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Moreels guest lecture:

* A probabilistic formulation of voting / SIFT
(Moreels)



Today

Sudderth guest lecture:

e Constellation Models (Fergus)

* Unsupervised Object Discovery with pLSA (Sivic)
* Scene Models (Li)

* Transformed Models (Sudderth)

Daphna B. student presentation:

* pLSA models of activity (Neibles)

Moreels guest lecture:

* A probabilistic formulation of voting / SIFT
(Moreels)



Object class recognition using
unsupervised scale-invariant
learning

Rob Fergus
Pietro Perona
Andrew Zisserman

Oxford University
California Institute of Technology




Goal

- Recognition of object categories

- Unassisted learning




Some object
categories

Learn from examples

Difficulties:

Size variation
Background clutter
Occlusion
Intra-class variation

kes

Airplanes
- _

Cars (Rear)

Spotted Gats

Background



Main issues

- Represamtttionn
» Learning

- Recognition



Representation

Object as set of parts

Generative representation

Model:

Relative locations between parts

Appearance of part

o ISsues:

How to model location

How to represent appearance
Sparse or dense (pixels or regions)

How to handle occlusion/clutter
Figure from [Fischler & Elschlager 73]



History of Parts and Structure
approaches

Fischler & Elschlager 1973

Yuille ‘91

Brunelli & Poggio ‘93 S
Lades, v.d. Malsburg et al. ‘93 | Mo
Cootes, Lanitis, Taylor et al. ‘95

Amit & Geman ‘95, ‘99

Perona et al. ‘95, ‘96, ’98, '00, 03, ‘04, ‘05
Felzenszwalb & Huttenlocher '00, '04

Crandall & Huttenlocher '05, 06

Leibe & Schiele ’03, '04

Manv naners since 2000



Sparse representation
+ Computationally tractable (10° pixels = 10" -- 102 parts)

+ Generative representation of class

+ Avoid modeling global variability

+ Success in specific object recognition

- Throw away most image information

- Parts need to be distinctive to separate from other classes



Detection & Representation of regions

* Find regions within image

» Use Kadir and Brady's
salient region operator [IJCV '01]

Location

(x,y) coords. of region center

Scale

Diameter of region (pixels)

Cq
Projection onto

c
& 11x11 patchE PCA basis ?

Cis5
Fergus

Gives representation of appearance in low-dimensional vector SPaCe|; . . oqit:



Generative probabilistic model

Foreground model based on Burl, Weber et al. [ECCV 98, '00]

Gaussian shape pdf Gaussian part appearance pdf Gaussian
4 relative scale pdf

VAN

log(scale)

Prob. of detection

Clutter model

Gaussian background

Uniform shape pdf appearance pdf N Uniform
relative scale pdf
e =

>
log(scale)
@ Poission pdf on #
detections




Recognition



Motorbikes

Samples from appearance model Shape model
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The correspondence problem

* Model with P parts
e Image with N possible assignments for each part
e Consider mapping to be 1-1
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The correspondence problem
1 — 1 mapping
Each part assigned to unique feature

As opposed to:

1—Many oMany_']

Bag of words approaches - Quattoni. Collins

Sudderth, Torralba, Freeman ’05 and Darrell. 04
Loeff, Sorokin, Arora and Forsyth ‘05




Learning



Learning

« Task:  Estimation of model parameters

« Chicken and Egg type problem, since we initially know neither:
- Model parameters

- Assignment of regions to foreground / background

* Let the assignments be a hidden variable and use EM algorithm to
learn them and the model parameters



Learning procedure

*Find regions & their location, scale & appearance
eInitialize model parameters

*Use EM and iterate to convergence:
E-step: Compute assignments for which regions are foreground / background

M-step: Update model parameters

*Trying to maximize likelihood — consistency in shape & appearance



Experiments



Experimental procedure

Two series of experiments:

 Fixed-scale model - Objects the same size (manual normalization)
» Scale-invariant model - Objects between 100 and 550 pixels in width
Datasets
Training Motorbikes Airplanes Frontal Face

* 50% images
 No identifcation of
object within image

Testing Cars (Rear)
- 50% images - pion o
- Simple object .
present/absent test




Motorbikes

Shape model
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Background images evaluated with
motorblke model

g Fergus




Frontal faces
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Airplanes

Airplane shape model
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Spotted cats

Spotted cat shape model

F’artS—Det1e 22

Eﬂﬁiﬂﬁ

s 5




Summary of results

Fixed scale | Scale invariant
Dataset . .
experiment experiment
Motorbikes 7.5 6.7
Faces 4.6 4.6
Airplanes 9.8 7.0
Cars (Rear) 15.2 9.7
Spotted cats 10.0 10.0

% equal error rate

Note: Within each series, same settings used for all datasets



Comparison to other methods

Dataset Ours | Others

. Weber et al.

Motorbikes | 7.5 16.0 [ECCV ‘00]
Faces 4.6 6.0 Weber
Airplanes 9.8 32.0 Weber
Agarwal

Cars (Side) | 11.5 | 21.0 Roth [ECCV

'02]

% equal error

rate

0.9

0.8

0.7

0.6

0.5F

Recall

0.4F

0,3

0.2k

Recall-Precision

a_—

<

Our algorithm

\Agarwa I—Roth algorithm

1 L 1 L ! 1
3 0.4 0.5 0.6 Q.f 8 0.5

1 = Precision




% correct

100

2af

8a |

Ta

S0

S0

41

3df

20 |

10|

a

% training images containing object

Robustness of Algorithm

Face dataset

40 (]

% correct

100

=B

ad

AR

S0k

Th

Motorbike dataset

3 4 5
Mumber of parts




Summary

« Comprehensive probabilistic model for object classes

» Learn appearance, shape, relative scale, occlusion etc.
simultaneously in scale and translation invariant manner

« Same algorithm gives <= 10% error across 5 diverse datasets with
identical settings

Limitations — future work

* Very reliant on region detector
Different part types (e.g. edgel curves)

* Only learns a single viewpoint
Use mixture models

* Need lots of images to learn
Bayesian learning - fewer images [ICCV '03 (Fei Fei, Fergus, Perona)]

* Need more through testing Datasets available from:
Looking towards testing 100’s of datasets| http://www.robots.ox.ac.uk/~vgg/data
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Discovering Objects and Their
Location in Images

J. Sivic, B. C. Russell, A. A. Efros, A. Zisserman, W. T. Freeman.
Presented at the International Conference on Computer Vision, 2005.




How much supervision do you need to
learn models of objects?




Object label + segmentation

MIT+CMU frontal faces

SEISAE REBEE
Hbﬁﬂ*ﬁ Ir'iﬁl[ﬁ i J

i)

Viola & Jones ’0
Rowley et al. '98

LabelMe, PASCAL, TU Darmstadt,
MIT scenes and objects

Agarwal & Roth 02, Leibe &
Schiele 03, Torralba et al. ’05

Slide credit; Sivic




Object appears somewhere in the
Image
Caltech 101, PASCAL, MSRC

airplane BN e e~ =

motorbike

Fergus et al. ‘03, Csurka et al. '04,
Dorko & Schmid 05

Slide credit; Sivic




Image + text caption

Corel, Flickr, Names+faces, ESP game

Barnard et al. ‘03, Berg et al. '04

British director Sam Mendes and his
partner actress Kate Winslet arrive at
the London premiere of "The Road to
Perdition’, September 18, 2002. The
films stars Tom Hanks as a Chicago hit
man who has a separate family life and
co-stars Paul Newman and Jude Law.
REUTERS/Dan Chung




Images only

Given a collection of unlabeled images, discover
visual object categories and their segmentation

« Which images contain the same object(s) ?

« Where is the object in the imagl_ed? dit: Sivi
iIde credit. olviC




Analogy: Discovering topics in text
collections

Text
document

Discovered
topics

The William Randolph Hearst

tan Opera Co., New York Philharmonic and Juilliard School. “Our

will give

to Lincoln Center, Metropoli-
felt that we had a

real opportunity to make a mark on the future of the performing arts with these

every bit as important as our traditional areas of
and the social

will

the

Hearst
Lincoln Center’s share will be
young artists and

New York Philharmonic will

the performing arts are taught, will get
of the Lincoln Center Consolidated Corporate
donation, too.

new

in health, medical
Randolph A. Hearst said Monday in

for its new

The Metropolitan Opera Co. and
each. The Juilliard School, where music and
The Hearst
will make 1its usual

a leading supporter

GEArtSU

“Children”

“Education”
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BEENNETT
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HAITI

Blei, et al. 2003

education




Visual analogy

document - image
word - visual word

topics - objects




System overview

Input image Compute visual words Discover visual topics

Slide credit; Sivic




System overview

Input image Compute visual words Discover visual topics

Slide credit; Sivic




Finding and describing interest regions

Detect affine covariant regions:
- Multi-scale affine Harris mikolajczyk & Schmid '02, Schaffalitzky & Zisserman’02]
- Maximally stable extremal regions [Matas et al. '02]

Detects corner regions and small blobs

Describe regions with SIFT descriptor [Lowe 1999]
Slide credit: Sivic




SIFT descriptor

Lowe 1999

8 orientations
X 16 bins
128 dimensions

Image gradients Keypoint descriptor

- Thresholded image gradients are sampled over
16x16 array of locations in scale space
 Create an array of oriented histograms




Form dictionary

Build visual vocabulary by k-means clustering
SIFT descriptors (K~2,000)

Slide credit; Sivic




Example regions assigned to the same
dictionary cluster

@ EEEE

Cluster 1 Cluster 2

Slide credit; Sivic




Polysemy

In English, “bank” refers to:
1. a institution that handle money
2. the side of a river

Regions that map to the same visual word:




Representing an image with visual
words

Sivic & Zisserman 03

Interest regions Visual words

Slide credit; Sivic




System overview

Input image Compute visual words Discover visual topics

Slide credit; Sivic




Latent Dirichlet Allocation (LDA)

Blei, et al. 2003

@l z; - topic assignments

__iﬂ U - topic mixing weights

@. A, - word mixing weights




Bag of words

* LDA model assumes exchangeability
* Order of words does not matter

Interest regions Visual words

Stack visual word histograms
as columns in matrix

Throw away spatial information!

Histogram Dictionary

Bcredit: Sivic




Latent Dirichlet Allocation (LDA)

Blei, et al. 2003

@l z; - topic assignments

N 1 U - topic mixing weights

o e o @. A, - word mixing weights




Low-rank matrix factorization

Latent Semantic Analysis (Deerwester, et al. 1990)
*Probabilistic Latent Semantic Analysis (Hofmann 2001)




Inference

w; - words

z; - topic assignments
M, - topic mixing weights
A, - word mixing weights

Use Gibbs sampler to sample topic assignments
[Griffiths & Steyvers 2004]

zij ~ plzj=k w i = Uy W\(i5), 2\ (i), O, )

*Only need to maintain counts of topic assignments

Sampler typically converges in less than 50 iterations
*Run time is less than an hour




Apply to Caltech 4 + background
Images

Faces
Motorbikes
Airplanes
Cars (rear)
Background
Total:

Slide credit; Sivic
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Most likely words given topic

Slide credit; Sivic




Most likely words given topic

= s = | Q Word 1
Topic 4 . '
m| Word 2

Slide credit; Sivic
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Image clustering

Confusion matrices:

LDA bg (K=7)

L

Learned topics
Learned topics
Learned topics

pLSA
% #

= |

’ 5 0—.. . .
Y AY4 Y
N N N




Comparison with supervised model

Percent ROC equal error rate

Constellation model
LDA [Fergus et al. ‘03]
Faces 7.8 3.6
Motorbikes 9.9 6.7
Airplanes 2.5 7.0
Cars rear 8.5 9.7

« Comparable performance to constellation model
* Level of supervision:
LDA: one number (of topics)
Constellation model: 400 labels for each category
* Also an indication of the level of difficulty of the Caltech 5

dataset
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Image as a mixture of topics (objects)

Slide credit; Sivic




Ide credit: SIVIC







Summary

Discovered visual topics corresponding to object
categories from a corpus of unlabeled images

Used visual words representation and topic
discovery models from the text understanding
community

Classification on unseen images is comparable
to supervised methods on Caltech 5 dataset

The discovered categories can be localized
within an image
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A Bayesian Hierarchical Model for

Learning Natural Scene Categories
or

“LDA for Scene Recognition”

Fei-Fel Li & Pietro Perona
CVPR 2005



Scene Recognition

QOutdoor Scenes Indoor<Scenes



feature detection & representation

learning

System Block Diagram

TRAINING

Class 1 sss= class N

input image

k4
local feature extraction

v
form codebook T (o ees |

k 4

Class 1 seee Class N
represent each I -
image into a
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learn Bayesian
hierarchical
models for
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unknown
image
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Visual Words

Descriptor

Grid

Random

Saliency [4]

DoG |7]

11 x 11 Pixel
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Graphical Models for Scenes

Category-specific
Pr(category) @ . @ Dirichlet priors

Pr(category)

Scene o

Pr(topic | Image

Category ©_} (topic | ge)
Scene
@ Topic Category
Visual Visual
Word Word

N |

Pr(word | topic)
K @ Pr(word | scene)

Latent Dirichlet Allocation

O @ @0

C

Texton Model
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Model for Coasts
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I\/Iodel for Forests
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Models for Indoor Scenes
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Scene Recognition Performance

highway
inside of city 0.8
tall building 0.7

street
suburb 0-6
forest 0.5

coast
mountain 04
open country 0.3
bedroom 0.9

kitchen
livingroom 0.1

office
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Model Parameters
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Learning Object Appearance Models
via
Transformed Dirichlet Processes

Erik Sudderth

University of California, Berkeley

_ Antonio Torralba H
Joint work e I
with  William Freeman I I

Alan Willsky




« GOAL.: Visually recognize and localize object categories

* Robustly learn appearance models from few examples
» Hierarchical model transfers knowledge among categories

» Nonparametric, Dirichlet process prior gives flexibility



Detecting Objects In Scenes
Slldlng Wmdow Approach |




Scenes, Objects, and Parts

Scene

Objects

l

Parts

!

Features



Outline

Object Recognition with Shared Parts

» Learning parts via Dirichlet processes

» Hierarchical DP model for 16 object categories

Multiple Object Scenes

» Transformed Dirichlet processes
» Part-based models for 2D scenes

» Joint object detection & 3D reconstruction




Describing Objects with Parts

HIGHT
KIGE

MOUTH

Pictorial Structures
Fischler & Elschlager, IEEE Trans. Comp. 1973

Cascaded SVM Detectors
Heisele, Poggio, et. al., NIPS 2001

Constellation Model Model-Guided Segmentation
Fergus, Perona, & Zisserman, CVPR 2003 Mori, Ren, Efros, & Malik, CVPR 2004



Counting Objects & Parts

How many parts? How many objects?



From Images to Features
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Maximally Stable Linked Sequences
Harris Corners Extremal Regions of Canny Edges

* Some invariance to lighting & pose variations
* Dense, multiscale, over-segmentation of image



A Discrete Feature Vocabulary

2
SIFT Descriptors /i [ TN Ql% N
- Normalized histograms ([ 33=1 —>

of orientation energy nETO2 % %
» Compute ~1,000 word megs gradents o 1w 2008

dictionary via K-means
wyz ___, appearance of

feature i in image |

 Map each feature to

nearest visual word Vjj — 2D positionof
feature i in image j




Generative Model for Objects

ONe®

0.

& For each feature:

» Randomly choose one part
» Sample from that part’s feature distribution

RMCH

oMe

<

S|

For each image: Sample a reference position

EME




Objects as Mixture Models

* For a fixed reference position, our generative
model is equivalent to a finite mixture model:

k(W) ) (vji pi + Py Ni)

k

p(wj?,z ‘O )- Z 0y
¢ k=1

Feature Pr(part) ‘
appearance Feature Pr(appearance | part)
position Pr(position | part)

 How many parts should we choose?
» Too few reduces model accuracy
» Too many causes overfitting & poor generalization



Dirichlet Process Mixtures

p(z) = Y mpf (x| 6g)

k=1

* Dirichlet processes define a prior distribution
on weights assigned to mixture components:

0 1
— —_—_——e
\\ _J

Y U ~- _J

(%

7]'3 Y .......
T = Bk H (1 —5) o concentration
(=1 parameter

B ~ Beta(1l, a)

Stick-Breaking Construction: Sethuraman, 1994



Why the Dirichlet Process?

oo
p(z) = ) mf (x| 0f)
k=1
Nonparametric ;é No Parameters II.I..'_
 Model complexity grows as data observed:

» Small training sets give simple, robust predictions
» Reduced sensitivity to prior assumptions

Flexible but Tractable
 Literature showing attractive asymptotic properties

* Leads to simple, effective computational methods
» Avoids challenging model selection issues



Objects as Distributions

0
p(wji,viilps) = D mpeng(wipd N (vis; pg + 05, Ni)

| ] =T 1
Feature  Feature Pr(appearance | part) Pr(position | part)

appearance  position

» Parts are defined by parameters, which
encode distributions on visual features:

* Objects are defined by distributions on the
infinitely many potential part parameters:

GO) = 3 m16(6,6;) 7 ~ Stick(a)
k=1



Dirichlet Process Object Model

Part-based object model
sampled from DP prior:

G ~ DP(a, H)

L

(& &)

G(0) = ) m6(0,60:)
=1

T ~ Stick{o)

For each of N features,
sample part parameters:

8;; ~ G(6)

Sample multinomial
feature appearance:

wij; ~ Mji(w)

0, ~ H

I

For each of J
images, sample a
reference position:

pj ~ N (p; ¢)

- Sample Gaussian

Nfj| feature position:

vji ~ N (v; i + pj, Aji)

05i = {75 Bji» Nii}



Learning DPs: Gibbs Sampling

Part Scale &
Visual Sparsity

(insensitive)

Sample I
Integrate parameters
defining feature distributions Q _ Sample

Or. = {Mk 141, N}

Image Scale
(insensitive)

Sample assignments
clustering features to parts

(wjs, vji) — kj

N|J

Dirichlet processes have many desirable analytic properties,
which lead to efficient Rao-Blackwellized learning algorithms



Decomposing Faces into Parts

Images



Generallzmg Across Categorles

Can we transfer knowledge from one object category to another?



Learning Shared Parts

* Objects are often locally similar in appearance

* Discover parts shared across categories
» How many total parts should we share?
» How many parts should each category use?



Hierarchical DP Object Model




Hierarchical DP Object Model

Discrete Data:
Teh et. al., 2004




» Caltech 101 Dataset (Li & Perona) » Bikes from Graz-02 (Opelt & Pinz)
* Horses (Borenstein & Ullman) » Google...
« Cat & dog faces (Vidal-Naquet & Ullman)



Visualization of Shared Parts

o

Pr(position | part)

Pr(appearance | part)




Visualization of Shared Parts

O

Pr(position | part)

Pr(appearance | part)




Visualization of Shared Parts

Pr(position | part)

"../__\-—-. = N T £ Py

Pr(peafance | part)




Visualization of Part Densities

MDS Embedding of Pr(part | object)



Visualization of Part Densities

Wheelchair
Llama Body
Horse Face
Llama Face
Cow Face
Dog Face
Leopard Face
Cougar Face
Cat Face
Cannon
Bicycle
Motorbike
Leopard Body
Horse Body
Rhino Body
Elephant Body

Hierarchical Clustering of Pr(part | object)



Detection Task




Detection Rate

Detection Results

0.2 - Position & Appearance, HDP
== Position & Appearance, DP
0.1 = = = Appearance Only, HDP

= = = Appearance Only, DP

 <p— Shared Parts

more accurate than

Modeling feature positions
Improves shared detection, but
hurts unshared detection

0 0.1 0.2 0.3
False Alarm Rate

0.4

6 Training Images per Category

(ROC Curves)



Detection Rate

Detection Results

- Position & Appearance, HDP
== Position & Appearance, DP
0.1 = = = Appearance Only, HDP

= = = Appearance Only, DP

0 0.1 0.2 0.3 0.4
False Alarm Rate

6 Training Images per Category
(ROC Curves)

Average Area Under ROC

0.95
0.9
0.85
0.8
0.75 Position & Appearance, HDP
- Position & Appearance, DP
= = = Appearance Only, HDP
= = = Appearance Only, DP
0.7 :

5 10 15 20 25 30
Number of Training Images

Detection vs. Training Set Size
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Sharing

Number of Global Parts
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Recognition Task
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Detection Rate

Recognition Results
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Outline

Object Recognition with Shared Parts

» Learning parts via Dirichlet processes

» Hierarchical DP model for 16 object categories

Multiple Object Scenes

» Transformed Dirichlet processes
» Part-based models for 2D scenes

» Joint object detection & 3D reconstruction




ervised Learning
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Object vs. Visual Categories

Supervised

Unsupervised

* Assume training data contains object category labels
» Discover underlying visual categories automatically



|

Multiple Object Scenes

« How many cars are there?
« Where are those cars in the scene?

Standard dependent Dirichlet process models (Gelfand et. al., 2005) inappropriate



Spatial Transformations

 Let global DP clusters model objects
in a canonical coordinate frame

» Generate images via a random
set of transformations:

T((w, N);p) = (u+ p, \)

1 1

Parameterized family  Shift cluster from canonical
of transformations coordinate frame to object
location in a given image

Layered Motion Models (wang & Adelson, Jojic & Frey)
Nonparametric Transformation Densities (Learned-Miller & Viola)



A Toy World: Bars & Blobs




Transformed Dirichlet Process




Importance of Transformations

--------




 How many cars are there? Dirichlet Processes
« Where are those cars in the scene? Transformations



Global

Density
Object category
Part size & shape

Transformation prior

Transformed

Densities
Object category
Part size & shape
Instance locations

2D Image
Features

Appearance
Location

Visual Scene TDP
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Street Scene Visual Categories
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IONS

Street scene segmentatia
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« “Bag of features” model, ignores feature positions
* Inferior segmentations, cannot count objects



Segmentation Performance
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Objects & 3D Reconstruction

Green «— Near
Red «— Far

An Office Scene

* Given 3D structure, segmentation is easier
* |dentifying objects regularizes depth estimation



Office Scene Training Images

Objects at Multiple Scales

Computer Screens
Desks
Bookshelves



3D Structure fron}z Stereo

ut {meters)y
Reference (left) Image Potential Matches Depth Densities
AN A\
§ | 0
N Depth = : :
\“' Disparity

Overhead View



Greedy Depth Es

Green «—» Near
Red «— Far




Global Density

Object category u¥ o |
Part size & shape - | 88
Transformation prior . -
Gy Fy
Transformed Densities
Object category ) gs
Part size & shape ! - ﬂﬂ
Transformed locations -
Gf e ot FE
3D Scene Features
Object category | o .
3D Location B LR IE
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2D Image Features
Appearance Descriptors
2D Pixel Coordinates




Single-Part Office Scene Model
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Multi-Part Office Scene Model

(Global classes

Computer Screen .- .
Desk Pims

Background Bookshelves
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Stereo Test Image I







Ongoing Work: Context

Screen

Keyboard lEEE

* Developed fixed-order contextual scene model
» Extension to Transformed DP model is an open problem
* Needed: Richer models for background scene structure



Conclusions

Transformed Dirichlet Processes allow...
> flexible transfer of knowledge
among related object categories

» robust learning from small,
partially labeled datasets

» an integrated view of object
recognition & 3D reconstruction

» potential scaling of nonparametric
methods to complex domains




Today

Sudderth guest lecture:

e Constellation Models (Fergus)

* Unsupervised Object Discovery with pLSA (Sivic)
* Scene Models (Li)

* Transformed Models (Sudderth)

Daphna Buschsbaum student presentation:
 pLSA models of activity (Neibles)

Moreels guest lecture:

* A probabilistic formulation of voting / SIFT
(Moreels)



Unsupervised Learning of
Human Action Categories
Using Spatial-Temporal

Words

Juan Carlos Niebles, Hongcheng
Wang, Li Fel-Fel

Daphna Buschsbaum student presentation







Goal: Automatically Categorize or
Localize Different Actions

moving cameras
non-stationary background
moving target

multiple activities




Overview




Approach

* Generative model
— Bag of (spatio-temporal) video words
— Actions are distributions over words
— Videos are distributions over actions
— Based on topic modeling of documents
 pLSA
* Unsupervised learning of video “topics”
(actions)
— Use to categorize actions
— Use to localize actions within video sequences




Interest Point Detector

* From Piotr Dollar, Vincent Rabaud,
Garrison Cottrell, and Serge Belongie,
2005




Dollar et. al.




e 0= spatial extent

« 1= temporal extent

Interest points
Centered at local maxima
Of R

Dollar et. al.




Interest Point Detector

Dollar et. al.




Cuboids

A cuboid (or right prism) of data is extracted aro
und each feature point (local maximum of the re

sponse function). Each cuboid has spatial and te
mporal extend

Dollar et. al.




Cuboids

« Size of the cuboid is set to contain most of the
volume that contributed to the response function at
that interest point; cuboids have a side length = six
times the scale at which they were detected.

Dollar et. al.




Feature/\Word Representation

« Flatten cuboids into single vector. Approaches tried:
— Brightness gradients
— Optical flow
— Gradient histograms

« PCA
« Cluster into “types”




Feature/\Word Representation

 Flatten cuboids

Niebles et. al.
— Optical flow

— Gradient histograms




Generative Topic Model
(Video pLSA)




Learning Topics/Actions

Fitting Model:

 Distribution of words per action
— Common across all videos

 Distribution of actions per video
— Video specific

* Use Expectation Maximization algorithm to
find values that maximize:




Experiments

« KTH human motions data
— 6 classes performed by 25 actors
— 3 actors used to learn video word vocabulary

— Leave one out cross-validation (learn model on 24
actors, test on 25 for all actors)

« SFU figure skating data
— 3 classes, 7 actors
— Learn video word vocabulary from 6 actors
— Leave one out cross-validation




Categorization

* Similar to learning, but with distribution
of words per action p(w;|z,) fixed:

e Classified as:




Categorization Results




Categorization Results




| ocalization




Localization Results
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Sudderth guest lecture:

e Constellation Models (Fergus)

* Unsupervised Object Discovery with pLSA (Sivic)
* Scene Models (Li)

* Transformed Models (Sudderth)

Daphna B. student presentation:

* pLSA models of activity (Neibles)

Moreels guest lecture:

* A probabilistic formulation of voting / SIFT
(Moreels)



Features-based Object Recognition

Pierre Moreels

UC Berkeley, Feb. 17, 2009



The recognition continuum
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BMW logo

Categories

means of transportation

Aujigerren



Applications

Autonomous
navigation

|dentification, Security.



QOutline

Problem setup

Features

Coarse-to-fine algorithm
Probabilistic model
Experiments

Conclusion



The detection problem
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New scene (test image)

Models from
database

Find models and their pose (location, orientation...)



Hypotheses — models + positions
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New scene (test image)

, , Models from
© = affine transformation

database



Matching features
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New scene (test image)

" Models from
— Set of correspondences = assignment vector database



Features detection



Image characterization by features

Features = high information content

‘locations in the image where the signal
changes two-dimensionally’ C.Schmid

Reduce the volume of information

— [Sobel 68]

— Diff of Gaussians [Crowley84]
— [Harris 88]

— [Foerstner94]

— Entropy [Kadir&Brady01]

features



Correct vs incorrect descriptors matches

45 T T

s i |cOrTECt) |
= p{d|incorrect)

probability

15

d(x1,x2)

Mutual Euclidean distances
in appearance space of
descriptors

1 2 3 4 5 6 7 38
0O 0.1 0.1 0.1 0.7 0.5 0.5 0.8
0.1 0 0.1 0.2 07 0.6 0.5 0.9
0.1 0.1 0 00 05 04 05 08
0.1 0.2 0.0 0 05 04 05 09
0.7 0.7 0.5 0.5 0 05 0.8 1.0
0.5 06 04 04 05 0 04 09
0.5 0.5 0.5 05 08 04 0 1.0
0.8 09 0.8 09 1.0 09 1.0 0

- Pixels intensity within a patch
- Steerable filters [Freeman1991]
- SIFT [Lowe1999,2004]

- Shape context [Belongie2002]

- Spin [Johnson1999]

- HOG [Dalal2005]
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Past work on evaluation of features

« Use of flat surfaces, ground truth easily established
* In 3D images appearance changes more !

[Schmid&Mohr00] [Mikolajczyk&Schmid 03,05,05]



Cameras

Database : 100 3D objects

objects set - top view

Bantanas

Car2

Canch

Desk

Grandfather Clock

Horse

Motorcycle

Fokbot

Fock

Teddy Bear

Ethernet Hub Hicama Fepper Glokbe Fireagple Rooster
Sander SprayCan Slinky Monster Fire Extinguisher Frame Hat

Clamp

EgqgFlant

Lamnp

ouse

Filter

Shioe

‘J

Boxing Glowve

Collector Cup

Pops



Testing setup

~—— depth constraints

= r_b\

o C.e 02 from prior knowledge

E L . about turntable

35

© |C —— epipolar constraints
T N

)

O

o 1%

@ °

Q@ A‘l = 9

Q1A B 2

[Moreels&Perona ICCV05, IJCV07]
Used by [Winder, CVPRO7]

REFERENCE VIEW

TEST VIEW



fraction of stable keypoints
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Results — viewpoint change

comparative ROCs: best detector for each descriptor
0.15

K = diff of gaussians / PCASift - 226466 features tested
s == hessian affine / sift - 184150 features tested
— diff of gaussians / steer. filters - 265015 features tested

—— hessian affine / shape context - 199695 features tested

- - diff of gaussians / rot. invariants - 273937 features tested

0 0.2 0.4 0.6 0.8
false alarm rate

comparative stability: best detector for each descriptor
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comparative stability: best detector for each descriptor
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Stability results - descriptor: sift

0.8 T T T T T I T
— multiscale Harris / sift
= multscale Hessian f sift
— diff of gaussans / sift
= diff of gaussans | PCASIft
—— harris affine / sift
=+ hessian affine / sift
- Kadir / sift

"\ mser /! sift
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[ap]
T

fraction of stable keypoints
=
=Y
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viewpoint change (camera rotation angle in degrees)

4
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2D vs. 3D

Stability results - descriptor: sift

fraction of stable keypoints
(=] =

S =)}

T

[=]
1]

— multscale Harris ! sift
= multscale Hessian / sift
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Features matching algorithm



Features assignments

New scene (test image) Interpretation
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Coarse-to-fine strategy
We do it every day!
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Coarse-to-Fine detection

Progressively narrow down focus on correct
region of hypothesis space

Reject with little computation cost irrelevant
regions of search space

Use first information that is easy to obtain
Simple building blocks organized in a cascade

Probabilistic interpretation of each step



Coarse data : prior knowledge

« Which objects are likely to be there, which pose are
they likely to have ?

unlikely
situations




Model voting

Search tree (appearance space —
leaves = database features)

4 votes

e
-
-
-
——
-
-
-
-
-
-
-

~ O vote
New scene (test image)

* Models from
. database



Use of rich geometric information

/ (X1,Y1,51:61)

(X2,Y2:52:9,)

u& Transform predicted by this match:
b * AX =Xy"Xy

fo * Ay =Y,y

g

S

model center

e AS=5s,/s;
e AD=0,-0,

7

)
.lS' Each match is represented by a dot in
the space of 2D similarities (Hough space)
5&0“
)

o
@&\é AO > Ay

[Lowe1999,2004] /\ AX

AS




Coarse Hough transform

Prediction of position of model Model
center after transform

The space of transform
parameters is discretized into
‘bins’

Coarse bins to limit boundary
issues and have a low false-
alarm rate for this stage

votes collected by each bin.

We count the number N of

Test scene



Correspondence or clutter ? PROSAC

[Fischler 1973]
[Chum&Matas 2005]

« Similar to RANSAC - robust
statistic for parameter estimation

» Priority to candidates with good
guality of appearance match

« 2D affine transform : 6 parameters

— each sample contains 3
candidate correspondences.

Output of PROSAC : pose transformation
+ set of features correspondences




Probabilistic model



Score of an extended hypothesis

Features

assignments observed features

Hypothesis:
model + position geometry + appearance
\ / /database of models
Fku

H v |F ﬂf ..... ( FMI) constant

Votes per model pose bin
\ (Hough transform)

P(F.H.V|M)= P(H|M) P(N\H M)eP(N\N H, M)

-.,_.." .._.,..- '-...“ .',...-..‘.-n-------....-.....,_““‘: ...................

..............

Consistency

Prior on assignments (after PROSAC)
(before actual observations)

Prior on model
and poses



Consistency

Consistency between observations and predictions from hypothesis

P(FIV,N.N.H M) =[] pr(filH. friy) - ] pog(fo)
V(i)#0 V(4)=0

Common-frame approximation : parts are

conditionally independent once reference position
of the object is fixed. [Lowe1999,Huttenlocher90,Moreels04]

———————— >
[0

8 : -

& % Ry

o =

5 S

E pi’?l(l‘l“*:‘{"ﬁf} S Hprn(xi|{_}rn}

& g i position of
8 @) model m

D.O.F. = O(Parts?) D.O.F. = O(Parts)



Consistency

Consistency between observations and predictions from hypothesis

P(FIWV.N.N.H.M)= 1] pr(filH. fvi)) - ] pog(£i)

V (i) #0 Vi(i)=0
f f‘.:- f
l@<- _____ - Q l@ ————— —>
foreground features ‘null’ assignments
appearance geometry appearance geometry

Consistency - appearance Consistency - geometry



Learning foreground & background densities

* Ground truth pairs of matches are
collected

% =
AUXILIARY VIEW (),
1

« (Gaussian densities, centered on
the nomimal value that
appearance / pose should have
according to H

« Learning background densities is
easy: match to random images.

[Moreels&Perona, IJCV, 2007]



Experiments



(log,, scale)

number of votes

An example

After model voting stage

5 10 15 20
modelindex

25

30

k

voles

l0g,o(number of votes)

[3,]

o
»

After Hough transform, before Prosac

Il incorrect sets of matches
Il correct sets of matches for fish
Bl correct sets of matches for teddy bear

Il correct sets of matches for beer bottle | |

10 20 30 40 50
Hough bin index (sorted by decreasing population)
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log(number of votes)

o o o o
=~ o

o M

Li

An example

After Prosac

Bl in

correct sets of matches

Il correct sets of matches for fish
[0 correct sets of matches for teddy bear
Hll correct sets of matches for beer bottle

40 50

Hough bin ;ndex (same mdlces as in panel d.)

log(score)

1 2 3 4 5
Hough bin index (empty bins have been discarded)




Number of hypotheses

Efficiency of coarse-to-fine processing
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Giuseppe Toys database — Models

5-103.JFG
4 - 100.JFPG

3-10JFG

7-106.JFG el

11 -114.JFPG 12-115.JFG 13- 116.JFPG 15-120JFG

18- 125.JFG 18- 126.JFG

21-14.JPG 23-17.JPG
22 - 16.PG saEh g5 =il

61 objects, 1-2 views/object



Test scenes

S9UDD5-153] Ko13|buls-1s8] Aol 0u-159]

Giuseppe Toys database

141 test scenes



Home objects database — Models

sabewl aseqeleq

49 objects, 1-2 views/object



Home objects database — Test scenes

Test-scenes

141 test scenes



Results — Gluseppe Toys database

undetected objects: 05 . RC.)C cur?fe G|L|15epp-:? Toysldatablase
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Results — Home objects database
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=
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detection rate (100 = all objects found)

0.05

ROC curve Objects from Home database
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— Lowe, threshold on probabilistic score
= = |Lowe, threshold on number of votes

| I | | |

|
06 08 1 12 14 16 18 2
false alarm rate (per query image)



Faillure mode

Test image hand-labeled
before the experiments
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Test

Test — Text and graphics

comparative ROC curves textured objects
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Training

Test

Test — no texture

o
=+]
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o
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detection rate (1 = all objects detected)
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comparative ROC curves textureless objects

our approach
e | owe/ERSP system
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Dataset

c)

Moreels & Perona

a)

Database images

Test scene

Test — Clutter

Test scene

known object
identified

b)

Lowe

Test scene

known object
identified

d)
same training || different training
texture texture
Lowe Moreels ||Lowe Moreels
false alarms ||111 14 30 12
>30 matches ||61 & 3 3
wrong texture||11 4 30 12




Conclusions

Coarse-to-fine strategy prunes irrelevant search
branches at early stages.

Probabilistic interpretation of each step.

Higher performance than Lowe, especially in
cluttered environment.

Front end (features) needs more work for smooth
or shiny surfaces.



Today

Sudderth guest lecture:

e Constellation Models (Fergus)

* Unsupervised Object Discovery with pLSA (Sivic)
* Scene Models (Li)

* Transformed Models (Sudderth)

Daphna B. student presentation:

* pLSA models of activity (Neibles)

Moreels guest lecture:

* A probabilistic formulation of voting / SIFT
(Moreels)



