CS294-43: Visual Object and Activity Recognition

Prof. Trevor Darrell

Feb 3rd: Global Features

Today

- Demo from last week *reminder: email me with desired paper demo or pres.*
- Background / Overview
- Histograms of edges (Schiele)
- Windowed spectral analysis (Oliva)
- Tiled histograms of edges (Triggs)
- Motion History Images (Bobick)
- Rectified Flow Descriptors (Efros)
- Differential Geometry Signatures (Shah)

Feature extraction: global appearance

Simple holistic descriptions of image content

- » grayscale / color histogram
- vector of pixel intensities

Eigenfaces: global appearance description

An early appearance-based approach to face recognition

Generate lowdimensional representation of appearance with a linear subspace.

Project new images to "face space".

Recognition via nearest neighbors in face space

Turk & Pentland, 1991

Slide credit: K. Grauman, B. Leibe

Feature extraction: global appearance

• Pixel-based representations sensitive to small shifts

 Color or grayscale-based appearance description can be sensitive to illumination and intra-class appearance variation

Cartoon example: an albino koala

Gradient-based representations

 Consider edges, contours, and (oriented) intensity gradients

Slide credit: K. Grauman, B. Leibe

Gradient-based representations: Matching edge templates

• Example: Chamfer matching

Input image

Edges detected

Distance transform

Best match

At each window position, compute average min distance between points on template (T) and input (I).

$$D_{chamfer}(T,I) \equiv \frac{1}{|T|} \sum_{t \in T} d_I(t)$$

Gavrila & Philomin ICCV 1999 Slide credit: K. Grauman, B. Leibe

Gradient-based representations: Matching edge templates

Chamfer matching

Hierarchy of templates

Gradient-based representations: Rectangular features

Compute differences between sums of pixels in rectangles Captures contrast in adjacent spatial regions Similar to Haar wavelets, efficient to compute

- The representation and matching of pictorial structures Fischler, Elschlager (1973)
- Face recognition using eigenfaces M. Turk and A. Pentland (1991).
- Human Face Detection in Visual Scenes Rowley, Baluja, Kanade (1995)
- Graded Learning for Object Detection Fleuret, Geman (1999)
- Robust Real-time Object Detection Viola, Jones (2001)
- Feature Reduction and Hierarchy of Classifiers for Fast Object Detection in Video Images Heisele, Serre, Mukherjee, Poggio (2001)

Slide credit: A. Torralba

Histograms of oriented gradients

• SIFT, D. Lowe, ICCV 1999

Shape context

Belongie. Malik. Puzicha. NIPS 2000

Count the number of points inside each bin, e.g.:

Count = 10

The Compact representation of distribution of points relative to each point

• Dalal & Trigs, 2006

Histograms of Gradients, ca. 1996

 Schiele and Crowley

Object Recognition using Multidimensional Receptive Field Histograms

Bernt Schiele and James L. Crowley

LIFIA/GRAVIR, 46 Ave Félix Viallet, 38031 Grenoble, France

Abstract. This paper presents a technique to determine the identity of objects in a scene using histograms of the responses of a vector of local linear neighborhood operators (receptive fields). This technique can be used to determine the most probable objects in a scene, independent of the object's position, image-plane orientation and scale. In this paper we describe the mathematical foundations of the technique and present the results of experiments which compare robustness and recognition rates for different local neighborhood operators and histogram similarity measurements.

 Freeman and Roth

Orientation Histograms for Hand Gesture Recognition

William T. Freeman and Michal Roth Mitsubishi Electric Research Labs 201 Broadway Cambridge, MA 02139 USA e-mail: {freeman, roth}@merl.com

From: IEEE Intl. Wkshp. on Automatic Face and Gesture Recognition, Zurich, June, 1995.

Abstract

We present a method to recognize hand gestures, based on a pattern recognition technique developed by McConnell [16] employing histograms of local orientation. We use the orientation histogram as a feature vector for gesture classification and interpolation.

This method is simple and fast to compute, and

the special glove. We seek a visually based method which will be free of gloves and wires.

Relying on visual markings on the hands, previous researchers have recognized sign language and pointing gestures [24, 5, 8]. However, these methods require the placement of markers on the hands.

The marking-free systems of [12, 21] can recognize specific finger or pointing events, but not general gestures. Employing special hardware or offling lagrating several researchers have developed and

recognition system

Figure 1: Outline of the recognition system. We apply some transformation T to the image data to form a feature vector which represents that particular gesture. To classify the gesture, we compare the feature fector with the feature vectors from a previously generated training set. For dynamic gesture recognition, the input would be a sequence of images.

Figure 2: Showing the robustness of local orientation to lighting changes. Pixel intensities are sensitive to lighting change. (a) and (b) show the same hand gesture illuminated under two different lighting conditions. The pixel intensities change significantly as the lighting changes. Maps of local orientation, (c) and (d), are more stable. (The orientation maps were computed using steerable filters [10]. Orientation bars below a contrast threshold are suppressed.)

Gradient-based representations

 Consider edges, contours, and (oriented) intensity gradients

- Summarize local distribution of gradients with histogram
 - Locally orderless: offers invariance to small shifts and rotations
 - Contrast-normalization: try to correct for variable illumination

Today

- Background / Overview
- Histograms of edges (Schiele)
- Windowed spectral analysis (GIST)
- Tiled histograms of edges (HOG)
- Motion History Images (Bobick)
- Rectified Flow Descriptors (Efros)
- Differential Geometry Signatures (Shah)

Key Point of Torralba/Oliva Papers

Natural Image statistics depend on the interaction between the observer and the world:

Slide Credit: Torralba, Olivia, J. Huang

Spectral Signatures

Why are Fields, Beaches and Coasts less isotropic than other natural environments?

Slide Credit: Torralba, Olivia, J. Huang

Spatially Localized Statistics

• Windowed FFT

1 m			10 m				100 m					1000 m				10000 m			
٠	۰	٠	٠	¢	\$	\$	\$	¢	٠	۰	•	۰	٠	٠	٠	٠	٠	•	•
Φ	�	�	•	\$	�	�	♦	�	�	�	�	\$	✦	�	✦	\$	�	♦	�
¢	Ф	\$	٩	♠	♠	♣	✦	�	\$	\$	•	�	\$	\$	�	\$			
•	Ф	\$	٥	\$	♦	\$	\$	\$	\$	♦	♦	♦	\$	\$	♦	٩	٨	۶	٠
0	0	0	0	0	\odot	\odot	\odot	Ø	Ø	0	0	0	0	0	0	•	•	•	•
0	\odot	\odot	0	Õ	\odot	Õ	Õ	٢	\odot	0	0	۲	٢	0	0	0	Ø	0	Ô
Õ	õ	Õ	٢	ŏ	Õ	õ	õ	٢	٢	٢	0	0	0	0	0	0	0	0	0
õ	õ	õ	õ	õ	õ	õ	õ	Õ	Õ	Õ	Õ	٢	٢	٢	٢	۵	٢	6	0

Top Row: Man-made environments Bottom Row: Natural environments

• Image statistics become non-stationary as scene scale increases.

Slide Credit: Torralba, Olivia, J. Huang

The Spaial Envelope

Aude Oliva

Brain & Cognitive Sciences Massachusetts Institute of Technology Email: oliva@mit.edu http://cvcl.mit.edu

Spatial Envelope Theory

As a scene is inherently a 3D entity, initial scene recognition might be based on properties *diagnostic of the space* that the scene subtends and not necessarily the objects the scene

contains

"Street"

Degree of clutter, openness, perspective, roughness, etc ...

Oliva et al (1999); Oliva & Torralba (2001, 2002, 2006); Torralba & Oliva (2002,2003); Greene & Oliva (2006, 2008, 2009)

Spatial Envelope Theory of Scene Representation Oliva & Torralba (2001)

Like a *texture*, a scene could be represented by a set of structural dimensions, but describing surface properties of a *space*.

<u>We use a classification task:</u> observers were given a set of scene pictures and were asked to organize them into groups of similar shape, similar global aspect, similar spatial structure.

They were explicitly told to not use a criteria related to the objects or a scene semantic group.

<u>Task:</u> The task consisted in 3 steps: the first step was to divide the pictures into 2 groups of similar shape.

Example: manmade vs. natural structure

Slide Credit: Olivia

<u>Task:</u> The second step was to split each of the 2 groups in two more subdivisions.

manmade vs. natural structure

Task: In the third step, participants split the 4 groups in two more groups.

manmade vs. natural structure

Perceptual Dimensions

Dimensions	%
Naturalness	77
Openness	83
Perspective	53
Size (roughness)	47
Diagonal planes	41
Depth	59
Symmetry	29
Verticalness	18

A vocabulary of global properties

The Spatial Envelope is a combination of global properties describing the scene structure as a whole

Naturalness: principal structure of building blocks

Openness: the sense of enclosure of the space

Expansion: the perspective

Mean depth: the scale of the space

Ruggedness: deviation of the ground plane

Roughness: size of the building blocks

Slide Credit: Olivia

Global Properties: Structure of space

Mean depth

Small volume

large volum

Openness

Expansion

Diagnostic features of Openness & Closedness

Slide Credit: Olivia

"Openness" Diagnostic Features

High degree of Openness

Learning Diagnostic Features

Any scene image has a value along each global property.

• Can we find a set of features that would represent adequately each global property ?

Slide Credit: Olivia

Learning Diagnostic Features

<u>Method</u>: <u>Learning stage</u>: Knowing the rank of 200-500 images along each global property, we learn the linear regression between V_G and rank.

The template (here shown in the spectral domain) is the result of the regression:

it illustrates how each spectral component contributes to a global property. Slide Credit: Olivia

Diagnostic features of Openness

Estimation of Space descriptors

 Method: Linear Regression Analysis: for each space property, we look for a weighting of the spectral components so that we can reproduce the same ordinal ranking as the subjects.

 The spatial envelope property is estimated by a a dot product between the energy spectrum and a template (Discriminant Spectral Template). The DST describes how each spectral component contributes to a space property (e.g. openness).

Slide Credit: Olivia

Estimation of Space descriptor

• Spatial envelope properties are *continuous* perceptual dimensions

Dark: *Openness* features

Light: closeness feature

Windowed Discriminant Template

Expansion

Flat

Space Properties of the Content of the scene

DST

WDST

Stationary distribution of features

Slide Credit: Olivia

Naturalness descriptor

Manmade environments

93%

Natural environments

Center of the axis

Slide Credit: Olivia

Errors

Space Properties of the Shape of the scene

DST **WDST Openness** (Natural) **Openness** (Manmade) **Ruggedness Expansion**

Non-stationary distribution of features

Spatial Envelope Theory of Scene Recognition

Oliva & Torralba (2001). International Journal of Computer Vision.

Global Scene Structure

Hypothesis

Scenes of the same category membership share similar global spatial layout properties

• Hypothesis

Low level features are correlated with spatial properties (e.g. perspective)

Modeling Scene Gist

Scenes from the same category share similar global properties

Categorization of Manmade Scenes

Confusion Matrix (in % using Layout template) : Classification of prototypical scenes (400 / category)

	Highway	Street	City centre	tall building
Highway	91.6	4.8	2.7	0.9
Street	4.7	89.6	1.8	3.4
Centre	2.5	2.3	87.8	7.4
Tall Building	0.1	3.4	8.5	88

Local organization: correct for 86 % images (4 similar images on 7 K-NN)

Categorization of Natural Scenes

Confusion Matrix (in % using Layout template) : Classification of prototypical scenes (400 / category)

	Coast	Countryside	Forest	Mountain
Coast	88.6	8.9	1.2	1.3
Countryside	9.8	85.2	3.7	1.3
Forest	0.4	3.6	91.5	4.5
Mountain	0.4	4.6	3.8	91.2

Local organization: correct for 92 % images (4 similar images on 7 K-NN)

Representing Image Structure

Vector of Global features

Scene Recognition via *texture surface*

Scene Classification from "Texture"

Scene Scale

- "The point of view that any given observer adopts on a specific scene is constrained by the volume of the scene."
- How does the amount of clutter vary against scene scale in man-made environments? In natural environments?

What do Images Statistics say about Depth?

Slide Credit: Torralba, Olivia, J. Huang

Comparing Localized Spectral Signatures and Depth

With increasing depth comes:

- An increase in global roughness for man-made structures
- A decrease in global roughness for natural structures
- Nonuniformity in spatially localized spectral signatures

Examples (man-made)

Examples (Natural)

Some Results

Slide Credit: Torralba, Olivia, J. Huang

(D | category)

Distribution of Scene Categories as a function of mean depth.

Application: Scale Selection

Context in Images

Question: How can these small people possibly affect the image statistics in any significant way??

Object Detection

References

- Torralba and Oliva, Statistics of Natural Image Categories. Network: Computation in Neural Systems 14 (2003) 391-412.
- Torralba and Oliva, Depth Estimation from Image Structure. IEEE PAMI Vol 14, No. 9 (2002).
- Oliva and Torralba, Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope. IJCV 42(3), 145-175 (2001).
- Srivastava, Lee, Simoncelli, Zhu, On Advances in Statistical Modeling of Natural Images. JMIV 18:17-33 (2003)
- Mumford, Pattern Theory: the Mathematics of Perception. ICM 2002. Vol III. 1-3

"Demo"

Computing the Spectrum (Matlab):

Ifft = abs(fftshift(fft2(I,w,h)));

Visualization:

- imshow(log(Ifft)/max(max(log(Ifft))));
- colormap(cool);

FFT(Beach)

FFT(Pittsburgh)

Today

- Background / Overview
- Histograms of edges (Schiele)
- Windowed spectral analysis (GIST)
- Tiled histograms of edges (HOG)
- Motion History Images (Bobick)
- Rectified Flow Descriptors (Efros)
- Differential Geometry Signatures (Shah)

Gradient-based representations: Histograms of oriented gradients (HoG)

Map each grid cell in the input window to a histogram counting the gradients per orientation.

Code available: http://pascal.inrialpes.fr/soft/olt/

Dalal & Triggs, CVPR 2005

Slide credit: K. Grauman, B. Leibe

Slide credit: Dalal, Triggs, P. Barnum

Slide credit: Dalal, Triggs, P. Barnum

- Tested with
 - RGB
 - LAB
 - Grayscale
- Gamma Normalization and Compression
 - Square root
 - Log

Slide credit: Dalal, Triggs, P. Barnum

- Histogram of gradient orientations
 - -Orientation -Position

- Weighted by magnitude

$$\begin{array}{ll} L1 - norm: v \longrightarrow v/(||v||_1 + \epsilon) & L1 - sqrt: v \longrightarrow \sqrt{v/(||v||_1 + \epsilon)} \\ L2 - norm: v \longrightarrow v/\sqrt{||v||_2^2 + \epsilon^2} & L2 - hys: L2 \text{-norm, plus clipping at .2 and renomalizing} \end{array}$$

Slide credit: Dalal, Triggs, P. Barnum

Slide credit: Dalal, Triggs, P. Barnum

Slide credit: Dalal, Triggs, P. Barnum

Slide credit: Dalal, Triggs, P. Barnum

Slide credit: Dalal, Triggs, P. Barnum

Today

- Background / Overview
- Histograms of edges (Schiele)
- Windowed spectral analysis (GIST)
- Tiled histograms of edges (HOG)
- Motion History Images (Bobick)
- Rectified Flow Descriptors (Efros)
- Differential Geometry Signatures (Shah)

Movement: primitive motion

Movements are:

- atomic, indivisible
- defined by motion
- typically a "simple" trajectory in some parameter space
- temporal variation is at most scaling
- require almost no knowledge, reasoning, or model of time to recognize

Examples:

Baseball: swinging a bat Ballet - how do you see a plié? Virtual PAT ("temporal templates")

Strict Appearance: human movements

- Is recognizing movement a 3D or 2D problem? Simple human psychophysics and computational complexity argue for 2D aspects.
- Temporal templates: Movements are recognized directly from the motion.
- Appearance-based recognition can assist geometric recovery: recognition labels the parts and allows extraction.

Blurry Video

Motivating Example

Shape and motion: view-based

Schematic representation of sitting at 90°

Motion energy images

- Spatial accumulation of motion.
- Collapse over specific time window.
- Motion measurement method not critical (e.g. motion differencing).
 Time

Motion history images

- Motion history images are a different function of temporal volume.
- Pixel operator is replacement decay:

if moving $I_{\tau}(x,y,t) = \tau$ otherwise $I_{\tau}(x,y,t) = \max(I_{\tau}(x,y,t-1)-1,0)$

- Trivial to construct $I_{\tau-k}(x,y,t)$ from $I_{\tau}(x,y,t)$ so can process multiple time window lengths without more search.
- MEI is thresholded MHI

Temporal-templates

MEI+ MHI = Temporal template

Recognizing temporal templates (PAMI 2001, Bobick and Davis)

- For MEI and MHI compute global properties (e.g. Hu moments). Treat both as grayscale images.
- Collect statistics on distribution of those properties over people for each movement.
- At run time, construct MEIs and MHIs backwards in time.
 - Recognizing movements as soon as they complete.
- Linear time scaling.
 - Compute range of τ using the min and max of training data.
- Simple recursive formulation therefore very fast.
- Filter implementation obvious so biologically "relevant".

Aerobics examples

Aerobics with one camera

- With one camera:
 - 12 of 18 moves when viewed at 30° correctly identified.
 - Confusion stems from different views of different moves.

Input

Closest

Correct

Aerobics with two cameras

- With two cameras:
 - 15 of 18 moves when viewed at 30° correctly identified;
 others second or third
 - Confusion stems from bad image differencing.

Virtual PAT (Personal Aerobics Trainer)

- Uses MHI recognition
- Portable IR background subtraction system (CAPTECH '98)

The KidsRoom

- A narrative, interactive children's playspace.
- Demonstrates computer vision "action" recognition.
- Someitmes, possible because the machine knows the context.
- A kinder, gentler C³I interface
- Ported to the Millenium Dome, London, 2001
- Summary and critique in Presence, August 1999.

Recognizing Movement in the KidsRoom

- First teach the kids, then observe.
- Temporal templates "plus" (but in paper).
- Monsters always do something, but only speak it when sure.

Today

- Background / Overview
- Histograms of edges (Schiele)
- Windowed spectral analysis (GIST)
- Tiled histograms of edges (HOG)
- Motion History Images (Bobick)
- Rectified Flow Descriptors (Efros)
- Differential Geometry Signatures (Shah)

Recognizing Action at a Distance

A. Efros, A. Berg, G. Mori, J. Malik UC Berkeley

Medium Field

- Recognize human actions
 - Real-world setting
 - Low resolution, noisy data
 - Moving camera, occlusions

Medium-field Recognition

Our Approach

- Non parametric image-based approach
- Use large amount of data
- Compute motion descriptors
 - Aggregate of low-level motion features
- Classify a novel motion by finding the most similar motion from the training set

Gathering action data

- Tracking
 - Simple correlation-based tracker
 - User-initialized

Figure-centric Representation

- Stabilized spatio-temporal volume
 - No translation information
 - All motion caused by person's limbs
 - Good news: indifferent to camera motion
 - Bad news: hard!
- Good test to see if <u>actions</u>, not just translation, are being captured

\$ 	•	?		-	ę	-	-	1	-	t	4
	-	\$	ę	1	ę	9	-	9	-	1	1
*	-	\$	ę	-	ę	9	-	ę	-	1	-
9	-	-	•	1	9	9	-	-	-		R
9	-	-	•	-	-	9	0.0	-	2	-	-
\$		-	-	-	-	-	-	-	2	-	-
9	-	9	9	-	-	ę	-	-	?	-	1
2		-	\$	9	-	¢	?	2	1	ł	1

Remembrance of Things Past

- "Explain" novel motion sequence by matching to previously seen video clips
 - For each frame, match based on some temporal extent

Challenge: how to compare motions?

Motion Descriptor

Image frame

Optical flow

Comparing motion descriptors

frame-to-frame similarity matrix I matrix

blurry I

Slide credit: Malik

motion-to-motion similarity matrix

Classifying Ballet Actions

16 Actions. Men used to classify women and vice versa.

Classifying Tennis Actions 6 actions. Woman player used as training, man as testing.

Classifying Soccer Actions 10 Actions. Leave one sequence out testing.

Skeleton Transfer

- Annotate database with joint positions
- After matching, transfer data to novel sequence
 Ajust the match for best fit
- 3D MoCap data as synthetic annotated database

Remarks

- Purely motion-based descriptor for actions
- Treat optical flow
 - Not as measurement of pixel displacement
 - But as a set of noisy *features* that are carefully smoothed and aggregated

Today

- Background / Overview
- Histograms of edges (Schiele)
- Windowed spectral analysis (GIST)
- Tiled histograms of edges (HOG)
- Motion History Images (Bobick)
- Rectified Flow Descriptors (Efros)
- Differential Geometry Signatures (Shah)

Alper Yilmaz and Mubarak Shah

- A. Yilmaz and M. Shah "Actions Sketch: A Novel Action Representation," IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2005.
- A. Yilmaz and M. Shah "Representing Actions Using Differential Geometry," Computer Vision and Image Understanding (CVIU), submitted 2006.

Actions As Objects

When something moves it develops a shape. Santiago Calatrava (Sculpture into architecture)

Milwaukee Museum of Art

Alper Yilmaz, PhD

Actions As Objects

Turning Torso

Sical Stal

Alper Yilmaz, PhD

Flow diagram

Contours from a contour tracker

Two pass correspondence approach

- 1. First pass: Greedy approach
- **2. Second pass: Spatial coherence**
 - Association likelihood
 - Shape similarity
 - Proximity
 - Orientation similarity

$$l_{i,j} = \exp\left(-\frac{d_{i,j}^2}{\sigma_d^2}\right) \exp\left(-\frac{\alpha_{i,j}^2}{\sigma_\alpha^2}\right) \exp\left(-\frac{\varepsilon_{i,j}^2}{\sigma_\varepsilon^2}\right)$$

- Associate voxels with high likelihood
- Remove spatially incoherent associations

Reassign unassigned voxel based on neighboring associations

Resulting Associations

Resulting Volume

Alper Yilmaz, PhD

Properties of the Action Volume

- Space-time (3D) object
- Encodes shape and motion
- Uses complete object contours instead of a single point on the object.
- Suitable for fine action analysis
- Continuous representation
 - Same volume for same action of different lengths

Properties of the Action Volume

- Can be represented in 2D
 - Arc length and time
- Can regenerate contour at time t
- Can provide spatial trajectory of contour points

What is the Action Sketch?

- Important action descriptors
 - Unique shape and motion characteristics
- Related to differential geometric properties of action volume
 - 1st and 2nd fundamental forms
 - Gaussian and mean curvatures
 - Fundamental surface types

Computing Gaussian (K) and Mean (H) Curvatures

K and H are two algebraic invariants of Weingarten mapping S.

$$K = \det(\mathbf{S})$$

$$H = \frac{1}{2}\operatorname{trace}(\mathbf{S})$$

$$\mathbf{S} = \mathbf{g}^{-1}\mathbf{b}$$
from 1st fundamental for the second sec

where f(s,t) is a point on the volume, *n* is normal at *f*

Fundamental Surface Types

Properties of Surface Types

- Rotation and translation invariant in spatiotemporal space.
- Encodes intrinsic properties of surface.
 - Defines the convexity or concavity of surface.
- Related to speed and acceleration.

Differential Geometric Surface

Alper Yilmaz, PhD

Examples

kicking

dance

surrender

walking

2006

Surface patches & their relation to the object motion

Action Descriptors Relation to Object Motion

Alper Yilmaz, PhD

Action Descriptors Relation to Spatial and Trajectory Curvature

	PEAK	PIT	VALLEY	SADDLE VALLEY
Contour Curvature	maximum	minimum	maximum	maximum
Trajectory Curvature	maximum	minimum	zero	minimum

Changes in viewpoint

 Elements occur on concavities and convexities of contours which are robust to viewpoint changes

Matching Action Volumes

- Epi-polar geometric approach
- Volume registration
- Establishing correspondence
 - Match peaks with peaks, valleys with valleys, etc.

Registration Level Sets

- Affine transformation
- Registration cost

$$\begin{pmatrix} x_{\rm B} \\ y_{\rm B} \\ t_{\rm B} \end{pmatrix} = \begin{pmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_{\rm D_i} \\ y_{\rm D_i} \\ t_{\rm D_i} \end{pmatrix} + \begin{pmatrix} t_x \\ t_y \\ 0 \end{pmatrix} .$$

$$E(\phi_D - \phi_S) = \int \int \int \sum_{\Sigma} \left(\phi_D(x, y, t) - \phi_S(x, y, t) \right)^2 ds dt$$

Speed up by using only zero level set and a random subset of 3D voxels $E(\phi_D - \phi_S) = \int \int \int_{\Sigma} \min \|\phi_{D0}(x, y, t) - \phi_{S0}(x_i, y_i, t_i)\|^2 \, ds dt$

Matching Volumes: Establishing Correspondence

 Generate bipartite action graphs

- Define weights by
 - Space-time proximity

Find Maximum Matching

Shape similarity

Recognition Epipolar Geometry

- Corresponding points satisfy epipolar geometry $\mathbf{x}_B f \mathbf{x}_{D_i} = 0$
- Form system of equations

$$\mathbf{A}f = \mathbf{0} \qquad \mathbf{A} = [x_{\mathbf{D}_{i}}x_{\mathbf{B}}, y_{\mathbf{D}_{i}}x_{\mathbf{B}}, x_{\mathbf{B}}, x_{\mathbf{D}_{i}}y_{\mathbf{B}}, y_{\mathbf{D}_{i}}y_{\mathbf{B}}, y_{\mathbf{D}_{i}}, y_{\mathbf{D}_{i}}, y_{\mathbf{D}_{i}}, 1]$$
$$\mathbf{f} = [\mathcal{F}_{1,1}, \mathcal{F}_{1,2}, \mathcal{F}_{1,3}, \mathcal{F}_{2,1}, \mathcal{F}_{2,2}, \mathcal{F}_{2,3}, \mathcal{F}_{3,1}, \mathcal{F}_{3,2}, \mathcal{F}_{3,3}]$$

 Compute quality from cumulative symmetric epipolar distance

$$d(X_{\mathbf{D}_i}, X_{\mathbf{B}}) = \sqrt{\left(\frac{X_{\mathbf{D}_i}^{\top} U_{\mathbf{B}}}{|U_{\mathbf{B}}|}\right)^2 + \left(\frac{X_{\mathbf{B}}^{\top} U_{\mathbf{D}_i}}{|U_{\mathbf{D}_i}|}\right)^2}$$

Action Volumes

6) stand up

2) hand down

11) walk

12) walk

8) hand down

13) aerobic 1

4) kick

9) kick

14) sit down

5) walk

10) fall

15) walk

Action Volumes

16) running

21) aerobic 2

17) surrender

18) stroke

19) walk

24) walk

20) dance

25) aerobic 4

30) falling

26) stroke

28) running

29) stand up

Recognition Results

Input Action	#	Matching action	#
Dance	1	Dance	20
Hand down	2	Stand up	29
Walking	3	Walking	11
Kicking	4	Kicking	9
Walking	5	Walking	11
Stand up	6	Stand up	29
Surrender	7	Surrender	17
Hands down	8	Hands down	82
Kicking	9	Kicking	4
Falling	10	Falling	30
Walking	11	Walking	11
Walking	12	Sit down	23
Sit down	14	Sit down	23

Video	#	Matching action	#
Walking	15	Walking	11
Running	16	Running	28
Surrender	17	Surrender	17
Tennis stroke	18	Tennis stroke	26
Walking	19	Walking	11
Dance	20	Dance	1
Sit down	23	Sit down	23
Walking	24	Walking	11
Tennis stroke	26	Tennis stroke	18
Stand up	27	Stand up	29
Running	28	Running	16
Stand up	29	Hands down	8
Falling	30	Falling	10

Today

- Histograms of edges (Schiele)
- Windowed spectral analysis (GIST)
- Tiled histograms of edges (HOG)
- Motion History Images (Bobick)
- Rectified Flow Descriptors (Efros)
- Differential Geometry Signatures (Shah)

Feb 10th – Local features (SIFT, Surf, MSER, Shape Context, Self Similarity, etc.)

- T. Lindeberg, "Feature detection with automatic scale selection," International Journal of Computer Vision, vol. 30, no. 2, pp. 79-116, November 1998. Available: <u>http://dx.doi.org/10.1023/A:1008045108935</u>
- J. Matas, O. Chum, U. Martin, and T. Pajdla, "Robust wide baseline stereo from maximally stable extremal regions," in Proceedings of British Machine Vision Conference, vol. 1, London, 2002, pp. 384-393. Available: <u>http://citeseer.ist.psu.edu/608213.html</u>
- K. Mikolajczyk and C. Schmid, "Scale & affine invariant interest point detectors," Int. J. Comput. Vision, vol. 60, no. 1, pp. 63-86, October 2004. Available: <u>http://dx.doi.org/10.1023/B:VISI.0000027790.02288.f2</u>
- I. Laptev, "On space-time interest points," International Journal of Computer Vision, vol. 64, no. 2-3, pp. 107-123, September 2005. Available: <u>http://dx.doi.org/10.1007/s11263-005-1838-7</u>

Optional Readings:

- E. Shechtman and M. Irani, "Matching local self-similarities across images and videos," in Computer Vision and Pattern Recognition, 2007. CVPR '07. IEEE Conference on, 2007, pp. 1-8. Available: <u>http://dx.doi.org/10.1109/CVPR.2007.383198</u>
- H. Bay, T. Tuytelaars, and L. Van Gool, "Surf: Speeded-up robust features," in 9th European Conference on Computer Vision, Graz, Austria. Available: <u>http://www.vision.ee.ethz.ch/~surf/eccv06.pdf</u>

Reminder

Please sign up via email for a paper that you would like to present or show a demonstration of.

 - can show demos next week from this week's papers (e.g.,GIST / spatial envelope on some images collected around campus)

- but otherwise should show demo on day of paper (could show Laptev or self-similarity features on Berkeleyish action examples next week...)

I'll expect two demos or one presentation per person taking the course for credit...

N.B., a demo is more than showing author's videos or canned matlab example...must try on something new or extend...