties:

- Size variation
- Background clutter
- Occlusion
- Intra-class variation

Main issues

- Representation
- Learning
- Recognition

Representation

- Object as set of parts
 - Generative representation
- Model:
 - Relative locations between parts
 - Appearance of part
- Issues:
 - How to model location
 - How to represent appearance
 - Sparse or dense (pixels or regions)
 - How to handle occlusion/clutter

Figure from [Fischler & Elschlager 73]

History of Parts and Structure approaches

- Fischler & Elschlager 1973
- Yuille '91
- Brunelli & Poggio '93
- Lades, v.d. Malsburg et al. '93
- Cootes, Lanitis, Taylor et al. '95
- Amit & Geman '95, '99
- Perona et al. '95, '96, '98, '00, '03, '04, '05
- Felzenszwalb & Huttenlocher '00, '04
- Crandall & Huttenlocher '05, '06
- Leibe & Schiele '03, '04

Many papers since 2000

Sparse representation

- + Computationally tractable (10⁵ pixels \rightarrow 10¹ -- 10² parts)
- + Generative representation of class
- + Avoid modeling global variability
- + Success in specific object recognition

- Throw away most image information
- Parts need to be distinctive to separate from other classes redit: Fergus

Detection & Representation of regions

- Find regions within image
- Use Kadir and Brady's salient region operator [IJCV '01]

Location

(x,y) coords. of region center

Scale

Diameter of region (pixels)

Appearance

Generative probabilistic model

based on Burl, Weber et al. [ECCV '98, '00]

Foreground model

Recognition

Motorbikes

The correspondence problem

- Model with P parts
- Image with N possible assignments for each part
- Consider mapping to be 1-1

The correspondence problem
 1 – 1 mapping
 Each part assigned to unique feature

As opposed to:

- ■ 1 Many
 - Bag of words approaches
 - Sudderth, Torralba, Freeman '05
 - Loeff, Sorokin, Arora and Forsyth '05

• Many – 1

- Quattoni, Collins and Darrell, 04

Learning

Learning

- Task: Estimation of model parameters
- Chicken and Egg type problem, since we initially know neither:
 - Model parameters
 - Assignment of regions to foreground / background
- Let the assignments be a hidden variable and use EM algorithm to learn them and the model parameters

Learning procedure

- •Find regions & their location, scale & appearance
- Initialize model parameters
- •Use EM and iterate to convergence:

E-step: Compute assignments for which regions are foreground / background M-step: Update model parameters

•Trying to maximize likelihood – consistency in shape & appearance

Experiments

Experimental procedure

Two series of experiments:

- Fixed-scale model
- Objects the same size (manual normalization)
- Scale-invariant model
- Objects between 100 and 550 pixels in width -

Motorbikes Training • 50% images No identification of object within image

Testing

• 50% images

• Simple object present/absent test

Datasets

Frontal Faces

Cars (Side)

Spotted cats

Background images evaluated with motorbike model

Fergus

Frontal faces

Spotted cats

Correct

Correct

Correct

Correct

Correct

Correct

Summary of results

Dataset	Fixed scale experiment	Scale invariant experiment
Motorbikes	7.5	6.7
Faces	4.6	4.6
Airplanes	9.8	7.0
Cars (Rear)	15.2	9.7
Spotted cats	10.0	10.0

% equal error rate

Note: Within each series, same settings used for all datasets

Comparison to other methods

% equal error rate

Robustness of Algorithm

Summary

- Comprehensive probabilistic model for object classes
- Learn appearance, shape, relative scale, occlusion etc. simultaneously in scale and translation invariant manner
- Same algorithm gives <= 10% error across 5 diverse datasets with identical settings

Limitations \rightarrow future work

- Very reliant on region detector Different part types (e.g. edgel curves)
- Only learns a single viewpoint Use mixture models
- Need lots of images to learn Bayesian learning - fewer images [ICCV '03 (Fei Fei, Fergus, Perona)]
- Need more through testing Looking towards testing 100's of datasets Datasets available from: http://www.robots.ox.ac.uk/~vgg/data

Today

Sudderth guest lecture:

- Constellation Models (Fergus)
- Unsupervised Object Discovery with pLSA (Sivic)
- Scene Models (Li)
- Transformed Models (Sudderth)

Daphna B. student presentation:

• pLSA models of activity (Neibles)

Moreels guest lecture:

 A probabilistic formulation of voting / SIFT (Moreels)

Discovering Objects and Their Location in Images

J. Sivic, B. C. Russell, A. A. Efros, A. Zisserman, W. T. Freeman. Presented at the International Conference on Computer Vision, 2005.

Slide credit: Sivic

How much supervision do you need to learn models of objects?

Object label + segmentation

Viola & Jones '01 Rowley et al. '98

LabelMe, PASCAL, TU Darmstadt, MIT scenes and objects

Agarwal & Roth '02, Leibe & Schiele '03, Torralba et al. '05

Slide credit: Sivic

Object appears somewhere in the image

Caltech 101, PASCAL, MSRC

Fergus et al. '03, Csurka et al. '04, Dorko & Schmid '05

Slide credit: Sivic

Image + text caption

Corel, Flickr, Names+faces, ESP game

British director **Sam Mendes** and his partner actress **Kate Winslet** arrive at the London premiere of 'The Road to Perdition', September 18, 2002. The films stars **Tom Hanks** as a Chicago hit man who has a separate family life and co-stars **Paul Newman** and Jude Law. REUTERS/Dan Chung

Barnard et al. '03, Berg et al. '04
Images only

Given a collection of unlabeled images, discover visual object categories and their segmentation

• Which images contain the same object(s)?

Where is the object in the image?
 Slide credit: Sivic

Analogy: Discovering topics in text collections

Text document

Discovered topics

tan Opera Co., New York Philharmonic and Juilliard School. "Our board felt that we had a
real opportunity to make a mark on the future of the performing arts with these grants an act
every bit as important as our traditional areas of support in health, medical research, education
and the social services," Hearst Foundation President Randolph A. Hearst said Monday in
announcing the grants. Lincoln Center's share will be \$200,000 for its new building, which
will house young artists and provide new public facilities. The Metropolitan Opera Co. and
New York Philharmonic will receive \$400,000 each. The Juilliard School, where music and
the performing arts are taught, will get \$250,000. The Hearst Foundation, a leading supporter
of the Lincoln Center Consolidated Corporate Fund, will make its usual annual \$100,000
donation, too.

The William Randolph Hearst Foundation will give \$1.25 million to Lincoln Center, Metropoli-

"Arts"	"Budgets"	"Children"	"Education"
NEW	MILLION	CIIII DDEN	SCHOOL
	TAX	WOMEN	SUIDUL
SHOW	PROGRAM	PEOPLE	SCHOOLS
MUSIC	BUDGET	CHILD	EDUCATION
MOVIE	BILLION	YEARS	TEACHERS
PLAY	FEDERAL	FAMILIES	HIGH
MUSICAL	YEAR	WORK	PUBLIC
\mathbf{BEST}	SPENDING	PARENTS	TEACHER
ACTOR	NEW	SAYS	BENNETT
\mathbf{FIRST}	STATE	FAMILY	MANIGAT
YORK	PLAN	WELFARE	NAMPHY
OPERA	MONEY	MEN	STATE
THEATER	PROGRAMS	PERCENT	PRESIDENT
ACTRESS	GOVERNMENT	CARE	ELEMENTARY
LOVE	CONGRESS	LIFE	HAITI

Visual analogy

- document image
 - word visual word
 - topics objects

System overview

Input image

Compute visual words

Discover visual topics

System overview

Input image

Compute visual words

Discover visual topics

Finding and describing interest regions

Detect affine covariant regions:

- Multi-scale affine Harris [Mikolajczyk & Schmid '02, Schaffalitzky & Zisserman'02]
- Maximally stable extremal regions [Matas et al. '02]

Detects corner regions and small blobs

Describe regions with SIFT descriptor [Lowe 1999]

SIFT descriptor

Lowe 1999

8 orientations<u>x 16</u> bins128 dimensions

- Thresholded image gradients are sampled over 16x16 array of locations in scale space
- Create an array of oriented histograms

Form dictionary

Build visual vocabulary by k-means clustering SIFT descriptors (K~2,000)

Example regions assigned to the same dictionary cluster

Cluster 1

Cluster 2

Polysemy

In English, "bank" refers to: 1. a institution that handle money 2. the side of a river

Regions that map to the same visual word:

Representing an image with visual words

Sivic & Zisserman '03

Interest regions

Visual words

System overview

Input image

Compute visual words

Discover visual topics

Latent Dirichlet Allocation (LDA)

Blei, et al. 2003

- w_{ij} words
- z_{ij} topic assignments
- μ_i topic mixing weights

$$\dot{A}_k$$
 - word mixing weights

$$z_{ij}|\theta_i \sim \theta_i$$

$$w_{ij}|z_{ij} = k, \phi \sim \phi_k$$

$$\theta_i | \alpha \sim Dirichlet(\alpha)$$

 $\phi_k | \beta \sim Dirichlet(\beta)$

Bag of words

- LDA model assumes exchangeability
- Order of words does not matter

Interest regions

Visual words

Histogram Dictionary

Stack visual word histograms as columns in matrix

Throw away spatial information!

credit: Sivic

Latent Dirichlet Allocation (LDA)

Blei, et al. 2003

- w_{ij} words
- z_{ij} topic assignments
- μ_i topic mixing weights
- \dot{A}_k word mixing weights

$$p(w_{ij}) \propto \sum_{k=1}^{K} p(w_{ij}|z_{ij} = k, \phi_k) \ p(z_{ij} = k|\theta_i)$$

Low-rank matrix factorization

Latent Semantic Analysis (Deerwester, et al. 1990)
Probabilistic Latent Semantic Analysis (Hofmann 2001)

Inference

- w_{ij} words
- z_{ij} topic assignments
- μ_i topic mixing weights

 \dot{A}_{k} - word mixing weights

Use Gibbs sampler to sample topic assignments [Griffiths & Steyvers 2004]

$$z_{ij} \sim p(z_{ij} = k | w_{ij} = v, w_{\langle (ij), z_{\langle (ij), \alpha, \beta} \rangle}$$

Only need to maintain counts of topic assignments
Sampler typically converges in less than 50 iterations
Run time is less than an hour

Apply to Caltech 4 + background images

Total:	4090
Background	900
Cars (rear)	1155
Airplanes	800
Motorbikes	800
Faces	435

Most likely words given topic

Topic 1

Word 2

Topic 2

Most likely words given topic

Topic 3

Word 2

Word 1

Word 2

Topic 4

Image clustering

Confusion matrices:

Average confusion:

Expt.	Categories	Т	LDA		pLSA		KM baseline	
			%	#	%	#	%	#
(1)	4	4	97	86	98	70	72	908
(2)	4 + bg	5	78	931	78	931	56	1820
$(2)^{*}$	4 + bg	6	84	656	76	1072	—	_
$(2)^{*}$	4 + bg	7	78	1007	83	768	—	—
$(2)^*$	4 + bg-fxd	7	90	330	93	238	—	_

edit: Sivic

Comparison with supervised model

Percent ROC equal error rate

		Constellation model
	LDA	[Fergus et al. '03]
Faces	7.8	3.6
Motorbikes	9.9	6.7
Airplanes	2.5	7.0
Cars rear	8.5	9.7

- Comparable performance to constellation model
- Level of supervision:

LDA: one number (of topics)

Constellation model: 400 labels for each category

 Also an indication of the level of difficulty of the Caltech 5 dataset

Image as a mixture of topics (objects)

Summary

- Discovered visual topics corresponding to object categories from a corpus of unlabeled images
- Used visual words representation and topic discovery models from the text understanding community
- Classification on unseen images is comparable to supervised methods on Caltech 5 dataset
- The discovered categories can be localized within an image

Today

Sudderth guest lecture:

- Constellation Models (Fergus)
- Unsupervised Object Discovery with pLSA (Sivic)
- Scene Models (Li)
- Transformed Models (Sudderth)

Daphna B. student presentation:

• pLSA models of activity (Neibles)

Moreels guest lecture:

 A probabilistic formulation of voting / SIFT (Moreels)

A Bayesian Hierarchical Model for Learning Natural Scene Categories or "LDA for Scene Recognition" Fei-Fei Li & Pietro Perona CVPR 2005

Slide credit: Li

Scene Recognition

Outdoor Scenes

Indoor Scenes dit: Li

System Block Diagram

Visual Words

Descriptor	Grid	Random	Saliency [4]	DoG [7]
11 × 11 Pixel	64.0%	47.5%	45.5%	N/A
128-dim Sift	65.2%	60.7%	53.1%	52.5%

Slide credit: Li

Model for Tall Buildings

Model for Coasts

Model for Forests

E[Pr(topic | scene)]

Models for Indoor Scenes

Slide credit: Li

Scene Recognition Performance

Silae credit: Li

Scene Relationships

Slide credit: Li

Model Parameters

Today

Sudderth guest lecture:

- Constellation Models (Fergus)
- Unsupervised Object Discovery with pLSA (Sivic)
- Scene Models (Li)
- Transformed Models (Sudderth)

Daphna B. student presentation:

• pLSA models of activity (Neibles)

Moreels guest lecture:

 A probabilistic formulation of voting / SIFT (Moreels)

Learning Object Appearance Models via Transformed Dirichlet Processes

Erik Sudderth

University of California, Berkeley

Joint work with Antonio Torralba William Freeman Alan Willsky

Visual Object Categorization

- GOAL: Visually recognize and localize object categories
- Robustly *learn* appearance models from few examples
 - Hierarchical model *transfers* knowledge among categories
 - > Nonparametric, *Dirichlet process* prior gives flexibility

Detecting Objects in Scenes

Sliding Window Approach

Greedy Feature Extraction Approach

Scenes, Objects, and Parts

Outline

Object Recognition with Shared Parts

- Learning parts via Dirichlet processes
- Hierarchical DP model for 16 object categories

Multiple Object Scenes

- Transformed Dirichlet processes
- Part-based models for 2D scenes
- Joint object detection & 3D reconstruction

Describing Objects with Parts

Pictorial Structures Fischler & Elschlager, IEEE Trans. Comp. 1973

Constellation Model Fergus, Perona, & Zisserman, CVPR 2003

Cascaded SVM Detectors Heisele, Poggio, et. al., NIPS 2001

Model-Guided Segmentation Mori, Ren, Efros, & Malik, CVPR 2004

Counting Objects & Parts

How many parts?

How many objects?

From Images to Features

Affinely Adapted Harris Corners

Maximally Stable Extremal Regions

Linked Sequences of Canny Edges

- Some invariance to lighting & pose variations
- Dense, multiscale, over-segmentation of image

A Discrete Feature Vocabulary

SIFT Descriptors

- Normalized histograms of orientation energy
- Compute ~1,000 word dictionary via K-means
- Map each feature to nearest visual word

Image gradients

Keypoint descriptor Lowe, IJCV 2004

appearance of feature *i* in image *j*

```
ji \longrightarrow {}^{	ext{2D}}_{	ext{fea}}
```

2D position of feature *i* in image *j*

Generative Model for Objects

For each image: Sample a reference position

For each feature:

- Randomly choose one part
- Sample from that part's feature distribution

Objects as Mixture Models

• For a fixed reference position, our generative model is equivalent to a finite mixture model:

How many parts should we choose?
 Too few reduces model accuracy
 Too many causes overfitting & poor generalization

Dirichlet Process Mixtures $p(x) = \sum_{k=1}^{\infty} \pi_k f(x \mid \theta_k)$

• *Dirichlet processes* define a prior distribution on weights assigned to mixture components:

Why the Dirichlet Process?

$$p(x) = \sum_{k=1}^{\infty} \pi_k f(x \mid \theta_k)$$

Nonparametric \neq No Parameters

- Model complexity grows as data observed:
 - Small training sets give simple, robust predictions
 - Reduced sensitivity to prior assumptions

Flexible but Tractable

- Literature showing attractive asymptotic properties
- Leads to simple, effective computational methods
 Avoids challenging model selection issues

• Parts are defined by *parameters*, which encode distributions on visual features:

$$\theta_k = \{\eta_k, \mu_k, \Lambda_k\}$$

• Objects are defined by *distributions* on the infinitely many potential part parameters: $G(\theta) = \sum_{k=1}^{\infty} \pi_k \delta(\theta, \theta_k) \qquad \pi \sim \text{Stick}(\alpha)$

Dirichlet processes have many desirable analytic properties, which lead to efficient *Rao-Blackwellized* learning algorithms

Decomposing Faces into Parts

4 Images

16 Images

64 Images

Generalizing Across Categories

Can we transfer knowledge from one object category to another?

Learning Shared Parts

- Objects are often locally similar in appearance
- Discover *parts* shared across categories
 How many total parts should we share?
 How many parts should each category use?

Sharing Parts: 16 Categories

- Caltech 101 Dataset (Li & Perona)
- Horses (Borenstein & Ullman)
- Cat & dog faces (Vidal-Naquet & Ullman)
- Bikes from Graz-02 (Opelt & Pinz)
- Google...

Visualization of Shared Parts

Pr(position | part)

Visualization of Shared Parts

Pr(position | part)

Pr(appearance | part)

Visualization of Shared Parts

Pr(position | part)

Visualization of Part Densities

MDS Embedding of Pr(part | object)

Visualization of Part Densities

Hierarchical Clustering of Pr(part | object)

Detection Task

Detection Results

6 Training Images per Category (ROC Curves) Shared Parts more accurate than Unshared Parts

Modeling feature positions *improves shared* detection, but *hurts unshared* detection

Detection Results

(ROC Curves)

(Area Under ROC)

Sharing Simplifies Models

Recognition Task

5

Recognition Results

Outline

Object Recognition with Shared Parts

- Learning parts via Dirichlet processes
- Hierarchical DP model for 16 object categories

Multiple Object Scenes

- Transformed Dirichlet processes
- Part-based models for 2D scenes
- Joint object detection & 3D reconstruction

Semi-supervised Learning

- Assume training data contains object category labels
- Discover underlying visual categories automatically

Multiple Object Scenes

- How many cars are there?
- Where are those cars in the scene?

Standard dependent Dirichlet process models (Gelfand et. al., 2005) inappropriate

Spatial Transformations

- Let global DP clusters model objects in a *canonical* coordinate frame
- Generate images via a random set of transformations:

$$\tau((\mu, \Lambda); \rho) = (\mu + \rho, \Lambda)$$

Parameterized family of transformations Shift cluster from canonical coordinate frame to object location in a given image

Layered Motion Models (Wang & Adelson, Jojic & Frey) Nonparametric Transformation Densities (Learned-Miller & Viola)

A Toy World: Bars & Blobs

Importance of Transformations

HDP

TDP

Counting & Locating Objects

- How many cars are there?
- Where are those cars in the scene?

Dirichlet Processes

Transformations

Visual Scene TDP

Transformed Densities Object category Part size & shape Instance locations

Object category

Transformation prior

2D Image Features Appearance Location

Street Scene Visual Categories

Street Scene Segmentations

Appearance Only

- "Bag of features" model, ignores feature positions
- Inferior segmentations, cannot count objects

Segmentation Performance

Objects & 3D Reconstruction

An Office Scene

 $Green \longleftrightarrow Near$ $Red \longleftrightarrow Far$

- Given 3D structure, segmentation is easier
- Identifying objects regularizes depth estimation

Office Scene Training Images

Objects at Multiple Scales

Computer Screens Desks Bookshelves

Stereo Test Image I

Stereo Test Image II

Ongoing Work: Monocular Test

Ongoing Work: Context

- Developed *fixed-order* contextual scene model
- Extension to Transformed DP model is an open problem
- Needed: Richer models for *background* scene structure

Conclusions

Transformed Dirichlet Processes allow...

- flexible transfer of knowledge among related object categories
- robust learning from small, partially labeled datasets
- an integrated view of object recognition & 3D reconstruction
- potential scaling of nonparametric methods to complex domains

Today

Sudderth guest lecture:

- Constellation Models (Fergus)
- Unsupervised Object Discovery with pLSA (Sivic)
- Scene Models (Li)
- Transformed Models (Sudderth)

Daphna Buschsbaum student presentation:

pLSA models of activity (Neibles)

Moreels guest lecture:

 A probabilistic formulation of voting / SIFT (Moreels) Unsupervised Learning of Human Action Categories Using Spatial-Temporal Words

Juan Carlos Niebles, Hongcheng Wang, Li Fei-Fei

Daphna Buschsbaum student presentation

Goal: Automatically Categorize or Localize Different Actions

- moving cameras
- non-stationary background
- moving target
- multiple activities

QuickTime[™] and a decompressor are needed to see this picture.

Overview

QuickTime™ and a decompressor are needed to see this picture.
Approach

- Generative model
 - Bag of (spatio-temporal) video words
 - Actions are distributions over words
 - Videos are distributions over actions
 - Based on topic modeling of documents
 - pLSA
- Unsupervised learning of video "topics" (actions)
 - Use to categorize actions
 - Use to localize actions within video sequences

Interest Point Detector

QuickTime[™] and a decompressor are needed to see this picture.

 From Piotr Dollàr, Vincent Rabaud, Garrison Cottrell, and Serge Belongie, 2005 QuickTime™ and a decompressor are needed to see this picture.

000

- $\omega = 4/T$
- σ = spatial extent
- T= temporal extent

QuickTime™ and a decompressor are needed to see this picture.

Interest points Centered at local maxima Of R

Interest Point Detector

QuickTime™ and a decompressor are needed to see this picture.

Cuboids

 A cuboid (or right prism) of data is extracted aro und each feature point (local maximum of the re sponse function). Each cuboid has spatial and te mporal extend

> QuickTime™ and a decompressor are needed to see this picture.

Cuboids

 Size of the cuboid is set to contain most of the volume that contributed to the response function at that interest point; cuboids have a side length ≈ six times the scale at which they were detected.

QuickTime™ and a decompressor are needed to see this picture.

Feature/Word Representation

- Flatten cuboids into single vector. Approaches tried:
 - Brightness gradients
 - Optical flow
 - Gradient histograms
- PCA
- Cluster into "types"

QuickTime[™] and a decompressor are needed to see this picture.

Dollàr et el

Feature/Word Representation

- Flatten cuboids
 - Brightness gradients
 - Optical flow
 - Gradient histograms
- Cluster into "codewords"???

Niebles et. al.

QuickTime[™] and a decompressor are needed to see this picture.

Generative Topic Model (Video pLSA)

QuickTime™ and a decompressor are needed to see this picture.

Learning Topics/Actions

Fitting Model:

- Distribution of words per action
 - Common across all videos
- Distribution of actions per video
 - Video specific
- Use Expectation Maximization algorithm to find values that maximize:

$$\prod_{i=1}^{M} \prod_{j=1}^{N} p(w_i | d_j)^{n(w_i, d_j)}$$

Where:
$$p(w_i | d_j) = \sum_{k=1}^{K} p(z_k | d_j) p(w_i | z_k)$$

Experiments

- KTH human motions data
 - 6 classes performed by 25 actors
 - 3 actors used to learn video word vocabulary
 - Leave one out cross-validation (learn model on 24 actors, test on 25 for all actors)
- SFU figure skating data
 - 3 classes, 7 actors
 - Learn video word vocabulary from 6 actors
 - Leave one out cross-validation

Categorization

 Similar to learning, but with distribution of words per action p(w_i|z_k) fixed:

$$p(w \mid d_{test}) = \sum_{k=1}^{K} p(z_k \mid d_{test}) p(w \mid z_k)$$

• Classified as:

 $\operatorname{argmax} p(z_k \mid d_{test})$

Categorization Results

QuickTime™ and a decompressor are needed to see this picture.

QuickTime™ and a decompressor are needed to see this picture.

Categorization Results

QuickTime[™] and a decompressor are needed to see this picture.

Localization

QuickTime[™] and a decompressor are needed to see this picture.

Localization Results

QuickTime™ and a decompressor are needed to see this picture.

Today

Sudderth guest lecture:

- Constellation Models (Fergus)
- Unsupervised Object Discovery with pLSA (Sivic)
- Scene Models (Li)
- Transformed Models (Sudderth)

Daphna B. student presentation:

• pLSA models of activity (Neibles)

Moreels guest lecture:

 A probabilistic formulation of voting / SIFT (Moreels)

Features-based Object Recognition

Pierre Moreels

UC Berkeley, Feb. 17, 2009

The recognition continuum

BMW logo

Categories

variability

cars

means of transportation

Applications

Autonomous navigation

Help Daiki find his toys !

Identification, Security.

Outline

- Problem setup
- Features
- Coarse-to-fine algorithm
- Probabilistic model
- Experiments
- Conclusion

The detection problem

New scene (test image)

- Models from
 - database

Find models and their pose (location, orientation...)

Hypotheses – models + positions

New scene (test image)

 Θ = affine transformation

- Madala fram
 - Models from
 - database

Matching features

New scene (test image)

 \Rightarrow Set of correspondences = **assignment vector**

- Models from
 - database

Features detection

Image characterization by features

• Features = high information content

'locations in the image where the signal changes two-dimensionally' C.Schmid

- Reduce the volume of information
 - [Sobel 68]
 - Diff of Gaussians [Crowley84]
 - [Harris 88]
 - [Foerstner94]
 - Entropy [Kadir&Brady01]

features

Correct vs incorrect descriptors matches

 $0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.8 \ 0.4$

0.8 0.9 0.8 0.9 1.0 0.9 1.0

7

8

1.0

- 0

0

- Shape context [Belongie2002]
- Spin [Johnson1999]
- HOG [Dalal2005]

Stability with respect to nuisances

⇒ Which detector / descriptor combination is best for recognition ?

Past work on evaluation of features

- Use of flat surfaces, ground truth easily established
- In 3D images appearance changes more !

[Schmid&Mohr00] [Mikolajczyk&Schmid 03,05,05]

Database : 100 3D objects

Bannanas

Grandfather Clock

EthernetHub

Sander

Clamp

Base

Horse

Hicama.

Spray Can

Mug

objects set - top view

Motorcycle

Pepper

Slinky Monster

Teddy Bear

Globe

Robot

Oil.

Collector Cup

Frame

Testing setup

[Moreels&Perona ICCV05, IJCV07] Used by [Winder, CVPR07]

Results – viewpoint change

Features matching algorithm

Features assignments

New scene (test image)

Interpretation

Coarse-to-fine strategy

• We do it every day !

Search for my place : Los Angeles area – Pasadena – Loma Vista - 1351

Coarse-to-Fine detection

- Progressively narrow down focus on correct region of hypothesis space
- Reject with little computation cost irrelevant regions of search space
- Use first information that is easy to obtain
- Simple building blocks organized in a cascade
- Probabilistic interpretation of each step

Coarse data : prior knowledge

• Which objects are likely to be there, which pose are they likely to have ?

unlikely situations

Model voting

Search tree (appearance space leaves = database features)

New scene (test image)

2 votes

0 vote

Models from

database

Use of rich geometric information

[Lowe1999,2004]

Coarse Hough transform

- Prediction of position of model center after transform
- The space of transform parameters is discretized into 'bins'
- Coarse bins to limit boundary issues and have a low falsealarm rate for this stage
- We count the number \tilde{N} of votes collected by each bin.

Correspondence or clutter ? PROSAC

- Similar to RANSAC robust statistic for parameter estimation
 - Priority to candidates with good **quality** of appearance match
- 2D affine transform : 6 parameters
 ⇒ each sample contains 3 candidate correspondences.

[Fischler 1973] [Chum&Matas 2005] **Output** of PROSAC : pose transformation

+ set of features correspondences

Probabilistic model

Score of an extended hypothesis

Consistency

Consistency between observations and predictions from hypothesis

$$P(F|V, \tilde{N}, \bar{N}, H, M) = \prod_{V(i) \neq 0} p_{fg}(f_i|H, f_{V(i)}) \cdot \prod_{V(i) = 0} p_{bg}(f_i)$$

Common-frame approximation : parts are conditionally independent once reference position of the object is fixed. [Lowe1999,Huttenlocher90,Moreels04]

Consistency

Consistency between observations and predictions from hypothesis

$$P(F|V, \tilde{N}, \bar{N}, H, M) = \prod_{V(i) \neq 0} p_{fg}(f_i|H, f_{V(i)}) \cdot \prod_{V(i) = 0} p_{bg}(f_i)$$

Learning foreground & background densities

- Ground truth pairs of matches are collected
- Gaussian densities, centered on the nomimal value that appearance / pose should have according to H
- Learning background densities is easy: match to random images.

Experiments

An example

After model voting stage

After Hough transform, before Prosac

С

An example

Efficiency of coarse-to-fine processing

Giuseppe Toys database – Models

1 - 0.JPG

3 - 10.JPG

4 - 100.JPG

6 - 104.JPG

12 - 115.JPG

8 - 11.JPG

9 - 110.JPG

14 - 117.JPG

10 - 112.JPG

15 - 120.JPG

11 - 114.JPG

17 - 124.JPG

13 - 116.JPG

18 - 125.JPG

19 - 126.JPG

61 objects, 1-2 views/object

Giuseppe Toys database – Test scenes

Test-scenes

141 test scenes

Home objects database – Models

Home objects database – Test scenes

Test-scenes

141 test scenes

Results – Giuseppe Toys database

Lowe'99,'04

Results – Home objects database

Failure mode

Test image hand-labeled before the experiments

Test – Text and graphics

Test

comparative ROC curves textured objects

comparative ROC curves textureless objects

Test – Clutter

known object identified

d)

	same training		different training	
	texture		texture	
	Lowe	Moreels	Lowe	Moreels
false alarms	111	14	30	12
>30 matches	61	3	3	3
wrong texture	11	4	30	12

Test scene

b)

Lowe

known object

identified

Moreels & Perona

C)

Test scene

Dataset

Conclusions

- Coarse-to-fine strategy prunes irrelevant search branches at early stages.
- Probabilistic interpretation of each step.
- Higher performance than Lowe, especially in cluttered environment.
- Front end (features) needs more work for smooth or shiny surfaces.

Today

Sudderth guest lecture:

- Constellation Models (Fergus)
- Unsupervised Object Discovery with pLSA (Sivic)
- Scene Models (Li)
- Transformed Models (Sudderth)

Daphna B. student presentation:

• pLSA models of activity (Neibles)

Moreels guest lecture:

 A probabilistic formulation of voting / SIFT (Moreels)