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Object class recognition using 
unsupervised scale-invariant 

learningg

Rob Fergus
Pietro Perona

Andrew Zisserman

Slide credit: Fergus

Oxford University
California Institute of Technology



Goal

• Recognition of object categories

• Unassisted learning

Slide credit: Fergus



Some object 
categoriesg

Learn from examples

Difficulties:

• Size variation
• Background clutter
• OcclusionOcclusion
• Intra-class variation

Slide credit: Fergus



Main issues

• Representation• Representation

• Learning• Learning

• Recognition• Recognition

Slide credit: Fergus



RepresentationRepresentation
 Object as set of parts

 Generative representation

 Model: Model:

 Relative locations between parts

 Appearance of part

 Issues:

 How to model location

 How to represent appearance

S d ( i l i )

Slide credit: Fergus

 Sparse or dense (pixels or regions)

 How to handle occlusion/clutter
Figure from [Fischler & Elschlager 73]



History of Parts and Structure 
approachesapproaches

• Fischler & Elschlager 1973

• Yuille ‘91
• Brunelli & Poggio ‘93

L d d M l b t l ‘93• Lades, v.d. Malsburg et al. ‘93
• Cootes, Lanitis, Taylor et al. ‘95
• Amit & Geman ‘95, ‘99 
• Perona et al. ‘95, ‘96, ’98, ’00, ’03, ‘04, ‘05
• Felzenszwalb & Huttenlocher ’00, ’04 
• Crandall & Huttenlocher ’05, ’06

Slide credit: Fergus

• Leibe & Schiele ’03, ’04

• Many papers since 2000



Sparse representation
C t ti ll t t bl (105 i l  101 102 t )+ Computationally tractable (105 pixels  101 -- 102 parts)

+ Generative representation of class
+ Avoid modeling global variability+ Avoid modeling global variability 
+ Success in specific object recognition

Slide credit: Fergus

- Throw away most image information
- Parts need to be distinctive to separate from other classes



Detection & Representation of regions
• Find regions within image

• Use Kadir and Brady's                     
salient region operator [IJCV ’01]

Location

( ) d f i t

g p [ ]

Scale

(x,y) coords. of region center

Di t f i ( i l )

Appearance
Diameter of region (pixels)

c

11x11 patchNormalize
Projection onto

PCA basis

c1

c2

…
…

Slide credit: Fergus
c15

…
…

..

Gives representation of appearance in low-dimensional vector space



Foreground model

Generative probabilistic model
based on Burl Weber et al [ECCV ’98 ’00]Foreground model

Gaussian shape pdf Gaussian part appearance pdf Gaussian 
relative scale pdf

based on Burl, Weber et al. [ECCV 98, 00]

log(scale)

Cl tt d l

Prob. of detection

0 8 0 75 0 9

Uniform shape pdf

Clutter model
Gaussian background 

appearance pdf

0.8 0.75 0.9

Uniform
relative scale pdfrelative scale pdf

log(scale)

Slide credit: Fergus
Poission pdf on # 

detections

g( )



Recognition

Slide credit: Fergus



Motorbikes
Samples from appearance modelSamples from appearance model

Slide credit: Fergus



The correspondence problem
• Model with P parts
• Image with N possible assignments for each partg p g p
• Consider mapping to be 1-1

Slide credit: Fergus
• NP combinations!!!



The correspondence problem
 1 – 1 mapping
Each part assigned to unique feature

As opposed to:

 1 – Many • Many – 1
 Bag of words approaches
 Sudderth, Torralba, Freeman ’05

L ff S ki A d F h ‘0

y
- Quattoni, Collins 
and Darrell, 04

 Loeff, Sorokin, Arora and Forsyth ‘05

Slide credit: Fergus



Learning

Slide credit: Fergus



T k E ti ti f d l t

Learning
• Task: Estimation of model parameters

• Chicken and Egg type problem, since we initially know neither:

- Model parameters

- Assignment of regions to foreground / background

• Let the assignments be a hidden variable and use EM algorithm to 
learn them and the model parameters

Slide credit: Fergus



Learning procedure
•Find regions & their location scale & appearance•Find regions & their location, scale & appearance

•Initialize model parameters

E-step: Compute assignments for which regions are foreground / background

M t U d t d l t

•Use EM and iterate to convergence:

M-step: Update model parameters 

•Trying to maximize likelihood – consistency in shape & appearance

Slide credit: Fergus



Experiments

Slide credit: Fergus



Experimental procedure
Two series of experiments:
• Fixed-scale model         - Objects the same size (manual normalization)
• Scale-invariant model - Objects between 100 and 550 pixels in width

Datasets

Training Motorbikes Airplanes Frontal FacesTraining
• 50% images
• No identifcation of 
object within image 

Motorbikes Airplanes

j g

Testing Cars (Side) Cars (Rear) Spotted catsg
• 50% images
• Simple object 
present/absent test

Cars (Side) ( ) p

Slide credit: Fergus



Motorbikes

Slide credit: Fergus



Background images evaluated with 
motorbike modelmotorbike model

Slide credit: Fergus



Frontal faces

Slide credit: Fergus



Airplanes

Slide credit: Fergus



Spotted cats

Slide credit: Fergus



Summary of results

Dataset Fixed scale 
experiment

Scale invariant 
experiment

Motorbikes 7.5 6.7

Faces 4 6 4 6Faces 4.6 4.6

Airplanes 9.8 7.0

Cars (Rear) 15.2 9.7

S tt d t 10 0 10 0Spotted cats 10.0 10.0

% equal error rate

Slide credit: Fergus
Note: Within each series, same settings used for all datasets



Comparison to other methods

Dataset Ours OthersDataset Ours Others

Motorbikes 7.5 16.0 Weber et al. 
[ECCV ‘00][ECCV 00]

Faces 4.6 6.0 Weber

Airplanes 9.8 32.0 Weber

A l
Cars (Side) 11.5 21.0

Agarwal 
Roth [ECCV 

’02]

Slide credit: Fergus

% equal error 
rate



Robustness of Algorithm

Slide credit: Fergus



Summary
• Comprehensive probabilistic model for object classes

• Learn appearance, shape, relative scale, occlusion etc. 
i lt l i l d t l ti i i tsimultaneously in scale and translation invariant manner 

• Same algorithm gives <= 10% error across 5 diverse datasets with 
identical settings

Limitations  future work
identical settings 

• Very reliant on region detectory g
Different part types (e.g. edgel curves)

• Only learns a single viewpoint
Use mixture modelsUse mixture models

• Need lots of images to learn
Bayesian learning - fewer images  [ICCV ’03 (Fei Fei, Fergus, Perona)]

Slide credit: Fergus

Datasets available from:  
http://www.robots.ox.ac.uk/~vgg/data

• Need more through testing
Looking towards testing 100’s of datasets
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Discovering Objects and Their 
Location in Images

J Si i B C R ll A A Ef A Zi W T F

Slide credit: Sivic

J. Sivic, B. C. Russell, A. A. Efros, A. Zisserman, W. T. Freeman. 
Presented at the International Conference on Computer Vision, 2005.



How much supervision do you need to 
learn models of objects?learn models of objects?

Slide credit: Sivic



Object label + segmentation

LabelMe, PASCAL, TU Darmstadt, 
MIT scenes and objectsj

MIT+CMU frontal faces

Viola & Jones ’01
Rowley et al. ’98

Slide credit: Sivic

Agarwal & Roth ’02, Leibe & 
Schiele ’03, Torralba et al. ’05



Object appears somewhere in the 
imageimage

Caltech 101, PASCAL, MSRC

airplane

motorbike

face

car

Slide credit: Sivic

Fergus et al. ’03, Csurka et al. ’04, 
Dorko & Schmid ’05



Image + text caption

Corel, Flickr, Names+faces, ESP game

B d t l ’03 B t l ’04Barnard et al. ’03, Berg et al. ’04

Slide credit: Sivic



Images onlyg y
Given a collection of unlabeled images, discover 
visual object categories and their segmentationvisual object categories and their segmentation

Slide credit: Sivic

• Which images contain the same object(s) ?
• Where is the object in the image?



Analogy: Discovering topics in text 
collectionscollections

Text
document

Disco eredDiscovered
topics

Slide credit: Sivic

Blei, et al. 2003



Visual analogy

document - image

word - visual word

topics - objects

Slide credit: Sivic



System overview

Input image Compute visual words Discover visual topics

Slide credit: Sivic



System overview

Input image Compute visual words Discover visual topics

Slide credit: Sivic



Finding and describing interest regions

Detect affine covariant regions:
• Multi-scale affine Harris [Mikolajczyk & Schmid ’02, Schaffalitzky & Zisserman’02]

• Maximally stable extremal regions [Matas et al ’02]• Maximally stable extremal regions [Matas et al. 02]

Detects corner regions and small blobs

Slide credit: Sivic

Describe regions with SIFT descriptor [Lowe 1999]



SIFT descriptor
Lowe 1999

8   orientations
16 bix 16 bins

128   dimensions

Thresholded image gradients are sampled over• Thresholded image gradients are sampled over 
16x16 array of  locations in scale space

• Create an array of oriented histograms

Slide credit: Sivic



Form dictionary
Build visual vocabulary by k-means clustering 
SIFT descriptors (K~2,000)p ( , )

Slide credit: Sivic



Example regions assigned to the same 
dictionary clusterdictionary cluster

Cluster 1 Cluster 2

Slide credit: Sivic



Polysemy
In English, “bank” refers to:

1. a institution that handle money

Regions that map to the same visual word:

2. the side of a river

Slide credit: Sivic



Representing an image with visual 
wordswords

Sivic & Zisserman ’03

4 39
21

10

2
35 18

10

61

20

415

Visual wordsInterest regions

15

Slide credit: Sivic



System overview

Input image Compute visual words Discover visual topics

Slide credit: Sivic



Latent Dirichlet Allocation (LDA)
Blei, et al. 2003

wij - wordswij words

zij - topic assignments

- topic mixing weightsµi

Á d i i i htÁk - word mixing weights

Slide credit: Sivic



Bag of words
• LDA model assumes exchangeability
• Order of words does not matter

2

4

35 18

39
21

10
61

2

1

20
415

35 2

3

4

St k i l d hi t

DictionaryHistogramVisual wordsInterest regions

Stack visual word histograms
as columns in matrix

Slide credit: Sivic

Throw away spatial information!



Latent Dirichlet Allocation (LDA)
Blei, et al. 2003

wij - wordswij words

zij - topic assignments

- topic mixing weightsµi

Á d i i i htÁk - word mixing weights

Slide credit: Sivic



Low-rank matrix factorization

•Latent Semantic Analysis (Deerwester, et al. 1990)
P b bili ti L t t S ti A l i (H f 2001)

Slide credit: Sivic

•Probabilistic Latent Semantic Analysis (Hofmann 2001)



Inference
wij - words

zij - topic assignments

- topic mixing weightsµi p g gµi

Ák - word mixing weights

Use Gibbs sampler to sample topic assignments
[Griffiths & Steyvers 2004]

•Only need to maintain counts of topic assignments

Slide credit: Sivic

•Sampler typically converges in less than 50 iterations
•Run time is less than an hour



Apply to Caltech 4 + background 
imagesimages

Faces 435

Motorbikes 800

Airplanes 800

Cars (rear) 1155

B k d 900Background 900

Total: 4090

Slide credit: Sivic



Slide credit: Sivic



Slide credit: Sivic



Most likely words given topic

Topic 1

Word 1

Word 2

Word 1

Topic 2

Word 2

Slide credit: Sivic

Word 2



Most likely words given topic

Topic 3

Word 1

Word 2

Word 1

Topic 4

Word 2

Slide credit: Sivic

Word 2



Slide credit: Sivic



Image clustering
Confusion matrices:

Average confusion:

Slide credit: Sivic



Comparison with supervised model
Percent ROC equal error rate

Faces
LDA
7.8

Constellation model
[Fergus et al. ’03]

3.6
Motorbikes
Airplanes
Cars rear

9.9
2.5
8 5

6.7
7.0
9 7Cars rear 8.5 9.7

• Comparable performance to constellation model
Level of supervision:• Level of supervision:

LDA: one number (of topics)
Constellation model: 400 labels for each category

Slide credit: Sivic

• Also an indication of the level of difficulty of the Caltech 5 
dataset



Slide credit: Sivic



Image as a mixture of topics (objects)

Slide credit: Sivic



Slide credit: Sivic



Slide credit: Sivic



Summary

• Discovered visual topics corresponding to object 
categories from a corpus of unlabeled imagescategories from a corpus of unlabeled images

• Used visual words representation and topic 
discovery models from the text understandingdiscovery models from the text understanding 
community

• Classification on unseen images is comparableClassification on unseen images is comparable 
to supervised methods on Caltech 5 dataset

• The discovered categories can be localizedThe discovered categories can be localized 
within an image

Slide credit: Sivic
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A Bayesian Hierarchical Model forA Bayesian Hierarchical Model for 
Learning Natural Scene Categories

oror
“LDA for Scene Recognition”

Fei-Fei Li & Pietro Perona
CVPR 2005CVPR 2005

Slide credit: Li



Scene Recognition

Slide credit: LiOutdoor Scenes Indoor Scenes



System Block Diagram

Slide credit: Li



Visual Words

Slide credit: Li



Graphical Models for Scenes
Category-specific
Dirichlet priorsPr(category)

P ( t )
Scene

Category
Pr(topic | image)

Pr(category)

Topic
Scene

Category

Visual 
Word

Visual
WordWord

Pr(word | topic)

o d

Slide credit: Li

Pr(word | topic)

Latent Dirichlet Allocation Texton Model

Pr(word | scene)



Model for Tall Buildings

E[Pr(topic | scene)]( | )

Slide credit: LiE[Pr(word | scene)]



Model for Coasts

E[Pr(topic | scene)]( | )

Slide credit: LiE[Pr(word | scene)]



Model for Forests

E[Pr(topic | scene)]( | )

Slide credit: LiE[Pr(word | scene)]



Models for Indoor Scenes

E[Pr(topic | scene)]

Slide credit: LiE[Pr(word | scene)]



Scene Recognition Performance

Slide credit: Li



Scene Relationships

Slide credit: Li



Model Parameters

Slide credit: Li
Shared

LDA
Indep.
LDA

Texton
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Learning Object Appearance Models g j pp
via

Transformed Dirichlet ProcessesTransformed Dirichlet Processes

Erik SudderthErik Sudderth
University of California, Berkeley

Antonio Torralba
William FreemanJoint work William Freeman 
Alan Willsky

with



Visual Object Categorization

• GOAL: Visually recognize and localize object categories

• Robustly learn appearance models from few examplesRobustly learn appearance models from few examples
 Hierarchical model transfers knowledge among categories

 Nonparametric, Dirichlet process prior gives flexibilityp , p p g y



Detecting Objects in Scenes
Sliding Window Approach  

Greedy Feature Extraction Approach 



Scenes, Objects, and Parts

SScene

Objects

Parts

Features



Outline
Object Recognition with Shared Parts

 Learning parts ia Dirichlet processes Learning parts via Dirichlet processes

 Hierarchical DP model for 16 object categories 

Multiple Object Scenes

 Transformed Dirichlet processes

 Part-based models for 2D scenes Part-based models for 2D scenes

 Joint object detection & 3D reconstruction 



Describing Objects with Parts

Pictorial Structures
Fischler & Elschlager, IEEE Trans. Comp. 1973 Cascaded SVM Detectors

Heisele, Poggio, et. al., NIPS 2001

Constellation Model
Fergus, Perona, & Zisserman, CVPR 2003 

Model-Guided Segmentation
Mori, Ren, Efros, & Malik, CVPR 2004 



Counting Objects & Parts

How many parts? How many objects?



From Images to Features

Affinely Adapted Maximally Stable Linked SequencesAffinely Adapted
Harris Corners

y
Extremal Regions

q
of Canny Edges

• Some invariance to lighting & pose variationsSome invariance to lighting & pose variations
• Dense, multiscale, over-segmentation of image



A Discrete Feature Vocabulary

• Normalized histograms
SIFT Descriptors

Normalized histograms 
of orientation energy

• Compute ~1,000 word Lowe IJCV 2004Compute 1,000 word 
dictionary via K-means

• Map each feature to 
appearance of
feature i in image j

Lowe, IJCV 2004

p
nearest visual word 2D position of

feature i in image j



Generative Model for Objects

For each image: Sample a reference position
For each feature:
 Randomly choose one part
 Sample from that part’s feature distribution



Objects as Mixture Models
• For a fixed reference position, our generative 

model is equivalent to a finite mixture model:q

Feature Pr(part)
appearance

Feature
position

( )

Pr(appearance | part)
Pr(position | part)

• How many parts should we choose?
Too few reduces model accuracyToo few reduces model accuracy
Too many causes overfitting & poor generalization



Dirichlet Process Mixtures

• Dirichlet processes define a prior distribution 
i ht i d t i t ton weights assigned to mixture components:

0 1

concentration
parameter

Stick-Breaking Construction: Sethuraman, 1994



Why the Dirichlet Process?

• Model complexity grows as data observed:
Nonparametric No Parameters
• Model complexity grows as data observed:
 Small training sets give simple, robust predictions
 Reduced sensitivity to prior assumptions Reduced sensitivity to prior assumptions

Flexible but Tractable
• Literature showing attractive asymptotic properties 
• Leads to simple, effective computational methods
 Avoids challenging model selection issues



Objects as Distributions

Feature
appearance

Feature
position

Pr(appearance | part) Pr(position | part)

• Parts are defined by parameters, which 
encode distributions on visual features:

Obj t d fi d b di t ib ti th• Objects are defined by distributions on the 
infinitely many potential part parameters:



Dirichlet Process Object Model
H RPart-based object model 

sampled from DP prior:

G 


For each of J 
images, sample a 
reference position:

For each of N features, 
sample part parameters:

JN
w vSample multinomial 

feature appearance:
Sample Gaussian 
feature position:Jfeature appearance: p



Learning DPs: Gibbs Sampling
P t S l &

H R Image Scale
(insensitive)

Part Scale &
Visual Sparsity

(insensitive)

G Sample Integrate

 Sample
Integrate parameters

defining feature distributions

Sample assignments
clustering features to parts

JN
w v

J
Dirichlet processes have many desirable analytic properties,
which lead to efficient Rao-Blackwellized learning algorithms



Decomposing Faces into Parts

4 Images 16 Images 64 Images



Generalizing Across Categories

Can we transfer knowledge from one object category to another?



Learning Shared Parts

• Objects are often locally similar in appearance
• Discover parts shared across categories
How many total parts should we share?y p
How many parts should each category use?



Hierarchical DP Object Model
HH

RG0 R
G0

G 
1G G2





JN
w v

L



Hierarchical DP Object Model
HH

R

Discrete Data:
Teh et. al., 2004

G0 R
G0

G 
1G G2





JN
w v

L



Sharing Parts: 16 Categories

• Caltech 101 Dataset (Li & Perona)
• Horses (Borenstein & Ullman)
• Cat & dog faces (Vidal-Naquet & Ullman)

• Bikes from Graz-02 (Opelt & Pinz)
• Google…



Visualization of Shared Parts

P ( | )

Pr(position | part)

Pr(appearance | part)



Visualization of Shared Parts

P ( | )

Pr(position | part)

Pr(appearance | part)



Visualization of Shared Parts

P ( | )

Pr(position | part)

Pr(appearance | part)



Visualization of Part Densities

MDS Embedding of Pr(part | object)



Visualization of Part Densities

Horse Face

Llama Body

Wheelchair

Dog Face

Cow Face

Llama Face

Cat Face

Cougar Face

Leopard Face

g

Motorbike

Bicycle

Cannon

Cat Face

Rhino Body

Horse Body

Leopard Body

Motorbike

Hierarchical Clustering of Pr(part | object)

Elephant Body

Rhino Body



Detection Task



Detection Results
Shared Parts
more accurate than

Unshared PartsUnshared Parts

Modeling feature positions
improves shared detection, but

hurts unshared detectionhurts unshared detection

6 Training Images per Category
(ROC Curves)



Detection Results

6 Training Images per Category Detection vs. Training Set Size
(ROC Curves) (Area Under ROC)



Sharing Simplifies Models
450

500  

350

400

al
 P

ar
ts

250

300

r 
of

 G
lo

ba
l P

Position & Appearance, HDP
Position & Appearance, DP
Appearance Only, HDP

150

200

N
um

be
r 

o Appearance Only, HDP

50

100

N

5 10 15 20 25 30
0

Number of Training Images

 



Recognition Task



Recognition Results

6 Training Images per Category
(ROC C )

Detection vs. Training Set Size
(ROC Curves) (Area Under ROC)



Outline
Object Recognition with Shared Parts

 Learning parts ia Dirichlet processes Learning parts via Dirichlet processes

 Hierarchical DP model for 16 object categories 

Multiple Object Scenes

 Transformed Dirichlet processes

 Part-based models for 2D scenes Part-based models for 2D scenes

 Joint object detection & 3D reconstruction 



Semi-supervised Learning



Object vs. Visual Categories

• Assume training data contains object category labels
• Discover underlying visual categories automatically



Multiple Object Scenes

• How many cars are there?
• Where are those cars in the scene?

Standard dependent Dirichlet process models (Gelfand et. al., 2005) inappropriate 



Spatial Transformations
• Let global DP clusters model objects 

in a canonical coordinate framein a canonical coordinate frame
• Generate images via a random 

t f t f tiset of transformations:

Parameterized family 
of transformations

Shift cluster from canonical 
coordinate frame to object 
location in a given imageg g

Layered Motion Models (Wang & Adelson, Jojic & Frey)
Nonparametric Transformation Densities (Learned-Miller & Viola)



A Toy World:  Bars & Blobs



Transformed Dirichlet Process
HMixture

G0G0 R
Parameters Transformations

Gj

1 2 3G G G

Gj

 1 2 3 

JN
v



Importance of Transformations

HDP TDP



Counting & Locating Objects 

H h ?• How many cars are there?
• Where are those cars in the scene?

Dirichlet Processes

Transformations



Visual Scene TDP 
R

G0

R
Global 
Density
Object categoryG0
Part size & shape
Transformation prior

GGj
Transformed 
Densities
Object category


j g y

Part size & shape
Instance locationso

F


2D Image 
Features
A



H
J

w v
Appearance
Location

N



Street Scene Visual Categories



Street Scene Segmentations



Appearance Only

“Bag of features” model ignores feature positions• “Bag of features” model, ignores feature positions
• Inferior segmentations, cannot count objects



Segmentation Performance



Objects & 3D Reconstruction

Red         Far
Green         NearAn Office Scene

• Given 3D structure, segmentation is easier
• Identifying objects regularizes depth estimation



Office Scene Training Images
Obj t t M lti l S lObjects at Multiple Scales

Computer Screens
Desks

Bookshelves



3D Structure from Stereo

Reference (left) Image Potential Matches Depth Densities

Depth  =  
Disparity  



Overhead View



Greedy Depth Estimates

Reference (left) Image Potential Matches Depth Densities

Red         Far
Green         Near



TDP for 3D Scenes 
R

G0

R
Global Density
Object category
Part size & shape
Transformation priorG0 p

G
Transformed Densities
Object categoryGj Object category
Part size & shape
Transformed locations

 o 3D Scene Features
Object category
3D Location

F
 2D Image Features

A D i t

 u

H
J

w v
Appearance Descriptors
2D Pixel Coordinates

N



Single-Part Office Scene Model

Computer Screen
D k

BookshelvesBackground
Desk

g



Multi-Part Office Scene Model

Computer Screen
D k

BookshelvesBackground
Desk

g



Stereo Test Image I



Stereo Test Image II



Ongoing Work: Monocular Test



Ongoing Work: Context

Screen

MouseKeyboard

• Developed fixed-order contextual scene model
E t i t T f d DP d l i bl• Extension to Transformed DP model is an open problem

• Needed: Richer models for background scene structure



Conclusions
Transformed Dirichlet Processes allow…

 flexible transfer of knowledge flexible transfer of knowledge 
among related object categories

 robust learning from small robust learning from small, 
partially labeled datasets

 an integrated view of object g j
recognition & 3D reconstruction

 potential scaling of nonparametric 
methods to complex domains
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Unsupervised Learning ofUnsupervised Learning of 
Human Action Categories 
Using Spatial-Temporal 

WordsWords
Juan Carlos Niebles HongchengJuan Carlos Niebles, Hongcheng 

Wang, Li Fei-Fei

Daphna Buschsbaum student presentation



VideoVideo



Goal: Automatically Categorize or 
Localize Different Actions

i• moving cameras
• non-stationary background
• moving target
• multiple activitiesmultiple activities 

QuickTime™ and a
 decompressor

are needed to see this picture.



OverviewOverview

QuickTime™ and a
 decompressor

are needed to see this picture.



ApproachApproach

• Generative model• Generative model 
– Bag of (spatio-temporal) video words
– Actions are distributions over words
– Videos are distributions over actions
– Based on topic modeling of documents

LSA• pLSA

• Unsupervised learning of video “topics” 
(actions)(actions)
– Use to categorize actions
– Use to localize actions within video sequences



Interest Point DetectorInterest Point Detector

QuickTime™ and a
 decompressor

are needed to see this picture.

• From Piotr Dollàr, Vincent Rabaud, 
G i C tt ll d S B l iGarrison Cottrell, and Serge Belongie, 
2005



QuickTime™ and a
 decompressor

are needed to see this picture.

Dollàr et. al.



• ω = 4/τ
QuickTime™ and a

 decompressor
are needed to see this picture.

ω  4/τ
• σ= spatial extent
• τ= temporal extent

Interest pointsInterest points
Centered at local maxima
Of R

Dollàr et. al.



Interest Point DetectorInterest Point Detector

QuickTime™ and a
decompressordecompressor

are needed to see this picture.

Dollàr et. al.



CuboidsCuboids
• A cuboid (or right prism) of data is extracted aro

und each feature point (local maximum of the reund each feature point (local maximum of the re
sponse function). Each cuboid has spatial and te
mporal extend

QuickTime™ and a
 decompressor

are needed to see this picture.

Dollàr et. al.



CuboidsCuboids
• Size of the cuboid is set to contain most of the 

volume that contributed to the response function at p
that interest point; cuboids have a side length  six 
times the scale at which they were detected. 

QuickTime™ and a
ddecompressor

are needed to see this picture.

Dollàr et. al.



Feature/Word RepresentationFeature/Word Representation
• Flatten cuboids into single vector. Approaches tried:

– Brightness gradients
– Optical flow
– Gradient histogramsg

• PCA
• Cluster into “types”

QuickTime™ and a
 decompressor

are needed to see this picture.

Dollàr et al



Feature/Word RepresentationFeature/Word Representation
• Flatten cuboids

– Brightness gradients
– Optical flow
– Gradient histograms

Niebles et. al.

Gradient histograms

• Cluster into “codewords”???

QuickTime™ and a
 decompressor

are needed to see this picture.



Generative Topic Model 
(Video pLSA)

QuickTime™ and a
 decompressor

are needed to see this picture.



Learning Topics/ActionsLearning Topics/Actions
Fitting Model:
• Distribution of words per action

– Common across all videos
• Distribution of actions per video

– Video specific
Use Expectation Maximization algorithm to• Use Expectation Maximization algorithm to 
find values that maximize:

NM

K

p(wi | d j )
n(wi ,d j )

j1

N


i1

M



Where: p(wi | d j )  p(zk | d j )p(wi | zk )
k1

K





ExperimentsExperiments

• KTH human motions dataKTH human motions data 
– 6 classes performed by 25 actors
– 3 actors used to learn video word vocabulary
– Leave one out cross-validation (learn model on 24 

actors, test on 25 for all actors) 
• SFU figure skating data• SFU figure skating data

– 3 classes, 7 actors
– Learn video word vocabulary from 6 actorsy
– Leave one out cross-validation



CategorizationCategorization

Si il t l i b t ith di t ib ti• Similar to learning, but with distribution 
of words per action p(wi|zk) fixed:

p(w | dtest )  p(zk | dtest ) p(w | zk )
k1

K



• Classified as:

argmax p( | d )argmax p(zk | dtest )



Categorization ResultsCategorization Results

QuickTime™ and a

QuickTime™ and a
 decompressor

are needed to see this picture.

QuickTime™ and a
 decompressor

are needed to see this picture.



Categorization ResultsCategorization Results

QuickTime™ and a
 decompressor

are needed to see this picture.



LocalizationLocalization

QuickTime™ and a
 decompressor

are needed to see this picture.



Localization ResultsLocalization Results

QuickTime™ and a
decompressordecompressor

are needed to see this picture.
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Features-based Object Recognition

Pierre Moreels

UC Berkeley, Feb. 17, 2009



The recognition continuum

Individual 
objectsobjects

BMW logo

variabiliCategories tyCategories

cars

means of transportation



Applications

Autonomous
navigation

Help Daiki find his toys !Help Daiki find his toys !

Identification, Security.



Outline

• Problem setup

• Features

• Coarse to fine algorithm• Coarse-to-fine algorithm

• Probabilistic model

• Experiments

• Conclusion



The detection problem

…

New scene (test image)

Models from
database… database

Find models and their pose (location, orientation…)



Hypotheses – models + positions
1

2

…

New scene (test image)

Models from
databaseΘ = affine transformation … databaseΘ  affine transformation



Matching features

… Models from
database

New scene (test image)

 Set of correspondences = assignment vector … database Set of correspondences  assignment vector



Features detectionFeatures detection



Image characterization by features

• Features = high information content

‘locations in the image where the signallocations in the image where the signal 
changes two-dimensionally’ C.Schmid

• Reduce the volume of informationReduce the volume of information

– [Sobel 68]

edge strength map

[Sobel 68]
– Diff of Gaussians [Crowley84]
– [Harris 88]

[F t 94]– [Foerstner94]
– Entropy [Kadir&Brady01]

171features



Correct vs incorrect descriptors matches

5
6

1
2

6

Mutual Euclidean distances 
in appearance space of 
descriptors7

3
48

- Pixels intensity within a patch
- Steerable filters [Freeman1991]

172

- Steerable filters [Freeman1991]
- SIFT [Lowe1999,2004]
- Shape context [Belongie2002]
- Spin [Johnson1999]
- HOG [Dalal2005]



Stability with respect to nuisances

Which detector / descriptor
combination is best for recognition ? 

173



Past work on evaluation of features
• Use of flat surfaces, ground truth easily established
• In 3D images appearance changes more !

[Schmid&Mohr00] [Mikolajczyk&Schmid 03,05,05]



Database : 100 3D objects

175



Testing setup 

[Moreels&Perona ICCV05, IJCV07]

Used by [Winder, CVPR07]



Results – viewpoint change 



2D vs. 3D 

Ranking of  
detectors/descriptors
combinations are modified 
whenwhen
switching from 2D to 3D 
objects



Features matching algorithmFeatures matching algorithm



Features assignments

New scene (test image) Interpretation

models 
from database . . . . . .. . .



Coarse-to-fine strategy
• We do it every  day !

Search for my place : Los Angeles area – Pasadena – Loma Vista - 1351

my house

my car



Coarse-to-Fine detection

• Progressively narrow down focus on correct 
i f h th iregion of hypothesis space

• Reject with little computation cost irrelevant 
regions of search space

• Use first information that is easy to obtainUse first information that is easy to obtain

• Simple building blocks organized in a cascade

• Probabilistic interpretation of each step



Coarse data : prior knowledge

• Which objects are likely to be there, which pose are 
they likely to have ?they likely to have ? 

unlikely
situations



Model voting

Search tree (appearance space –
leaves = database features)leaves = database features)

4 votes

2 votes

0 vote
New scene (test image)

… Models from
database



Use of rich geometric information
(x1,y1,s1,1)
(x2,y2,s2,2)

Transform predicted by this match:
• x = x2-x1

• y = y y• y = y2-y1

• s = s2 / s1

•  = 2 - 1

Each match is represented by a dot in
the space of 2D similarities (Hough space)

s

x

y

[Lowe1999,2004]



Coarse Hough transform
• Prediction of position of model 

center after transform
Model

• The space of transform 
parameters is discretized into 
‘bins’bins

• Coarse bins to limit boundary 
issues and have a low false-issues and have a low false-
alarm rate for this stage

• We count the number ofN~We count the number        of 
votes collected by each bin.

N

Test scene

correct transformation



Correspondence or clutter ? PROSAC
• Similar to RANSAC – robust 

statistic for parameter estimation

• Priority to candidates with good 
quality of appearance match

d

• 2D affine transform : 6 parameters
 each sample contains 3 
candidate correspondences.

d

d

187
Output of PROSAC : pose transformation 

+ set of features correspondences
[Fischler 1973]         
[Chum&Matas 2005]



Probabilistic modelProbabilistic model



Score of an extended hypothesis

Hypothesis:
model + position

observed features
geometry + appearance

Features
assignments

model + position
database of models

constant

Votes per model Votes per model pose bin
(Hough transform)( oug t a s o )

ConsistencyConsistency
(after PROSAC)Prior on model

and poses Prior on assignments
(before actual observations)



Consistency
Consistency between observations and predictions from hypothesis

Common-frame approximation : parts are 
conditionally independent once reference position 
of the object is fixed. [Lowe1999,Huttenlocher90,Moreels04]
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Consistency
Consistency between observations and predictions from hypothesis

f d f tforeground features ‘null’ assignments

geometry geometryappearance appearance g ypp

Consistency - appearance Consistency - geometry



Learning foreground & background densities

• Ground truth pairs of matches are 
collectedcollected

• Gaussian densities, centered on 
the nomimal value that 
appearance / pose should have 
according to Haccording to H

• Learning background densities is g g
easy: match to random images.

[Moreels&Perona, IJCV, 2007]



ExperimentsExperiments



An example



An example



Efficiency of coarse-to-fine processing



Giuseppe Toys database – Models

61 objects, 1-2 views/object



Giuseppe Toys database – Test scenes

141  test scenes



Home objects database – Models

49 objects, 1-2 views/object



Home objects database – Test scenes

141  test scenes



Results – Giuseppe Toys database

undetected objects: 
features with poor 
appearance distinctiveness

-

appearance distinctiveness
index to incorrect models

Lower false alarm
rate
- more systematic

+

more systematic 
verification of 
geometry consistency
- more consistent 
verification ofverification of 
geometric consistency

Lowe’99,’04



Results – Home objects database



Failure mode
Test image hand-labeledTest image hand-labeled
before the experiments



Test – Text and graphics



Test – no texture



Test – Clutter



ConclusionsConclusions

• Coarse-to-fine strategy prunes irrelevant search 
branches at early stages.

• Probabilistic interpretation of each step.

• Higher performance than Lowe, especially in 
cluttered environmentcluttered environment. 

• Front end (features) needs more work for smoothFront end (features) needs more work for smooth 
or shiny surfaces.
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