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Scale selection [Lindeberg]
Affine-invariance [Mikolajczyk and Schmid]
MSER — Stable Regions [Matas et al.]

SURF -Fast Approximate SIFT [Bay et al.]
Spatio-Temporal Features [Laptev]

Self-Similarilty [Shectman and Irani]

Bonus: Temporal Self-Similarity [Laptev ECCV’08]
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Introduction

» Wide baseline matching




Introduction

» Recognition of specific objects

Rothganger et al. ‘03 Lowe et al. ‘02 Ferrari et al. ‘04




Introduction

» Object class recognition




So what's the novelty?

Loca! ciiaracter




History

History of interest point detectors goes a
long way back...

Corner detectors
Blob detectors
Edgel detectors




So what's the novelty?

_ocAl criaracter
_evel of Invariance

_ocal invariant features: a new paradigm
Not just a method to select interesting locations
In the image, or to speed up analysis

But rather a new image representation, that
allows to describe the objects / parts without
the need for segmentation




Properties of the ideal feature

Local: features are local, so robust to occlusion
and clutter (no prior segmentation)

Invariant (or covariant)

Robust: noise, blur, discretization, compression,
etc. do not have a big impact on the feature

Distinctive: individual features can be matched to
a large database of objects

Quantity: many features can be generated for
even small objects

Accurate: precise localization
Efficient: close to real-time performance




The need for invariance
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Terminology: Invariant or Covariant?

When a transformation is applied to an image,
an invariant measure remains unchanged.

a covariant measure changes in a way
consistent with the image transformation.

Terminology: ‘detector’ or
‘extractor’




Geometric transformations

Translation

Euclidean (translation + rotation)
Similarity (transl. + rotation + scale)
Affine transformations

Projective transformations
For planar patches:

g

similarity

PN
/ ™ projective

o’ / -
[ Acanslation \/
—F
-7
Euclidean p /ﬁ/tﬁ);e




Photometric transformations

Modelled as a linear transformation:
scaling + offset




Disturbances

Noise

Image blur
Discretization errors
Compression artefacts

Deviations from the mathematical model
(non-linearities, non-planarities, etc.)

Intra-class variations




How to cope with transformations?

Exhaustive search
Invariance
Robustnhess




Exhaustive search

» Multi-scale approach
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Exhaustive search

» Multi-scale approach
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Exhaustive search

» Multi-scale approach
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Exhaustive search

» Multi-scale approach
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|lnvariance

» Extract patch from each image individually




|lnvariance

Integration, e.q.
moment invariants, ...
Heuristics, e.g.
Difference of intensity values for photom. offset
Ratio of intensity values for photom. scalefactor
Selection and normalization, e.g.
Automatic scale selection (Lindeberg et al., 1996)

Orientation assignment
Affine normalization (‘deskewing’)
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Figure 1. The amplitude of first order normalized derivatives as

function of scale for sinusoidal input signals of different frequency
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Figure 2. Scale-space signatures of the trace and the determinant of the normalized Hessian matnx computed for two details of a sunflower
image; (left) grey-level image, (middle) signature of (trace M., L)?. (right) signature of (det H,,, L), (The signatures have been computed

at the central poinf in each image. The horizontal axis shows effective scale, essentially the loganithm of the scale parameter, whereas the scaling
of the vertical axis is linear in the normalized operator response.)




original image scale-space maztma of (V... L}*

Figure 3. Nommalized scale-space maxima computed from an image of a sunflower field: (top left): Orginal image. (top nght): Circles
representing the 250 normalized scale-space maxima of (trace Hpgm L) having the strongest normalized response. (bottom left): Circles

representing scale-space maxima of (trace HpgmL ) superimposed onto a bright copy of the original image. (bottom right): Cormresponding
results for scale-space maxima of (det M, L)7.



Automatic scale selection
Lindeberg et al., 199




Automatic scale selection
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Automatic scale selection




Automatic scale selection




Automatic scale selection




Automatic scale selection




Automatic scale selection




Automatic scale selection




Automatic scale selection




Automatic scale selection




Automatic scale selection




Automatic scale selection

Normalize: rescale to fixed size




Orientation assignment
Lowe, SIFT, 1999

Compute orientation histogram
Select dominant orientation
Normalize: rotate to fixed orientation
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Overview of existing detectors

Hessian & Harris
Lowe: DoG

Mikolajczyk & Schmid:
Hessian/Harris-Laplacian/Affine

Tuytelaars & Van Gool: EBR and IBR
Matas: MSER

Kadir & Brady: Salient Regions
Others
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Hessian detector (Beaudet, 1978)

Hesslan determinant




Hessian (Beaudet, 1978)
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Harris detector (Harris, 1988)

Second moment matrix / autocorrelation matrix

1. Image derivatives
dx(op), 9y(op),




Harris detector (Harris, 1988)

» Second moment matrix / autocorrelation matrix

1. Image derivatives
dx(op), 9y(op),

2. Square of )
derivatives o




Harris detector (Harris, 1988)

» Second moment matrix / autocorrelation matrix

1. Image '
derivative |

2. Square of "-f A
derivatives =

3. Gaussian
filter g(o))




Harris detector (Harris, 1988)

» Second moment matrix
autocorrelation matrix

1. Image
derivatives
1\ L] 2
2. Square of - ' l
- - (
derivatives =

( |

3. Gaussian ! '\ /
filter g(g;)

1g()| = g(}f)

4. Cornerness function - both eigenvalues are strong

5. Non-maxima suppression

'6(1@




Harris detector (Harris, 1988)
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Overview of existing detectors

Hessian & Harris
Lowe: DoG

Mikolajczyk & Schmid:
Hessian/Harris-Laplacian/Affine

Tuytelaars & Van Gool: EBR and IBR
Matas: MSER

Kadir & Brady: Salient Regions
Others




Scale invariant detectors
Laplacian of Gaussian
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Scale invariant detectors
Laplacean of Gaussian




Lowe’s DoG

Difference of Gaussians as approximation of
the Laplacian of Gaussian




Lowe’s DoG

Difference of Gaussians as approximation of
the Laplacian of Gaussian
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Lowe’s DoG




Appreciation

scale-invariant
g simple, efficient scheme

@ Iaplacian fires more on edges than
determinant of hessian




Overview of existing detectors

Hessian & Harris
Lowe: DoG

Mikolajczyk & Schmid:
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Mikolajczyk & Schmid

Harris Laplace
essian Laplace
arris Affine
essian Affine




Mikolajczyk: Harris Laplace

1. Intialization:
Multiscale Harris
corner detection

Computing Harris function  Detecting local maxima




Mikolajczyk: Harris Laplace

1. Inirtialization: Multiscale Harris corner
detection

2. Scale selection based on Laplacian

Harris points

Harris-Laplace points




Mikolajczyk: Harris Affine

» Based on Harris Laplace
» Using normalization / deskewing

. rescale




Mikolajczyk: Harris Affine

» Initialization with Harris Laplace
» Estimate shape based on second moment matrix
» Using normalization / deskewing
» Iterative algorithm




Mikolajczyk: Harris Affine

Detect multi-scale Harris points

Automatically select the scales
Adapt affine shape based on second order moment matrix

Refine point location




Mikolajczyk: affine invariant
Interest points

. . g ) . . =
Initialization: Multiscale Harris corner
detection

Iterative algorithm
Normalize window
Select integration scale
Select differentiation scale
Detect spatial localization
Compute new affine transformation
Go to step 2. (unless stop criterion)
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Hesslian Affine




Figure 4. Diagram illustrating the affine normalization based on the
second moment matrices. Image coordinates are transformed with
matrices ME“E and ME]"'I. The transformed images are related by
an orthogonal transformation.



(c)

Figure 12. Robust matching: Harris-Laplace detects 190 and 213 points in the left and right images, respectively (a). 58 points are initially
matched (b). There are 32 inliers to the estimated homography (c), all of which are correct. The estimated scale factor is 4.9 and the estimated
rotation angle is 19 degrees.



(a)

(c)

Figure 13. Robust maiching: (a) 78 pairs of possible matches are found among the 287 and 325 points detecied by Harris-Affine. (b) 43
points are maiched based on the descriptors and the cross-correlation score. 27 of these matches are correct. (c) 27 are inliers to the estimated
homography. All of them correct.



(¢) Scale change of 1.7 and viewpoint change of 5(°

Figure 14.  Correctly matched images using scale and affine regions. The displayed matches are the inliers to a robustly estimated homography
or fundamental matrix. There are (a} 118 maiches (b) 34 maiches and (c) 22 matches. All of them are correct.



Appreciation

Scale or affine invariant
Detects blob- and corner-like structures
@ large number of regions

@ well suited for object class recognition
Q less accurate than some competitors




Overview of existing detectors

Lowe: DoG
Lindeberg: scale selection

Mikolajczyk & Schmid:
Hessian/Harris-Laplacian/Affine

Tuytelaars & Van Gool: EBR and IBR
Matas: MSER

Kadir & Brady: Salient Regions
Others




Tuytelaars: edge-based regions

1. Select Harris corners




Tuytelaars: edge-based regions

1. Select Harris corners =
2. Find Canny edges -
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Tuytelaars: edge-based regions

. Select Harris corners
. Find Canny edges

. Evaluate relative affine
Invariant parameter along
edges

i = [abs( pP(s,) P-Ppi(s)Dds




Tuytelaars: edge-based regions

Select Harris corners
Find Canny edges

Evaluate relative affine
Invariant parameter along
edges

Construct 1-dimensional
family of parallelograms




Tuytelaars: edge-based regions

Select Harris corners
Find Canny edges

Evaluate relative affine
Invariant parameter along
edges

Construct 1-dimensional
family of parallelograms

Select parallelogram
based on local extrema of
Invariant function




Tuytelaars: edge-based regions

» Variant for straight
lines...




Edge-based regions




Edge-based regions




Appreciation

Affine Invariant
Detects corner-like structures
@ Works well In structured scenes

@ Doesn'’t cross edges/object contours
Q Depends on presence of edges




Tuytelaars: intensity-based regions

. Select intensity extrema

. Consider intensity profile along rays

. Select maximum of invariant function f(t) along each ray
. Connect all local maxima

. Fitan ellipse
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Appreciation

Affine Invariant
Detects ‘blob’-like structures
@ Accurate regions

@ Especially good on printed material




Overview of existing detectors

Lowe: DoG
Lindeberg: scale selection

Mikolajczyk & Schmid:
Hessian/Harris-Laplacian/Affine

Tuytelaars & Van Gool: EBR and IBR
Matas: MSER

Kadir & Brady: Salient Regions
Others




Vg Robust Wide Baseline Stereo from
o Maximally Stable Extremal Regions

J. Matas'?, O. Chum', M. Urban', T. Pajdla’

'Center for Machine Perception. Dept. of Cybernetics, CTU Prague, Karlovo ndm 13. CZ 121 35
“CVSSP, University of Surrey, Guildford GU2 7XH, UK
[matas, chum]@cmp.felk.cvut.cz

Ahstract

The wide-baseline stereo problem, i.e. the problem of establishing correspon-
dences between a pair of images taken from different viewpoints is studied.
A new set of image elements that are put into correspondence. the so
called extremal regions, is introduced. Extremal regions possess highly de-
sirable properties: the set is closed under 1. continuous (and thus projective)
transformation of image coordinates and 2. monotonic transformation of im-
age intensities. An efficient (near linear complexity) and practically fast de-
tection algorithm (near frame rate) is presented for an affinely-invariant stable
subset of extremal regions, the maximally stable extremal regions (MSER).



Matas: Maximally Stable Extremal
Regions (MSERS)

» Based on watershed algorithm




Matas: Maximally Stable Extremal
Regions (MSERS)

» Based on watershed algorithm




Matas: Maximally Stable Extremal
Regions (MSERS)

» Based on watershed algorithm




Matas: Maximally Stable Extremal
Regions (MSERS)

» Based on watershed algorithm
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Matas: Maximally Stable Extremal
Regions (MSERS)

» Based on watershed algorithm
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» Based on watershed algorithm
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» Based on watershed algorithm




Matas: Maximally Stable Extremal
Regions (MSERS)

» Based on watershed algorithm
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Matas: Maximally Stable Extremal
Regions (MSERS)

» Based on watershed algorithm
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» Based on watershed algorithm
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» Based on watershed algorithm




Matas: Maximally Stable Extremal
Regions (MSERS)

» Based on watershed algorithm
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Matas: Maximally Stable Extremal
Regions (MSERS)

» Based on watershed algorithm
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» Based on watershed algorithm




Matas: Maximally Stable Extremal
Regions (MSERS)

» Based on watershed algorithm




Matas: Maximally Stable Extremal
Regions (MSERS)

» Order regions

» Maximally Stable Extremal
Region:
local minimum of




Maximally Stable Extremal Regions




Appreciation

Affine Invariant
Detects blob-like structures
Simple, efficient scheme
High repeatabllity
Fires on similar features as IBR

(regions need not be convex, but need
to be closed)

Sensitive to image blur




Overview of existing detectors

Lowe: DoG
Lindeberg: scale selection

Mikolajczyk & Schmid:
Hessian/Harris-Laplacian/Affine

Tuytelaars & Van Gool: EBR and IBR
Matas: MSER

Kadir & Brady: Salient Regions
Others




Kadir & Brady’s salient regions

» Based on entropy




Kadir & Brady’s salient regions

Maxima in entropy, combined with inter-
scale saliency

Extended to affine invariance

Saliency over scale




Salient regions




Appreciation

Scale or affine invariant
Detects blob-like structures
@ very good for object class recognition

@ limited number of regions
& slow to extract




Overview of existing detectors

Lowe: DoG
Lindeberg: scale selection

Mikolajczyk & Schmid:
Hessian/Harris-Laplacian/Affine

Tuytelaars & Van Gool: EBR and IBR
Matas: MSER

Kadir & Brady: Salient Regions
Others




Other feature detectors

Edge-based detectors
Jurie et al., Mikolajczyk et al

Combinations of small-scale features
Brown & Lowe

Vertical line segments
Goedeme et al.

Speeded-Up Robust Features (SURF)
Bay et al.




SURF: Speeded Up Robust Features

Herbert Bay!. Tinne Tuytelaars®, and Lue Van Gool'?

! ETH Zurich
{bay, vangool}@vision.ee.ethz.ch
Katholieke Universiteit Leuven
{Tinne.Tuytelaars, Luc.Vangool}@esat.kuleuven.be

Abstract. Inthis paper, we present a novel scale- and rotation-invariant
interest point detector and descriptor, coined SURF (Speeded Up Ro-
bust Features). It appraximates or even outperforms previously proposed
schemes with respect to repeatability, distinetiveness, and robustness, yet
can be computed and compared much faster.

This is achieved by relying on integral images for image convolutions; by
building on the strengths of the leading existing detectors and descriptors
(in casw, using a Hessian matriv-based measure for the detector, and a
distribution-based descriptor); and by simplifying these methods to the
esgential. This leads to a combination of novel detection, description, and
matching steps. The paper presents experimental results on a standard
evaluation set, as well as on imagery obtained in the context of a real-life
object recognition application. Both show SURFs strong performance.



Methodology

* Using integral images for major speed up

— Integral Image (summed area tables) is an intermediate
representation for the image and contains the sum of gray scale pixel
values of image

— Second order derivative and Haar-wavelet response

O,
D B S=A-B-C+D
= S Cost four
I(x)=-22> 14 ) additions
L | operation
[ A only

Slide Credit: Bay, Tuletaars, Van Gool, Wyman



Detection

Hessian-based interest point localization

L
L

H =

L..(x,y,0) is the Laplacian of Gaussian of the image
It is the convolution of the Gaussian second order derivative with the

image

Lindeberg showed Gaussian function is optimal for scale-space analysis

This paper argues that Gaussian is overrated since the property that no
new structures can appear while going to lower resolution is not proven in

2D case

XX

Xy

L
L

Xy

Yy

Slide Credit: Bay, Tuletaars, Van Gool, Wyman



Detection

* Approximated second order derivatives with
box filters (mean/average filter)

y¥ Xy

124
Slide Credit: Bay, Tuletaars, Van Gool, Wyman



Detection

* Scale analysis with constant image size

Scale

9 x9,15x 15,21 x21,27x27 =239x39,51x51 ...

1st octave 2nd gctave 125
Slide Credit: Bay, Tuletaars, Van Gool, Wyman



Detection

* Non-maximum suppression and interpolation

scales

Slide Credit: Bay, Tuletaars, Van Gool, Wyman




Description

* Orientation Assignment

Circular neighborhood of y
radius 6s around the interest point I
(s = the scale at which the point was detected) -~ S
o .
/

X response y response

A

Side length = 4s
1Cost 6 operation to
compute the response

Slide Credit: Bay, Tuletaars, Van Gool, Wyman



Description

e Dominant orientation

— The Haar wavelet responses are represented as vectors

— Sum all responses within %
a sliding orientation
window covering an angle e S
of 60 degree / )

— The two summed response
yield a new vector

— The longest vector is the
dominant orientation

— Second longest is ...
ignored

Slide Credit: Bay, Tuletaars, Van Gool, Wyman



Description

Split the interest region up into 4 x 4 square sub-regions with
5 x 5 regularly spaced sample points inside

Calculate Haar wavelet response d, and d,

Weight the response with a Gaussian kernel centered at the
interest point

Sum the response over each sub-region for d, and d,
separately = feature vector of length 32

In order to bring in information about the polarity of the
intensity changes, extract the sum of absolute value of the
responses = feature vector of length 64

Normalize the vector into unit length

Slide Credit: Bay, Tuletaars, Van Gool, Wyman



Description

$lax
2 dy
> ldy]

> dx
2 ldx]|
2. dy
2. ldy|

130
Slide Credit: Bay, Tuletaars, Van Gool, Wyman



Description

 SURF-128

— The sum of d, and |d, | are computed separately
ford,<0andd, >0

— Similarly for the sum of d, and |d, |
— This doubles the length of a feature vector

Slide Credit: Bay, Tuletaars, Van Gool, Wyman



Matching

* Fast indexing through the sign of the Laplacian for the underlying interest
point
— The sign of trace of the Hessian matrix
— Trace=1L, +L,

l no match l

* Either 0 or 1 (Hard thresholding, may have boundary effect ...)

* Inthe matching stage, compare features if they have the same type of
contrast (sign)

Slide Credit: Bay, Tuletaars, Van Gool, Wyman



Table 1. Thresholds, number of detected points and calculation time for the detectors
in our comparison. {First image of Graffiti scene, 800 x 640),

cetector threshold|nb of pointsjcomp. time (msec)
Fast-Hessian 600 1418 120
Hessian-Laplace] 1600 1975 650
Harris-Laplace | 2500 1664 1800
DoG default 1520 400

Table 2. Computation times for the joint detector - deseriptor implementations, tested

on the frst image of the Graffiti sequence. The thresholds are adapted in order to
detect the same number of interest points for all methods. These relative speads are

also representative for other images.

U-SURF|SURF|SURF-128|SIF'T
time (ms):| 255 354 391 1036

133
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Quantitative comparisons

Evaluation of interest points (Schmid & Mohr, ICCV98)
Evaluation of descriptors (Mikolajczyk & Schmid, CVPRO3)

Evaluation of affine invariant features (Mikolajczyk et al.,
PAMIO5)

Evaluation on 3D objects (Moreels & Perona, ICCV05)
Evaluation on 3D objects (Fraundorfer & Bischof, ICCV05)

Evaluation in the context of object class recognition
(Mikolajczyk et al., ICCV05)




Evaluation criteria: repeatability

Repeatablility rate : percentage of corresponding points




Evaluation criteria: repeatability

Repeatablility rate : percentage of corresponding points

#correspondences = 3
#detected =5
Repeatability=60%




Evaluation criteria: repeatability

Repeatablility rate : percentage of corresponding points

homography




Evaluation criteria: repeatability

Repeatablility rate : percentage of corresponding points
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Quantitative evaluation

Repeatability often lower than 50%

Performance often depends on scene type,
different detectors are complementary

Number of detected features varies greatly
Accuracy of detected features varies
Performance depends on application
Speed




Qualitative Comparison

Difficult to declare a ‘winner’
Different methods are complementary

‘Best features’ depends on application:
Level of invariance needed
Number/density of features wanted

Typical scene types
Accuracy of features
Generalization power of features




Matching Local Self-Similarities across Images and Videos

Eli Shechtman Michal Irani
Dept. of Computer Science and Applied Math
The Weizmann Institute of Science

76100 Rehovot, Israel

Abstract

We present an approach for measuring similarity be-
tween visual entiies (images or videos) based on match-
ing internal self-similarities. What is correlated across
images {or across video sequences) is the internal lay-
out af local self-similarities (up to some distortions), even
though the parterns generating those local self-similarities
are quite different in each of the images/videos. These in-
ternal self-similarities are efficiently caprured by a com-
pact local “self-similarity descriptor”, measured densely
throughout the imagefvideo, ar mudtiple scales, while ac-
counting for local and global geometric distortions. This
gives rise to maiching capabilities of complex visual data,
including detection of objects in real cluttered images using
only rough hand-sketches, handling rextured objects with
no clear boundaries, and detecting complex actions in clut-
tered video data with no prior learning. We compare our
measure to commonly used image-based and video-based
similarity measures, and demonstrate its applicability to ab-
Ject detection, retrieval, and action detection.



Figure 1. These images of the same object (a heart) do NOT share
common image properiies (colors, rexiures, edges), but DO share
a similar geometric lavowr of local internal self-similarities.



Input image Correlation Image
surface descriptor




i 8 i .

Figure 3. Corresponding “Self-similarity descriptors™.  We
show a few corresponding points (1,2,3) across two images of the
same object, with their “self-similarity”descriptors. Despite the
large difference in photometric properties between the two images,
their corresponding “self-similarity” descriptors are quite similar.



Figure 4. Object detection. (a) A single template image (a flower).
(b) The images against which it was compared with the corre-
sponding detections. The continuous likelihood values above a
threshold (same threshold for all images) are shown superimposed
on the grav-scale images, displaying detections of the template at
correct locations (red corresponds to the highest values).



(b)
Figure 6. Detection using a sketch. (a) A hand-sketched tem-
plate. (b) The images against which it was compared with the
corresponding detections.



Image 1 Image 2 Our Method GLOH Shape Mutual
(template) (extended SIFT) Context Information
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Abstract. Local image features or interest points provide compact and abstract representations of pattemns in an
image. In this paper, we extend the notion of spatial interest points into the spatio-temporal domain and show how
the resulting fieatures often reflect interesting events that can be wsed for a compact representation of video data as
well as for interpretation of spatio-temporal events.

To detect spatio-temporal events, we boild on the idea of the Harris and Firstner interest point operators and detect
local structures in space-time where the image values have significant local variations in both space and time. We
estimate the spatio-temporal extents of the detected events by maximizing a normalized spatio-temporal Laplacian
operator over spatial and temporal scales. To represent the detected events, we then compute local, spatio-temporal,
scale-invariant N-jets and classify each event with respect to its jet descriptor. For the problem of human motion
analysis, we illustrate how a video representation in terms of local space-time features allows for detection of
walking people in scenes with occlusions and dynamic cluttered backgrounds,

Keywords: interest points, scale-space. video interpretation, matching, scale selection
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Motivation

Goal:
Interpretation
of dynamic
scenes

... hon-rigid object motion ... camera motion ... complex background motion

Common methods: Common problems:

e Camera stabilization . = Complex BG motion

e Segmentation ?

e Changes in appearance
- Tracking - /

= No global assumptions about the scene




Space-time

No global assumptions =

Consider local spatio-temporal neighborhoods




Space-time

No global assumptions =

Consider local spatio-temporal neighborhoods




Applications: preview

Sequence
alignment

Periodic
motion
detection

Action
recognition




Questions

How to find informative neighborhoods?

(ICCV’03)
How to deal with transformations in the data? cpPr04)

How to describe the neighborhoods? (SCMVP’04)

How to use obtained features in applications? (ccv'o3s)
(ICPR’04)
(ICCV’05)



Questions

How to find informative neighborhoods?

(ICCV’03)

How to deal with transformations in the data? (cprPr’o4)

How to describe the neighborhoods? (SCMVP’04)

How to use obtained features for applications? (crPr'04)
(ICPR’04)
(ICCV’05)




Space-Time interest points

What neighborhoods to consider?

Disti . High image Look at the
: ":’]gnc::]'ved = variation in = distribution of
nelighborhoods space and time the gradient
Definitions:
f: RZ xR — R Original image sequence
g(z,y,t; ) Space-time Gaussian with covariance > € SPSD(3)

Le(+; X) = f(-) % ge(+; )  Gaussian derivative of f

VL = (L, Ly, Lt)T Space-time gradient
Hrx Hzy Mzt
p(s ) = VL(; D)(VL(; DN #g(; sX) = | Bay by Byt
_ Hxt MKyt  Htt
Second-moment matrix



Space-Time interest points

Properties of (-} X):

,u(~; Z) defines second order approximation for the local
distribution of ¥/, within neighborhood 3
rank(p) =1 = 1D space-time variation of f, e.g. moving bar

rank(p) =2 = 2D space-time variation of [, e.g. moving ball

rank(u) = 3 = 3D space-time variation of f, e.g. jumping ball

Large eigenvalues of u can be detected by the
local maxima of H over (X,y,t):

H(p; ¥) = det(u(p; £)) + ktrace3(u(p; X))
= A1A2d3 — k(A1 + A2+ A3)°

(similar to Harris operator [Harris and Stephens, 1988])



Space-Time interest points

Motion event detection




Space-Time interest points

Motion event detection: complex background




Space-Time interest points

appearance/

accelerations :
disappearance

split/merge




Relations to psychology

... The world presents us with a continuous stream of
activity which the mind parses into events. Like
objects, they are bounded; they have beginnings,
(middles,) and ends. Like objects, they are structured,
composed of parts. However, in contrast to objects,
events are structured in time..."

Tversky et.al.(2002), in "The Imitative Mind”

e Events are well localized in time and are
consistently identified by different people.

e The ability of memorizing activities has
shown to be dependent on how fine we
subdivide the motion into units.



Questions

How to find informative neighborhoods? (ICCV’03)

How to deal with transformations in the data? (cprPr’o4)

How to describe the neighborhoods? (SCMVP’04)

How to use obtained features for applications? (crPr'04)




Questions

How to find informative neighborhoods? _ (ccvo3)

How to deal with transformations in the data? (ccvo3)

How to describe the neighborhoods? (SCMVP’04)

How to use obtained features for applications? (1cpPr’04)

Scale and frequency transformations

NS D
40,

25
Mg .




Spatio-temporal scale selection

Image sequence f can be influenced by changes in
spatial and temporal resolution

point — g1,/ —
transformation p P

0
0
covariance 02 0 0
— ol — Q=2 — 2
transformation 2 =ppr =5 >/ = O o O2
O



Spatio-temporal scale selection

Want to estimate S from the data

Estimate spatial and temporal

) = Scale selection
extents of image structures

Scale-selection in space [Lindeberg 1JCV’'98]

{ V2 ormL(p; 0) = 0%(Laa(p; o) + Lyy(p; o))
O (v%orm[’(p; 00)) =0

Extension to space-time:

UQ&TQbLazaz(p; 00,70)
2a,.-2 :

UQQ’TQSLyy(pr 00,70)

o<t Ly (p; 00, 70)

Find normalization
parameters a,b,c,d for



Spatio-temporal scale selection

Analyze spatio-temporal blob

g(xay7t; 0-[277_[2) — : Q

3 4.2 eX P ( o ('CUQ —I_ y2 ) / 2 O-lz - t2 / 27-[2 ) ” ;*»\“u\\ : e ol
\/( 27) 0 17 et

time

Extrema constraints
(UzaTQbLa:az)gz =0 (UQCTQstt)/Uz —
(UQaTQbex)/TQ — (UQCTQstt)/TQ =0

give parameter values
a=1, b=1/4, c=1/2, d=3/4



Spatio-temporal scale selection

= The normalized spatio-temporal Laplacian operator
V2orml = 0271/ 2(Lay + Lyy) + 073/ Ly

Assumes extrema values at positions and scales
corresponding to the centers and the spatio-
temporal extent of a Gaussian blob

(Vnzorm L)E’Z




Space-Time interest points

H depends on p and, hence, on £ and scale transformation S
= adapt interest points by iteratively computing:

e Scale

estimation (00,70) = argmaXO',T(v’)%O’)“mL(p; Z))Q (=)

e Interest point
detection H(p; ) = det(u(p; X)) + ktrace>(u(p; X)) (=)

Fix X

For each detected interest point p; (=)
Estimate S(o,7) ()

Update covariance 3/ — g2

Re-detect p; using 3’

Iterate 3-6 until convergence of s r and p;

o0 hWDhPE




Spatio-temporal scale selection

Stability to size
changes, e.qg.
camera zoom



Spatio-temporal scale selection

Selection of

: temporal scales
i captures the

- frequency of

events




Questions

How to find informative neighborhoods? _ (ccvo3)

How to deal with transformations in the data? (ccvo3)

How to describe the neighborhoods? (SCMVP’04)

How to use obtained features for applications? (cprr'04)

Scale and frequency transformations




Questions

How to find informative neighborhoods? _ (ccvo3)

How to deal with transformations in the data? cpr'0o4)

How to describe the neighborhoods? (SCMVP’04)

How to use obtained features for applications? (cprr'04)

Transformations due to camera motion




Questions

How to find informative neighborhoods? _ (ccvo3)

How to deal with transformations in the data? cpr'0o4)

How to describe the neighborhoods? (SCMVP’04)

How to use obtained features for applications? (crPr'04)

Transformations due to camera motion

Moving camera Stationary camera

/time /time




Galilean transformation

point
transformation

covariance
transformation

Cxx Cxy Cxt
> =ppl =g 1¥/¢T X = Cxy Cyy Cyt
Cxt Cyt Cit



Adapted interest points

Stabilized camera Stationary camera

Interest
points

Velocity-adapted
interest points

N b ?
\\ 100 \\‘ i d
\ 120"\// 20
time




Questions

How to find informative neighborhoods? (ICCV’03)

How to deal with transformations in the data? (ccvo3)

How to describe the neighborhoods? (SCMVP’04)

How to use obtained features for applications? (crPr'04)




Questions

How to find informative neighborhoods? (ICCV’03)

How to deal with transformations in the data? accvo3)

How to describe the neighborhoods? (SCMVP’04)

How to use obtained features for applications? (crPr'04)




Features from human actions




Space-time neighborhoods

boxing

hand waving




Local space-time descriptors

A common choice for local descriptors is a local jet
(Koenderink and van Doorn, 1987) computed from spatio-
temporal Gaussian derivatives (here at interest points pj)

di — (Lx’7 Ly” Lt’7 Lx/x/, L:U’ylv Lx’t’7 cees Lt’t’t’t’)

Covariance-normalization to obtain transformation-invriant
Descriptors:

L gy (3 £) = 0 (35 (99 (-1 ) * )
where (9,1, 0y, a1 = >~ 1/2(q,, By, O) T



Use of descriptors: Clustering

= Group similar points in the space of image
descriptors using K-means clustering

= Select significant clusters

Clustering

\

/

Classification




Use of descriptors: Clustering

= Group similar points in the space of image
descriptors using K-means clustering

= Select significant clusters

Classification



Use of descriptors: Matching

= Find similar events in pairs of video sequences




Other descriptors better?

Consider the following choices:

Spatio-temporal neighborhood

Multi-scale spatio-
temporal derivatives

Projections to orthogonal
bases obtained with PCA

Histogram-based
descriptors



Multi-scale derivative filters

Derivatives up to order 2 or 4; 3 spatial scales; 3 temporal scales:
= 9x3x3=81or 34 x 3 x 3 = 306 dimensional descriptors




PCA descriptors

Compute normal flow or optic flow in locally adapted spatio-
temporal neighborhoods of features

Subsample the flow fields to resolution 9x9x9 pixels

Learn PCA basis vectors (separately for each flow) from
features in training sequences

Project flow fields of the new features onto the 100 most
significant eigen-flow-vectors:




Position-dependent histograms

= Divide the neighborhood 2 j of each point pj into M"™3
subneighborhoods, here M=1,2,3

= Compute space-time gradients (Lx, Ly, Lt) T or optic flow
(vx, Vy)T at combinations of 3 temporal and 3 spatial scales

o € {0.500, 00,200}, T € {0.579, 10, 270}

where g, 79 are locally adapted detection scales

= Compute separable histograms over all
subneighborhoods, derivatives/velocities and scales




Questions

How to find informative neighborhoods? (ICCV’03)

How to deal with transformations in the data? accvo3)

How to describe the neighborhoods? (SCMVP’04)

How to use obtained features for applications? (crPr'04)




Questions

How to find informative neighborhoods? _ (ccvo3)

How to deal with transformations in the data? (ccvo3)

How to describe the neighborhoods? (SCMVP’04)

How to use obtained features for applications? cpPr'04)

Action recognition




Evaluation: Action Recognition

Database:

walking running jogging handwaving handclapping boxing

» Represent sequences as ”"Bags of Local Features”
= Compute similarity of two sequences as

D(s1,80) = Greedyl\/latch({fll, 1} {f21, s 1)

= Use e.g. Nearest Neighbor Classifier (NNC) to classify
test actions given a set of training actions



Recognition rate (%)

100

Results: Recognition rates

Scale-adapted features

B~ OF-PD2HIST | o o '
| % sTG-PD2HIST [P—b—]
-©- MS4Jets : :
| == STG-PCA | o S ]
-~ OF-PCA | |
2 3 4 5 6 7
leave-X-out

Recognition rate (%)

Scale and velocity adapted

features
100

L M s Yo v

STG-PCA |~ SR N
STG-PD2HIST |
OF-PD3HIST
MS4Jets
OF-PCA

2 3 4
leave-X-out

Yov+ 4




Results: Comparison

9
QD
IS
(- ‘ ‘ : :
_g g0l : : : S
= - OF-PD2HIST, ED
g 5ol “©- Global-STG-HIST-MS, SP |
ko —¥— Global-STG-HIST-ZI, 32
a0l < Spatial-4Jets, SP |
kA
1 2 3 4 5 6 7

leave—X—out

Global-STG-HIST: Zelnik-Manor and Irani CVPR’01
Spatial-4Jets: Spatial interest points (Harris and Stephens, 1988)



Confusion matrices

Position-dependent histograms
for space-time interest points

=y
& \Z\(}Q \Z&'D’

N 3.1 0.0 0.0 0.0 0.0
o 8
- 18.8 0.0 0.0 0.0

Q’o"‘“ 0.0 0.0
R 00 0.0 0.0

» 00 0.0 0.0 0.0

Local jets at spatial
Interest points

o

3.1

& &
0.0 0.0
0.0 0.0
0.0 0.0
6.2 21.9

219 188
04 312



39.2

43 74
T4 S
s
BT 6T 627 627 608 88
39.2



Confusion matrices

SR A N S SR

o - 37 00 00 00 00 & - 111 00 00 00 00
& 00 - 0.0 143 00 00 &S 143 - 143 00 00 00
*b& 0.0 0.0 0.0 - 0.0 0.0 & 00 00 167 - 0.0 0.0
L 00 00 00 00 - 0.0 K 00 00 00 00 - 00
& 00 0.0 0.0 0.0 0.0 - \2@'5‘ i 00l 29 00 -

\2\-&\
STG-PCA, ED STG-PD2HIST, ED
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S € & & e L g oo © &
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Questions

How to find informative neighborhoods? _ (ccvo3)

How to deal with transformations in the data? (ccvo3)

How to describe the neighborhoods? (SCMVP’04)

How to use obtained features for applications? cpPr'04)

Action recognition




Questions

How to find informative neighborhoods? _ (ccvo3)

How to deal with transformations in the data? (ccvo3)

How to describe the neighborhoods? (SCMVP’04)

How to use obtained features for applications? gccvo3)

Action recognition

Sequence alignment




Seqguence alignment

Represent the gait pattern
using classified spatio-temporal
points corresponding the one
gait cycle

Define the state of the model X
for the moment to by the
position, the size, the phase
and the velocity of a person:

Xto — (CE, Y, S, 97 Uz, Vy, US)

Associate each phase 6 with a h
silhouette of a person extracted

from the original sequence



Seqguence alignment

Given a data sequence with the current moment to,
detect and classify interest points in the time window of
length tw: (to, to-tw)

Transform model features according to X and for each

model feature fmi=(Xm.i, Ym.i, tm.i, Om.i, Tm.,i, Cm,i) compute
Its distance d; to the most close data feature fqj, Cq,j=Cm,i:

di = ¢ﬁ<<xm,i —24) + Wm,i — Ya,j)?) + 2 (tmi — ta;)?

™m,? m,?

Define the "fit function” D of model configuration X as a
sum of distances of all features weighted w.r.t. their "age”
(to-tm) such that recent features get more influence on the
matching

to—tm 4
D(X) = X} di exp(—=—"%)



Sequence alignment

At each moment to minimize D with respect to X using
standard Gauss-Newton minimization method

X = argminy D(X,tp)

1 data features
B odel features




Experiments




Experiments




Questions

How to find informative neighborhoods? _ (ccvo3)

How to deal with transformations in the data? (ccvo3)

How to describe the neighborhoods? (SCMVP’04)

How to use obtained features for applications? cpPr'04)

Action recognition

Sequence alignment




Questions

How to find informative neighborhoods? _ (ccvo3)
How to deal with transformations in the data? (ccvo3)

How to describe the neighborhoods? (SCMVP’04)

How to use obtained features for applications? ccvos)

Action recognition

Sequence alignment

Periodic motion detection




Periodic motion detection

Periodic views can be approximately treated as
stereopailrs

{8t .y SmM}

Fundamental matrix
F' is generally
time-dependent

{St—|—np7 e Sm—l—np}

—> Periodic motion estimation ~ sequence alignment



Periodic motion detection

1. Corresponding points have
similar descriptors

2. Same period p = At
for all features

3. For constant gross motion of the object, spatial
arrangement of features across periods satisfy

epipolar constraint: [mt]'F:Et_I_p —0

= Use RANSAC to estimate F and p



Periodic motion detection

Original space-time features RANSAC estimation of F,p




Periodic motion detection

Original space-time features RANSAC estimation of F,p

period p=31.00
neriod p=33.00




Periodic motion detection

Original space-time features RANSAC estimation of F,p




Periodic motion segmentation

Assume periodic objects are planar

= Periodic points can be related by a dynamic homography:

vy = Hxpy, with linear in time
H(t)=I4p(vn' —n'vI)/d —HaTvI/d




Periodic motion segmentation

Assume periodic objects are planar

= Periodic points can be related by a dynamic homography:

vy = Hxpy, with linear in time
H(t)=I4p(vn' —n'vI)/d —HaTvI/d
— RANSAC estimation of Hand p




Periodic motion segmentation

Object-centered stabilization

BREEF]




Periodic motion segmentation




Periodic motion segmentation




Questions

How to find informative neighborhoods? __ (iccvo3)
How to deal with transformations in the data? (ccvo3)

How to describe the neighborhoods? (SCMVP’04)

How to use obtained features for applications? ccvos)

Action recognition

Seqgquence alignment

Periodic motion detection
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Summary

Detection of local space-time interest points
Adaptation to scale and velocity transformations

Evaluation of local space-time descriptors

Applications: action recognition, sequence alignment,
periodic motion detection, ... ?



Matching Local Self-Similarities across Images anfl Videos

Eli Shechtman Michal Irani
Dept. of Computer Science and Applied Math
The Weizmann Institute of Science

76100 Rehovot, Israel

Abstract

We present an approach for measuring similarity be-
tween visual entiies (images or videos) based on match-
ing internal self-similarities. What is correlated across
images {or across video sequences) is the internal lay-
out af local self-similarities (up to some distortions), even
though the parterns generating those local self-similarities
are quite different in each of the images/videos. These in-
ternal self-similarities are efficiently caprured by a com-
pact local “self-similarity descriptor”, measured densely
throughout the imagefvideo, ar mudtiple scales, while ac-
counting for local and global geometric distortions. This
gives rise to maiching capabilities of complex visual data,
including detection of objects in real cluttered images using
only rough hand-sketches, handling rextured objects with
no clear boundaries, and detecting complex actions in clut-
tered video data with no prior learning. We compare our
measure to commonly used image-based and video-based
similarity measures, and demonstrate its applicability to ab-
Ject detection, retrieval, and action detection.



Input image Correlation Image

surface descriptor
()
Input Correlation Video
. Space-time :
patch volume descriptor
)
space-
time
- | region
-
(b) X

Figure 2. Extracting the local “*self-similarity’” descriptor.
(a) at an image pixel. (b) at a video pixel.







(not on the reading list, but a nice ending to the
lecture...)

Appears at ECCV 2008

Cross-View Action Recognition from Temporal
Self-Similarities

Imran N. Junejo, Emilie Dexter, Ivan Laptev and Patrnick Perez

INRIA Bennes - Bretagne Atlantique
35042 Hennes Cedex - FRANCE

Abstract. This paper concerns recognition of human actions under view
changes. We explore self-similarities of action sequences over time and
observe the striking stability of such measures across views. Building
upon this key obeervation we develop an action deseriptor that captures
the structure of temporal similarities and dissimilarities within an ac-
tion sequence. [espite this descriptor not being strictly view-invariant,
we provide intuition and experimental validation demonstrating the high

stability of self-similarities under viee choneae Soll viemilarien: doceringar.
puted from different image feat
stead, it relies on weak peometric properties and combines them with

e e =1 (Actually, a global feature...more
be used in & complemencary | APPropriate for last week...)
neither structure recovery nor mu

ma-:hm-r- I.ﬂil.rningl for E-Fﬁn:‘:iint eross- ';:im'!.' a:-:Lic-n. n‘-fu:-gnit.jun. T!1r* meet En::-:l



Multi-view action recognition

Motion helps solving multi-view problems?
—— |

|:> Verify hypothesis and test methods in controlled multi-view
settings

camera 4
H

camera 2
camera 1 camera 2 r-.rd.h_.l .I

bl

camera 5

camem 1 camem 2

camera 2
3 -

1}1{: up actlan

atch” action

cEnnerE 3




Multi-view action recognition

What we DO NOT want to do:

e Do not want to search for
multi-view point
correspondence --- Non-rigid
motion, cloth changes, ... -->
It’s Hard!

e Do not want to identify
body parts. Current
methods are not reliable
enough.

e YEt, want to lear
from one view
and to recognize ac
different views



Temporal self-similarities

ldeas:

e Cross-view matching is hard but cross-time matching
(tracking) is relatively easy.

e Measure self-(dis)similarities across tinD(t1,t2), t1,t> € (1,...,T)

Example: D(t1,t2) = ||P1 — P>l|2

Distance matrix / self-similarity matrix (SSM):

time

time




Temporal self-similarities: Multi-views

Example:
Golf swing
from the
side and top
views

time

time time
Cross-View Action Recognition from Temporal Self-Similarities
l. Junejo, E. Dexter, I. Laptev, and P. Perez, ECCV 2008




Temporal self-similarities: MoCap

“bend” action

I ﬁ I

“kick” action

ﬁ @\

person 1

person 2

person 1

person 2




Temporal self-similarities: Video

Ty
i
—_ .
=5
o
un




Self-similarity descriptor

. lime A
Properties of SSM: / l
+ SPSD i ’h_]“
e O-valuaed diagonal - b
e uncertainty increases |
with the distance from . .
the diagcat =t — t1 y /
W
§ [ .,_hi,m,
e Define a local histogram A
descriptor h; for each n

point i on the diagonal.
e Action recognition:

® Sequence alignment:  Visual vocabulary for h
DP for two sequences of * BoF representation of
descriptors {hi}, {h;} {hi}

* SVM



Multi-view alignment
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Multi-view action recognition: MoCap




Single-view action recognition: Video

MANOARAAN

bend jack  jump pjump TN side skip  walk  wave

A T I LA A T R
bend - 00 00 00 00 00 00 0D 0.0 bend - 00 00 00 Co 00 00 00 00
jack  gq - 00 00 00 00 00 01 00 jack 45 - o0 00 C0 00 00 08 00

ume gp oo - 00 00 00 111 111 00 me o pn po - 11 c0 1Ll 111 00 00
e g oo oo [ o0 o0 oo o 0o M™ gg oo oo [ 0 oo 0 00 o

onoogp o0 oo o0 [ o e o0 o oo 00 or oo [ co 00 00 0
sde  gp o0 00 00 00 - 00 01 00 sde  pp 00 00 00 (O - 00 00 00
kP go oo 200 00 100 oo [N or oo kP opp o0 125 00 o oo [N oo oo
wak 90 g0 oo 00 00 00D 00 - 0.0 wak o9 o0 00 00 0 00 00 - 0.0

wave g0 g0 oe 00 oo oo oo o) [N vUP o0 o0 e w0 o o e o [N

OF-based self-similarities Trajectory-based self-
similarities



®

®

tralning views

Multi-view action recognition: Video

camera 1

camera 4

camera

5

test views Eﬁ+ o A
& @ @& F & &
e check-watch 13 80 07 00 00 40
cami - Cross—ams : 07 00 07 00 00 07
cam? - soratch-head g5 oo [ 20 93 20 13 47 100 20 00
sit-down g7 47 33 BBl 13 200 33 07 W7 00 00
cams3 - - - - - - getup 35 33 73 o7 @ o7 o0 (333 27 07 o0
camd - - - - 143 - wen—areund 33 13 g0 273 oo [B6W 33 20 27 00 33
walk 100 07 o0 27 o7 27 [ 1@ 13 o0 120
€ams 391 8.8 - 4.2 - 432 wave 33 07 67 20 147 o0 o7 [ 87 o0 00
All - - - - - - punch g7 g0 60 60 07 27 o0 13 [l &7 o0
bick pg o0 o0 o0 o0 o0 00 oc oo [ oo
AT ATl pick-up 35 g0 00 27 07 47 133 o7 oo oo [
hog 57.8%
of 65.9% caml | cam2 cam3 | camd | cam5b
oftofix4ofy 66.5% This paper T6.4%|77.6% 73.6%|68.8%(66.1%
of+hog TL.O9% | Weinland et al. [12] 3D|| 65.4% | 70.0% 54.3% |66.0% | 33.6%
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Properties

No correspondence across views needed
No body-part identification needed
Relies on assumptions of person detection and tracking

SSMs can be computed from different and
complementary image measurements: trajectories, OF,
HOG, etc.

Provides only approximate view-invariance but under
weak assumptions



Today

Scale selection [Lindeberg]
Affine-invariance [Mikolajczyk and Schmid]
MSER — Stable Regions [Matas et al.]

SURF -Fast Approximate SIFT [Bay et al.]
Spatio-Temporal Features [Laptev]

Self-Similarilty [Shectman and Irani]

Bonus: Temporal Self-Similarity [Laptev ECCV’08]



Feb 17t — Generative approaches (Constellation, Topic
Models, etc.) — Sudderth guest lecture

R. Fergus, P. Perona, and A. Zisserman, "Object class recognition by unsupervised scale-invariant
learning," in IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol.
2, 2003, pp. 264-271. Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1211479

J. Sivic, B. C. Russell, A. A. Efros, A. Zisserman, and W. T. Freeman, "Discovering object categories in
image collections," in Proceedings of the IEEE International Conference on Computer Vision (ICCV),
2005. http://publications.csail.mit.edu/tmp/MIT-CSAIL-TR-2005-012.ps

J. Niebles, H. Wang, and L. Fei-Fei, "Unsupervised learning of human action categories using
spatial-temporal words," International Journal of Computer Vision. 79(3): 299-318. 2008 Available:
http://dx.doi.org/10.1007/s11263-007-0122-4 (Buchsbaum presentation)

E. Sudderth, A. Torralba, W. Freeman, and A. Willsky, "Describing visual scenes using transformed
objects and parts," International Journal of Computer Vision, vol. 77, no. 1, pp. 291-330, May
2008. Available: http://dx.doi.org/10.1007/s11263-007-0069-5

Optional Readings:

F.-F. Li and P. Perona, "A bayesian hierarchical model for learning natural scene categories," in CVPR
'05: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR'05) - Volume 2. Washington, DC, USA: IEEE Computer Society, 2005, pp. 524-
531. Available: http://dx.doi.org/10.1109/CVPR.2005.16

P. Moreels and P. Perona, "A probabilistic cascade of detectors for individual object recognition,"
European Conference on Computer Vision, vol lll, pp. 426-439, 2008. Available:
http://dx.doi.org/10.1007/978-3-540-88690-7 32




Reminder

Please sign up via email for a paper that you would like
to present or show a demonstration of.

- can show demos next week from this week’s papers (e.g.,GIST
/ spatial envelope on some images collected around campus)

- but otherwise should show demo on day of paper (could
show Laptev or self-similarity features on Berkeleyish action
examples next week...)

DEADLINE FEB 17t

I’ll expect two demos or one presentation per person
taking the course for credit...

N.B., a demo is more than showing author’s videos or canned
matlab example...must try on something new or extend...



