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Today
D f l k• Demo from last week
reminder: email me with desired paper demo or pres.

• Background / Overview

• Histograms of edges (Schiele)

• Windowed spectral analysis (Oliva)Windowed spectral analysis (Oliva)

• Tiled histograms of edges (Triggs)

• Motion History Images (Bobick)

• Rectified Flow Descriptors (Efros)• Rectified Flow Descriptors (Efros)

• Differential Geometry Signatures (Shah)



Feature extraction: 
global appearanceglobal appearance

Feature 
extraction
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Simple holistic descriptions of image content
 grayscale / color histogram

pt
ua

l a
nd

 S
O

bj
ec

t R
e

O
bj

ec
t R

e g y g
 vector of pixel intensities

Pe
rc

ep
Vi

su
al

 
Vi

su
al

 

Slide credit: K. Grauman, B. Leibe



Eigenfaces: global appearance description

Generate low-

An early appearance-based approach to face recognition
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Eigenvectors computed 
from covariance matrix

of appearance 
with a linear 
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Slide credit: K. Grauman, B. Leibe
Turk & Pentland, 1991

g
in face space



Feature extraction: global appearance

• Pixel-based representations sensitive to small shifts
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iti  t  ill i ti  d i t l   
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Slide credit: K. Grauman, B. Leibe



Gradient-based representations

• Consider edges, contours, and (oriented) intensity 
gradients
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Slide credit: K. Grauman, B. Leibe



Gradient-based representations: 
Matching edge templates

• Example: Chamfer matching
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Gavrila & Philomin ICCV 1999

template (T) and input (I).

Slide credit: K. Grauman, B. Leibe



Gradient-based representations: 
Matching edge templates

• Chamfer matching
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Gavrila & Philomin ICCV 1999
Slide credit: K. Grauman, B. Leibe



Gradient-based representations:
Rectangular featuresg
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Compute differences between sums of pixels in rectangles
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Captures contrast in adjacent spatial regions

Similar to Haar wavelets  efficient to compute
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 Similar to Haar wavelets, efficient to compute

Viola & Jones, CVPR 2001
Slide credit: K. Grauman, B. Leibe
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• The representation and matching of pictorial structures Fischler, Elschlager (1973). 
• Face recognition using eigenfaces M. Turk and A. Pentland (1991). 
• Human Face Detection in Visual Scenes - Rowley, Baluja, Kanade (1995) 
• Graded Learning for Object Detection - Fleuret Geman (1999)
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 • Graded Learning for Object Detection - Fleuret, Geman (1999) 
• Robust Real-time Object Detection - Viola, Jones (2001)
• Feature Reduction and Hierarchy of Classifiers for Fast Object Detection in Video Images - Heisele, 
Serre, Mukherjee, Poggio (2001)
•…. Slide credit: A. Torralba



Histograms of oriented gradients
• Shape context
Belongie, Malik, Puzicha, NIPS 2000• SIFT, D. Lowe, ICCV 1999

• Dalal & Trigs, 2006

Slide credit: A. Torralba



Histograms of Gradients, ca. 1996Histograms of Gradients, ca. 1996

• Schiele andSchiele and 
Crowley

• Freeman and 
Roth





Gradient-based representations

• Consider edges, contours, and (oriented) intensity 
gradients
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• Summarize local distribution of gradients with histogram
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 Locally orderless: offers invariance to small shifts and rotations
 Contrast-normalization: try to correct for variable illumination
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Slide credit: K. Grauman, B. Leibe



TodayToday
• Background / Overview

• Histograms of edges (Schiele)

• Windowed spectral analysis (GIST)

• Tiled histograms of edges (HOG)Tiled histograms of edges (HOG)

M i Hi I (B bi k)• Motion History Images (Bobick)

• Rectified Flow Descriptors (Efros)

• Differential Geometry Signatures (Shah)



Key Point of Torralba/Oliva PapersKey Point of Torralba/Oliva Papers

Natural Image statistics depend on the interaction between the g p
observer and the world:

Slide Credit: Torralba, Olivia, J. Huang 



Spectral SignaturesSpectral Signatures

 Why are Fields, Beaches and Coasts less isotropic 
th  th  t l i t ?than other natural environments?

Slide Credit: Torralba, Olivia, J. Huang 



Spatially Localized StatisticsSpatially Localized Statistics

• Windowed FFT

T  R  M d  i t

• Image statistics become non‐stationary as scene scale increases.

Top Row: Man-made environments
Bottom Row: Natural 
environments

Slide Credit: Torralba, Olivia, J. Huang 



The Spaial Envelope

Aude Oliva

Brain & Cognitive Sciences
Massachusetts Institute of TechnologyMassachusetts Institute of Technology

Email: oliva@mit.edu     http://cvcl.mit.edu

PPAPPA

Slide Credit: Olivia



Spatial Envelope Theory p p y
As a scene is inherently a 3D entity, initial scene recognition 
might be based on properties diagnostic of the space that themight be based on properties diagnostic of the space that the 
scene subtends and not necessarily the objects the scene 
contains

“Street”Street

Degree of clutter openness perspective roughness etcDegree of clutter, openness, perspective, roughness, etc …

Oliva et al (1999); Oliva & Torralba (2001, 2002, 2006); Torralba & Oliva (2002,2003); Greene & Oliva (2006, 2008, 2009)

Slide Credit: Olivia



Spatial Envelope Theory of Scene Representation
Oliva & Torralba (2001)Oliva & Torralba (2001)

A scene is a single surface that can be
represented by global (statistical) descriptorsrepresented by global (statistical) descriptors

Slide Credit: Olivia



Scene Perceptual Dimensions
Like a texture, a scene could be represented by a set of structural dimensions, but 
describing surface properties of a space.

We use a classification task: observers were given a set of scene pictures and 
were asked to organize them into groups of similar shape, similar global aspect, 
similar spatial structure.

They were explicitly told to not use a criteria related to the objects or a scene semantic group.

Slide Credit: Olivia



Scene Perceptual Dimensions

Task: The task consisted in 3 steps: the first step was to divide the pictures
into 2 groups of similar shapeinto 2 groups of similar shape. 

Example: manmade vs. natural structure

Slide Credit: Olivia



Scene Perceptual Dimensions

Task: The second step was to split each of the 2 groups in two more 
subdivisionssubdivisions. 

Far vs. less far
Perspective

manmade vs. natural structure

Slide Credit: Olivia



Scene Perceptual Dimensions

Task: In the third step, participants split the 4 groups in two more groups. 

Open vs. closed Flat vs. oblique structure

Far vs. less far
Perspective

manmade vs. natural structure
Far vs. near

Fine vs. coarse texture

Slide Credit: Olivia



Perceptual DimensionsPerceptual Dimensions
%Dimensions

83Openness
77Naturalness

47Size (roughness)
53Perspective

29Symmetry
59Depth
41Diagonal planes

18Verticalness
29Symmetry

Oliva & Torralba (01), Torralba & Oliva (02)
Slide Credit: Olivia



A vocabulary of global 
properties

The Spatial Envelope is a combination of global 
properties describing the scene structure as a whole

properties

Naturalness: principal structure of building blocks

p p g

Naturalness: principal structure of building blocks

Openness: the sense of enclosure of the space

Expansion: the perspective

Mean depth: the scale of the spaceMean depth: the scale of the space

Ruggedness: deviation of the ground plane

Roughness: size of the building blocks

Oliva & Torralba (2001). Modeling the shape of the scene. International Journal of Computer Vision.Slide Credit: Olivia



Global Properties: Structure of space

Mean depth

Small volume large volume

Openness Expansion

Oliva & Torralba, 2001
Slide Credit: Olivia



Diagnostic features of 
O & Cl dOpenness & Closedness
O Cl dOpen scenes Closed scenes

Slide Credit: Olivia



“Openness” Diagnostic Features
High degree of Openness

Lack of 
texture

Low degree of 
openness

Low 
frequency 
horizontalhorizontal

High 
frequency 
isotropic 
texture

Slide Credit: Olivia



Learning Diagnostic Features
• Any scene image has a value along each global 

property.property.
From open scenes                  closed scenes

VG VG VG VG VG

• Can we find a set of features that would represent 
adequately each global property ?adequately each global property ?

Oliva & Torralba (2001)

“open” “close”

Slide Credit: Olivia



Learning Diagnostic Features
Diagnostic features of OpennessMethod: Learning stage: Knowing the 

rank of 200-500 images along each 
global property, we learn the linearglobal property, we learn the linear 
regression between VG and rank.  

topp

center

bottom

left right

The template (here shown in the 
spectral domain) is the result of the 
regression:

Open scene Semi-open scene
with texture

it illustrates how each spectral 
component contributes to a 
global property.

Slide Credit: Olivia



Estimation of Space descriptors
• Method: Linear Regression Analysis: for each space property, we look for a 

weighting of the spectral components so that we can  reproduce the same 
ordinal ranking as the subjectsordinal ranking as the subjects. Openness

• The spatial envelope property is estimated by a a dot product between the 
energy spectrum and a template (Discriminant Spectral Template) The DSTenergy spectrum and a template (Discriminant Spectral Template). The DST 
describes how each spectral component contributes to a space property (e.g. 
openness).

DST(fx, fy)A(fx, fy)2

=*
FT 

fx,fy

fx,fy

Slide Credit: Olivia



Estimation of Space descriptor
• Spatial envelope properties are continuous perceptual dimensions

From open scenes to …. ….. closed scenes

Original
images

Power spectra
A(fx, fy)2

Product
DST(fx, fy) A(fx, fy)2

Opponent
energy image

Dark: Openness features Light: closeness feature

Slide Credit: Olivia



Windowed Discriminant Template

Spectrogram WDST

< 0 Expanded

Spectrogram

=*
FT

WDST

 
> 0 Flat

*
fx,fy


fx,fy

Expansion Flat

Slide Credit: Olivia



Space Properties of the Content of the scene
WDSTDST

Naturalness

Roughness
(Natural)

Roughness
(Manmade)

Stationary distribution of features
Slide Credit: Olivia



Naturalness descriptor
93%Manmade environments Natural environments

0 50.5

0

-0.5
0.50-0.5 c /p

Center of the axis Errors
Slide Credit: Olivia



Space Properties of the Shape of the scene

Openness

WDSTDST

Openness

Openness
(Natural)

Openness
(Manmade)

Ruggedness

Expansion

Non-stationary distribution of features
Slide Credit: Olivia



Spatial Envelope Theory of Scene 
RecognitionRecognition

Oliva & Torralba (2001). International Journal of Computer Vision.

Slide Credit: Olivia



Global Scene Structure

• Hypothesis
Scenes of the same 
category membership 

h i il l b l ti lshare similar global spatial 
layout properties

• Hypothesis  
L l l f tLow level features are 
correlated with spatial 
properties (e gproperties (e.g. 
perspective)

Slide Credit: Olivia



Modeling Scene Gist
Scenes from the same category share similar global properties

street

Highway

skyscraperskyscraper
City center

Slide Credit: Olivia



Categorization of Manmade Scenes

Hi h St t Cit t t ll b ildi

Confusion Matrix (in % using Layout template) : 
Classification of prototypical scenes  (400 / category) Local organization:

correct for 86 % imagesHighway        Street           City centre     tall building

Highway 91.6                       4.8                 2.7                    0.9
Street 4.7                      89.6                 1.8                    3.4
Centre 2.5                       2.3                87.8                    7.4
Tall Building 0.1                       3.4                 8.5                     88

correct for 86 % images
(4 similar images on 7 K-NN)

g

Slide Credit: Olivia



Categorization of Natural Scenesg
Confusion Matrix (in % using Layout template) : 
Classification of prototypical scenes  (400 / category) Local organization:

correct for 92 % imagesCoast              Countryside        Forest              Mountain

Coast  88.6                      8.9                  1.2                     1.3
Countryside 9.8                      85.2                 3.7                     1.3
Forest 0.4                       3.6               91.5                      4.5
Mountain 0 4 4 6 3 8 91 2

correct for 92 % images
(4 similar images on 7 K-NN)

Mountain  0.4                       4.6                 3.8                    91.2

Slide Credit: Olivia



Representing Image Structure

80 features

V = {energy at each orientation 
and scale} =  6 x 4 dimensions

| vt | PCA

VG

Vector of
Global features

Oliva & Torralba (2001,2002, 2006)
Slide Credit: Olivia



Scene Recognition 
i fvia texture surface

Slide Credit: Olivia



Scene Classification from “Texture”

Oliva & Torralba (2001,2006) Slide Credit: Olivia



S S lScene Scale

 “The point of view that any given observer adopts on a 
specific scene is constrained by the volume of the scene.”

 How does the amount of clutter vary against scene scale in 
man-made environments? In natural environments?

Slide Credit: Torralba, Olivia, J. Huang 



What do Images Statistics say about 
D h?Depth?

V: Vertical
H: Horizontal
O: Oblique

Slide Credit: Torralba, Olivia, J. Huang 



Comparing Localized Spectral 
Si d D hSignatures and Depth
 With increasing depth comes:g p

 An increase in global roughness for man-made structures
 A decrease in global roughness for natural structures
 Nonuniformity in spatially localized spectral signatures Nonuniformity in spatially localized spectral signatures

Slide Credit: Torralba, Olivia, J. Huang 



E pl ( d )Examples (man-made)

Slide Credit: Torralba, Olivia, J. Huang 



E pl (N t r l)Examples (Natural)

Slide Credit: Torralba, Olivia, J. Huang 



S R ltSome Results

Slide Credit: Torralba, Olivia, J. Huang 



Slide Credit: Torralba, Olivia, J. Huang 



f(D| t )f(D|category)

Distribution of Scene Categories as a function of mean g
depth.

Slide Credit: Torralba, Olivia, J. Huang 



Appli ti S l S l tiApplication: Scale Selection 

Slide Credit: Torralba, Olivia, J. Huang 



C t t i IContext in Images

 Question:  How can these small people possibly Q p p p y
affect the image statistics in any significant way??

Slide Credit: Torralba, Olivia, J. Huang 



Obj t D t tiObject Detection

Slide Credit: Torralba, Olivia, J. Huang 



 References
 Torralba and Oliva, Statistics of Natural Image Categories. Network: 

Computation in Neural Systems 14 (2003) 391-412.
 Torralba and Oliva, Depth Estimation from Image Structure. IEEE PAMI Vol 14, 

No. 9 (2002).( )
 Oliva and Torralba, Modeling the Shape of the Scene: A Holistic Representation 

of the Spatial Envelope.  IJCV 42(3), 145-175 (2001).

 Srivastava, Lee, Simoncelli, Zhu, On Advances in Statistical Modeling of Natural 
Images. JMIV 18:17-33 (2003)

 Mumford, Pattern Theory: the Mathematics of Perception. ICM 2002. Vol III. 1-3

Slide Credit: Torralba, Olivia, J. Huang 



“D ”“Demo”
 Computing the Spectrum (Matlab): Computing the Spectrum (Matlab):

 Ifft = abs(fftshift(fft2(I,w,h)));

 Visualization:
 imshow(log(Ifft)/max(max(log(Ifft))));
 colormap(cool);

Slide Credit: Torralba, Olivia, J. Huang 



FFT(B h)FFT(Beach)

Slide Credit: Torralba, Olivia, J. Huang 



FFT(Pitt b r h)FFT(Pittsburgh)

Slide Credit: Torralba, Olivia, J. Huang 



TodayToday
• Background / Overview

• Histograms of edges (Schiele)

• Windowed spectral analysis (GIST)

• Tiled histograms of edges (HOG)Tiled histograms of edges (HOG)

M i Hi I (B bi k)• Motion History Images (Bobick)

• Rectified Flow Descriptors (Efros)

• Differential Geometry Signatures (Shah)



Gradient-based representations:
Histograms of oriented gradients (HoG)g g ( )
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Map each grid cell in the input 
window to a histogram counting 
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Dalal & Triggs, CVPR 2005

Code available: 
http://pascal.inrialpes.fr/soft/olt/

Slide credit: K. Grauman, B. Leibe



Slide credit: Dalal, Triggs, P. Barnum



Slide credit: Dalal, Triggs, P. Barnum



• Tested withTested with
– RGB

LAB– LAB
– Grayscale

G N li ti d C i• Gamma Normalization and Compression
– Square root
– Log

Slide credit: Dalal, Triggs, P. Barnum



centeredcentered
diagonal

uncentered

cubic-
corrected

Sobel
corrected

Slide credit: Dalal, Triggs, P. Barnum



• Histogram of gradientHistogram of gradient 
orientations

Orientation Position-Orientation     -Position

– Weighted by magnitude

Slide credit: Dalal, Triggs, P. Barnum



Slide credit: Dalal, Triggs, P. Barnum



Slide credit: Dalal, Triggs, P. Barnum



Slide credit: Dalal, Triggs, P. Barnum



Slide credit: Dalal, Triggs, P. Barnum



Slide credit: Dalal, Triggs, P. Barnum



Slide credit: Dalal, Triggs, P. Barnum



TodayToday
• Background / Overview

• Histograms of edges (Schiele)
• Windowed spectral analysis (GIST)
• Tiled histograms of edges (HOG)Tiled histograms of edges (HOG)

M ti Hi t I (B bi k)• Motion History Images (Bobick)
• Rectified Flow Descriptors (Efros)
• Differential Geometry Signatures (Shah)



Movement: primitive motion

 Movements are:
– atomic, indivisible
– defined by motion– defined by motion
– typically a “simple” trajectory in some parameter space
– temporal variation is at most scaling

require almost no knowledge  reasoning  or model of time – require almost no knowledge, reasoning, or model of time 
to recognize

 Examples: Examples:
Baseball: swinging a bat
Ballet - how do you see a plié?
Virtual PAT  (“temporal templates”)Virtual PAT  ( temporal templates )

Slide credit: Davis, Bobick



St i t A  h  tStrict Appearance: human movements

 Is recognizing movement a 3D or 2D problem?  
Simple human psychophysics and computational 

l it   f  2D t
demonstration

complexity argue for 2D aspects.
 Temporal templates: Movements are recognized 

directly from the motion.directly from the motion.
 Appearance-based recognition can assist  

geometric recovery: recognition labels the parts 
d ll  t tiand allows extraction.

Slide credit: Davis, Bobick



Blurry Video 

Slide credit: Davis, Bobick



M ti ti  E lMotivating Example

Slide credit: Davis, Bobick



Shape and motion: view-based

 Schematic representation of sitting at 90

Slide credit: Davis, Bobick



Motion energy images

S ti l l ti  f ti Spatial accumulation of motion.
 Collapse over specific time window.
 Motion measurement method not critical (e.g. motion 

differencing). Time

Slide credit: Davis, Bobick



Motion history images

 Motion history images are a 
different function of temporal 
volume.

Moved
t-15

 Pixel operator is replacement 
decay:

if moving I (x y t) = if moving I(x,y,t) = 
otherwise
I(x,y,t) =  max(I(x,y,t-1)-1 ,0)

 Trivial to construct Ik(x,y,t)  
from I(x,y,t)  so can process 
multiple time window lengths 
without more search

Moved
t-1

without more search.
 MEI is thresholded MHI

Slide credit: Davis, Bobick



Temporal-templates

 MEI+ MHI = Temporal template

motion history motion energy
imageimage

Slide credit: Davis, Bobick



Recognizing temporal templates Recognizing temporal templates 
(PAMI 2001, Bobick and Davis)

 For MEI and MHI compute global properties (e.g. Hu 
moments).  Treat both as grayscale images.

 Collect statistics on distribution of those properties over  Collect statistics on distribution of those properties over 
people for each movement.

 At run time, construct MEIs and MHIs backwards in time.
Recognizing movements as soon as they complete– Recognizing movements as soon as they complete.

 Linear time scaling.
– Compute range of  using the min and max of training data.

 Simple recursive formulation therefore very fast.
 Filter implementation obvious so biologically “relevant”.

Slide credit: Davis, Bobick



Aerobics examples

Slide credit: Davis, Bobick



Aerobics with one camera

With one camera: With one camera:
– 12 of 18 moves when viewed at 30correctly identified.
– Confusion stems from different views of different 

moves.

Input Closest Correct
Slide credit: Davis, Bobick



Aerobics with two cameras

With two cameras: With two cameras:
– 15 of 18 moves when viewed at 30correctly identified; 

others second or third
f   f  d  d ff– Confusion stems from bad image differencing.

Input Closest CorrectInput Closest Correct

Slide credit: Davis, Bobick



Virtual PAT (Personal Aerobics Virtual PAT (Personal Aerobics 
Trainer)

 Uses MHI recognition
 Portable IR background subtraction system 

(CAPTECH ‘98)(CAPTECH 98)

Slide credit: Davis, Bobick



The KidsRoom

 A narrative, interactive 
children’s playspace.
D t t  t  i i   Demonstrates computer vision 
“action” recognition.

 Someitmes, possible because 
the machine knows the context.

 A kinder, gentler C3I interface
P rted t  the Millenium D me   Ported to the Millenium Dome, 
London, 2001

 Summary and critique in 
Presence, August 1999.

Slide credit: Davis, Bobick



Recognizing Movement in the 
KidsRoom

 First teach the kids, 
then observethen observe.

 Temporal templates 
“plus” (but in paper).

 Monsters always do 
something, but only 
speak it when surespeak it when sure.

Slide credit: Davis, Bobick



TodayToday
• Background / Overview

• Histograms of edges (Schiele)
• Windowed spectral analysis (GIST)
• Tiled histograms of edges (HOG)Tiled histograms of edges (HOG)

M ti Hi t I (B bi k)• Motion History Images (Bobick)
• Rectified Flow Descriptors (Efros)
• Differential Geometry Signatures (Shah)



Recognizing Action at a DistanceRecognizing Action at a Distance 

A. Efros, A. Berg, G. Mori, J. MalikA. Efros, A. Berg, G. Mori, J. Malik
UC Berkeley

Slide credit: Malik



Medium Field

• Recognize human actions• Recognize human actions
– Real-world setting

Low resolution noisy data– Low resolution, noisy data
– Moving camera, occlusions

Slide credit: Malik



Medium-field Recognition

The 30-Pixel Man
Slide credit: Malik



Our Approach

• Non parametric image-based approach
• Use large amount of data
• Compute motion descriptorsp p

– Aggregate of low-level motion features
• Classify a novel motion by finding the most• Classify a novel motion by finding the most 

similar motion from the training set

Slide credit: Malik



Gathering action data

• Tracking 
– Simple correlation-based tracker
– User-initialized Slide credit: Malik



Figure-centric Representation
• Stabilized spatio-temporal 

ol mevolume
– No translation information

ll i d b– All motion caused by person’s 
limbs

G d i diff t t• Good news: indifferent to camera 
motion

• Bad news: hard!

• Good test to see if actions, not 
just translation, are beingjust translation, are being 
captured

Slide credit: Malik



Remembrance of Things Past
• “Explain” novel motion sequence by 

matching to previously seen video clipsmatching to previously seen video clips
– For each frame, match based on some temporal 

extent

input sequence

extent

motion analysis
run

swing
lk i h

jog
walk left

g
walk right

Challenge: how to compare motions?
Slide credit: Malik



Motion Descriptor

Image frame Optical flow yxFg p yx,

yx FF , 
yyxx FFFF ,,, blurred 

yyxx FFFF ,,,
Slide credit: Malik



Comparing motion descriptors
……


t

……


t

I matrix

motion-to-motion
similarity matrixblurry I

frame-to-frame
similarity matrix

Slide credit: Malik



Classifying Ballet Actions
16 Actions.  Men used to classify women and vice versa.

Slide credit: Malik



Classifying Tennis Actions
6 i W l d i i i6 actions.  Woman player used as training, man as testing.

Slide credit: Malik



Classifying Soccer Actions
10 Actions.  Leave one sequence out testing.

Slide credit: Malik



Skeleton Transfer

• Annotate database with joint positions
• After matching, transfer data to novel sequence

– Ajust the match for best fit
• 3D MoCap data as synthetic annotated database

Slide credit: Malik



Remarks

• Purely motion-based descriptor for actions
• Treat optical flow p

– Not as measurement of pixel displacement
– But as a set of noisy features that are carefullyBut as a set of noisy features that are carefully 

smoothed and aggregated

Slide credit: Malik



TodayToday
• Background / Overview

• Histograms of edges (Schiele)
• Windowed spectral analysis (GIST)
• Tiled histograms of edges (HOG)Tiled histograms of edges (HOG)

M ti Hi t I (B bi k)• Motion History Images (Bobick)
• Rectified Flow Descriptors (Efros)
• Differential Geometry Signatures (Shah)



Action As ObjectsAction As ObjectsAction As ObjectsAction As Objects

Alper Yilmaz  and Alper Yilmaz  and Mubarak ShahMubarak Shah

 A. Yilmaz and M. Shah "Actions Sketch: A Novel Action Representation," IEEE Conf. on A. Yilmaz and M. Shah "Actions Sketch: A Novel Action Representation," IEEE Conf. on 
Computer Vision and Pattern Recognition (CVPR), 2005.Computer Vision and Pattern Recognition (CVPR), 2005.

 A. Yilmaz and M. Shah “Representing Actions Using Differential Geometry," Computer A. Yilmaz and M. Shah “Representing Actions Using Differential Geometry," Computer 
Vision and Image Understanding (CVIU), submitted 2006.Vision and Image Understanding (CVIU), submitted 2006.



Actions As ObjectsActions As Objects

When something moves it develops a shapeWhen something moves it develops a shape.
Santiago Calatrava

(Sculpture into architecture)

20062006 Alper Yilmaz, PhDAlper Yilmaz, PhD



Milwaukee Museum of ArtMilwaukee Museum of Art

20062006 Alper Yilmaz, PhDAlper Yilmaz, PhD



Actions As ObjectsActions As Objects

T i T

20062006 Alper Yilmaz, PhDAlper Yilmaz, PhD

Turning TorsoMusical Star



Flow diagramFlow diagram
Contour Extraction                              Contour Extraction                              

Action Volume GenerationAction Volume Generation
•• Graph theoretic volume generationGraph theoretic volume generation

Feature Extraction & RecognitionFeature Extraction & Recognition
•• Differential geometryDifferential geometry
•• EpiEpi--polar geometrypolar geometryGraph theoretic volume generationGraph theoretic volume generation

•• volume smoothingvolume smoothing
pp p g yp g y

20062006 Alper Yilmaz, PhDAlper Yilmaz, PhD



Volume GenerationVolume Generation

 Contours from a contour trackerContours from a contour tracker Contours from a contour trackerContours from a contour tracker

y

t

voxelvoxel

x

20062006 Alper Yilmaz, PhDAlper Yilmaz, PhD



Volume GenerationVolume Generation

 Two pass correspondence approachTwo pass correspondence approach

1.1. First pass:First pass: Greedy approachGreedy approach

 Two pass correspondence approachTwo pass correspondence approach

1.1. First pass:First pass: Greedy approachGreedy approach
2.2. Second pass:Second pass: Spatial coherenceSpatial coherence

 Association likelihoodAssociation likelihood
 Shape similarityShape similarity
 ProximityProximity
 Orientation similarityOrientation similarity

20062006 Alper Yilmaz, PhDAlper Yilmaz, PhD



Volume GenerationVolume Generation

 ProximityProximity ProximityProximity
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20062006 Alper Yilmaz, PhDAlper Yilmaz, PhD



Volume GenerationVolume Generation

 Associate voxels with high likelihoodAssociate voxels with high likelihoodAssociate voxels with high likelihoodAssociate voxels with high likelihood
 Remove spatially incoherent associationsRemove spatially incoherent associations

strong matching
nodes at frame t

nodes at frame t+1

incoherent matching

strong matching

 Reassign unassigned voxel based on Reassign unassigned voxel based on 
neighboring associationsneighboring associations

20062006 Alper Yilmaz, PhDAlper Yilmaz, PhD

neighboring associationsneighboring associations



Resulting AssociationsResulting Associations

20062006 Alper Yilmaz, PhDAlper Yilmaz, PhD



Resulting VolumeResulting Volume

20062006 Alper Yilmaz, PhDAlper Yilmaz, PhD



Properties of the Action Properties of the Action 
VolumeVolume
 SpaceSpace--time (3D) objecttime (3D) object
 Encodes shape and motionEncodes shape and motion
 Uses complete object contours instead of a single point on the object.Uses complete object contours instead of a single point on the object.
 Suitable for fine action analysisSuitable for fine action analysisyy
 Continuous representationContinuous representation

 Same volume for same action of different lengthsSame volume for same action of different lengths

40 frames40 frames 20 random 20 random 
selected selected 
framesframes

20062006 Alper Yilmaz, PhDAlper Yilmaz, PhD

framesframes



Properties of the Action Properties of the Action 
VolumeVolume
 Can be represented in 2DCan be represented in 2DCan be represented in 2DCan be represented in 2D

 Arc length and timeArc length and time
 Can regenerate contour at time Can regenerate contour at time tt

s

 Can provide spatial trajectory of Can provide spatial trajectory of 
contour pointscontour points t

A AB B

C
D

C

D

20062006 Alper Yilmaz, PhDAlper Yilmaz, PhD

A



What is the Action Sketch?What is the Action Sketch?

 Important action descriptorsImportant action descriptors Important action descriptorsImportant action descriptors
 Unique shape and motion characteristicsUnique shape and motion characteristics

 Related to differential geometric properties ofRelated to differential geometric properties of Related to differential geometric properties of Related to differential geometric properties of 
action volumeaction volume
 11stst and 2and 2ndnd fundamental formsfundamental forms 11 and 2and 2 fundamental formsfundamental forms

 Gaussian and mean curvaturesGaussian and mean curvatures
 Fundamental surface typesFundamental surface types

20062006 Alper Yilmaz, PhDAlper Yilmaz, PhD



Computing Gaussian (Computing Gaussian (KK))Computing Gaussian (Computing Gaussian (KK) ) 
and Mean (and Mean (HH) Curvatures) Curvatures

KK dd HH t l b i i i t ft l b i i i t f KK and and HH are two algebraic invariants of are two algebraic invariants of 
Weingarten mapping Weingarten mapping SS..

)det(SK

)trace(1 SH bgS 1
from 1st fundamental f

)trace(
2

SH bgS 

from 2nd fundamental 







 tsss ffff
g 






nfnf stss


b



 ttts ffff

g 






nfnf ttst
b

where f(s,t) is a point on the volume, n is normal at f

20062006 Alper Yilmaz, PhDAlper Yilmaz, PhD

f( , ) p , f



Fundamental Surface TypesFundamental Surface Types

20062006 Alper Yilmaz, PhDAlper Yilmaz, PhD



Properties of Surface TypesProperties of Surface Types

 Rotation and translation invariant in spatioRotation and translation invariant in spatio-- Rotation and translation invariant in spatioRotation and translation invariant in spatio
temporal space.temporal space.

 Encodes intrinsic properties of surfaceEncodes intrinsic properties of surface Encodes intrinsic properties of surface.Encodes intrinsic properties of surface.
 Defines the convexity or concavity of surface.Defines the convexity or concavity of surface.

 Related to speed and accelerationRelated to speed and acceleration Related to speed and acceleration.Related to speed and acceleration.

20062006 Alper Yilmaz, PhDAlper Yilmaz, PhD



Differential Geometric SurfaceDifferential Geometric Surface
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20062006 Alper Yilmaz, PhDAlper Yilmaz, PhD



ExamplesExamples

kickingkicking dancedance

lkilki dd

20062006 Alper Yilmaz, PhDAlper Yilmaz, PhD

walkingwalking surrendersurrender



Surface patches & their relation to Surface patches & their relation to pp
the object motionthe object motion

ridge peak saddle ridge

20062006 Alper Yilmaz, PhDAlper Yilmaz, PhD



Action Descriptors Relation to Action Descriptors Relation to 
Object MotionObject Motion

peakpeak ridgridg saddlesaddlepeakpeak ridgridg
ee

saddle saddle 
ridgeridge

20062006 Alper Yilmaz, PhDAlper Yilmaz, PhD



Action Descriptors Relation to Action Descriptors Relation to 
Spatial and Trajectory Curvature Spatial and Trajectory Curvature 

20062006 Alper Yilmaz, PhDAlper Yilmaz, PhD



Changes in viewpoint Changes in viewpoint 
 Elements occur on concavities and convexities of Elements occur on concavities and convexities of 

contours which are robust to viewpoint changescontours which are robust to viewpoint changescontours which are robust to viewpoint changescontours which are robust to viewpoint changes

30° 60° 90° 135° 180°

20062006 Alper Yilmaz, PhDAlper Yilmaz, PhD



Matching Action VolumesMatching Action Volumes

 EpiEpi--polar geometric approachpolar geometric approach EpiEpi--polar geometric approachpolar geometric approach
 Volume registrationVolume registration
 Establishing correspondenceEstablishing correspondence
 Match peaks with peaks, valleys with Match peaks with peaks, valleys with p p , yp p , y

valleys, etc.valleys, etc.

20062006 Alper Yilmaz, PhDAlper Yilmaz, PhD



RegistrationRegistration
Level SetsLevel Sets

 Affine transformationAffine transformationAffine transformationAffine transformation

 Registration costRegistration costgg

 Speed up by using only zero level set and a random Speed up by using only zero level set and a random p p y g yp p y g y
subset of 3D voxelssubset of 3D voxels

20062006 Alper Yilmaz, PhDAlper Yilmaz, PhD



Matching Volumes: Establishing Matching Volumes: Establishing 
CorrespondenceCorrespondence
 Generate bipartite action Generate bipartite action pp

graphsgraphs

 Define weights by Define weights by 
 SpaceSpace--time proximitytime proximity SpaceSpace time proximitytime proximity
 Shape similarityShape similarity

 Find Maximum MatchingFind Maximum Matching

20062006 Alper Yilmaz, PhDAlper Yilmaz, PhD



RecognitionRecognition
Epipolar GeometryEpipolar Geometry

 Corresponding points satisfy epipolar geometryCorresponding points satisfy epipolar geometryCorresponding points satisfy epipolar geometryCorresponding points satisfy epipolar geometry

 Form system of equationsForm system of equations
0

iDB f xx
y qy q

0fA

 Compute quality from cumulative symmetric epipolar Compute quality from cumulative symmetric epipolar 
distancedistance

20062006 Alper Yilmaz, PhDAlper Yilmaz, PhD



Action VolumesAction Volumes

20062006 Alper Yilmaz, PhDAlper Yilmaz, PhD



Action VolumesAction Volumes

20062006 Alper Yilmaz, PhDAlper Yilmaz, PhD



Recognition ResultsRecognition Results

20062006 Alper Yilmaz, PhDAlper Yilmaz, PhD



TodayToday
• Histograms of edges (Schiele)

Wi d d t l l i (GIST)• Windowed spectral analysis (GIST)
• Tiled histograms of edges (HOG)

• Motion History Images (Bobick)Motion History Images (Bobick)
• Rectified Flow Descriptors (Efros)

Diff ti l G t Si t (Sh h)• Differential Geometry Signatures (Shah)



Feb 10th – Local features (SIFT, Surf, 
MSER, Shape Context, Self Similarity, etc.)MSER, Shape Context, Self Similarity, etc.)

• T. Lindeberg, "Feature detection with automatic scale selection," International Journal 
of Computer Vision, vol. 30, no. 2, pp. 79-116, November 1998.  Available: 
htt //d d i /10 1023/A 1008045108935http://dx.doi.org/10.1023/A:1008045108935

• J. Matas, O. Chum, U. Martin, and T. Pajdla, "Robust wide baseline stereo from 
maximally stable extremal regions," in Proceedings of British Machine Vision 
Conference, vol. 1, London, 2002, pp. 384-393.  Available: 
http://citeseer.ist.psu.edu/608213.html

• K. Mikolajczyk and C. Schmid, "Scale & affine invariant interest point detectors," Int. 
J. Comput. Vision, vol. 60, no. 1, pp. 63-86, October 2004.  Available: 
http://dx.doi.org/10.1023/B:VISI.0000027790.02288.f2p g

• I. Laptev, "On space-time interest points," International Journal of Computer Vision, 
vol. 64, no. 2-3, pp. 107-123, September 2005.  Available: 
http://dx.doi.org/10.1007/s11263-005-1838-7

Optional Readings:Optional Readings:
• E. Shechtman and M. Irani, "Matching local self-similarities across images and 

videos," in Computer Vision and Pattern Recognition, 2007. CVPR '07. IEEE 
Conference on, 2007, pp. 1-8.  Available: 
http://dx doi org/10 1109/CVPR 2007 383198http://dx.doi.org/10.1109/CVPR.2007.383198

• H. Bay, T. Tuytelaars, and L. Van Gool, "Surf: Speeded-up robust features," 
in 9th European Conference on Computer Vision, Graz, Austria. Available: 
http://www.vision.ee.ethz.ch/~surf/eccv06.pdf



Reminder
Please sign up via email for a paper that you would 

like to present or show a demonstration of.
f ’- can show demos next week from this week’s papers 

(e.g.,GIST / spatial envelope on some images collected 
around campus)p )
- but otherwise should show demo on day of paper (could 
show Laptev or self-similarity features on Berkeleyish 

ti l t k )action examples next week…)

I’ll expect two demos or one presentation per p p p
person taking the course for credit…

N.B., a demo is more than showing author’s videos orN.B., a demo is more than showing author s videos or 
canned matlab example…must try on something new or 
extend…


