C280, Computer Vision

Prof. Trevor Darrell

[link to: trevor@eecs.berkeley.edu]

Lecture 15: Part-based models
Last Lecture: Discriminative Kernels

- SVM-BOW
- Pyramid and Spatial-Pyramid match
- Fast Intersection Kernels
- Latent-part SVM models
Recognition Lectures Summary

• Tues. 10/13: Introduction to Recognition
 – Scanning window paradigm
 – GIST
 – HOG
 – Boosted Face Detection
 – Local-feature Alignment; from Roberts to Lowe...
 – BOW Indexing

• Thurs. 10/15: Topic models for Recognition
 – Topic models for category discovery [Sivic05]
 – Category discovery from web [Fergus05]
 – Bootstrapping a category model [Li07]
 – Using text in addition to image [Berg06]
 – Learning objects from a dictionary [Saenko08]

• Tues. 10/20: Discriminative Kernels
 – SVM-BOW
 – Pyramid and Spatial-Pyramid match
 – Fast Intersection Kernels
 – Latent-part SVM models

• Thurs. 10/22: Voting and Part Based Models
 – Naïve-Bayes Nearest Neighbor [Irani]
 – Implicit Shape Model (ISM)
 – Constellation Models
 – Transformed LDA Models [Sudderth]
 – 3-D view models [Saravese]
Today

• Naïve-Bayes Nearest Neighbor (Irani)
• ISM (Liebe)
• Constellation Models (Fergus)
• Transformed LDA Models (Sudderth)
• 3-D view models (Saravese)
Multiple Features...

Wide variety of proposed local feature representations:

- SIFT [Lowe]
- Shape context [Belongie et al.]
- Superpixels [Ren et al.]
- Maximally Stable Extremal Regions [Matas et al.]
- Salient regions [Kadir et al.]
- Harris-Affine [Schmid et al.]
- Spin images [Johnson and Hebert]
- Geometric Blur [Berg et al.]
Discriminative Paradigm: Learning the Kernel

• Learn the kernel parameters
 • Improve accuracy and generalisation
 • Perform feature component selection
 • Perform dimensionality reduction
• Learn a linear combination of base kernels
 • \(K(x_i, x_j) = \sum_k d_k K_k(x_i, x_j) \)
• Combine heterogeneous sources of data
• Perform feature selection

[Varma]
2. Kernel weights and kernel hyperparameters can be efficiently learned in a 1-vs-all setting (vs. SVM MKL)

1. GP uncertainty model facilitates active learning
The power of discriminative kernels?
In Defense of Nearest-Neighbor Based Image Classification

Oren Boiman
The Weizmann Institute of Science
Rehovot, ISRAEL

Eli Shechtman
Adobe Systems Inc. & University of Washington

Michal Irani
The Weizmann Institute of Science
Rehovot, ISRAEL

Abstract

State-of-the-art image classification methods require an intensive learning/training stage (using SVM, Boosting, etc.). In contrast, non-parametric Nearest-Neighbor (NN) based image classifiers require no training time and have other favorable properties. However, the large performance gap between these two families of approaches rendered NN-based image classifiers useless.

We claim that the effectiveness of non-parametric NN-based image classification has been considerably under-valued. We argue that two practices commonly used in image classification methods, have led to the inferior performance of NN-based image classifiers: (i) Quantization of local image descriptors (used to generate “bags-of-words”, codebooks). (ii) Computation of ‘Image-to-Image’ distance, instead of ‘Image-to-Class’ distance.

We propose a trivial NN-based classifier – NBNN, (Naive-Bayes Nearest-Neighbor), which employs NN-distances in the space of the local image descriptors (and not in the space of images). NBNN computes direct ‘Image-to-Class’ distances without descriptor quantization. We further show that under the Naive-Bayes assumption, the theoretically optimal image classifier can be accurately approximated by NBNN.

Although NBNN is extremely simple, efficient, and requires no learning/training phase, its performance ranks among the top leading learning-based image classifiers. Empirical comparisons are shown on several challenging databases (Caltech-101, Caltech-256 and Graz-01).
Figure 1. Effects of descriptor quantization – Informative descriptors have low database frequency, leading to high quantization error. (a) An image from the Face class in Caltech101. (b) Quantization error of densely computed image descriptors (SIFT) using a large codebook (size 6,000) of Caltech-101 (generated using [14]). Red = high error; Blue = low error. The most informative descriptors (eye, nose, etc.) have the highest quantization error. (c) Green marks the 8% of the descriptors in the image that are most frequent in the database (simple edges). (d) Magenta marks the 8% of the descriptors in the image that are least frequent in the database (mostly facial features).
Figure 3. “Image-to-Image” vs. “Image-to-Class” distance. A Ballet class with large variability and small number (three) of ‘labelled’ images (bottom row). Even though the “Query-to-Image” distance is large to each individual ‘labelled’ image, the “Query-to-Class” distance is small. **Top right image:** For each descriptor at each point in Q we show (in color) the ‘labelled’ image which gave it the highest descriptor likelihood. It is evident that the new query configuration is more likely given the three images, than each individual image separately. (Images taken from [4].)
Figure 2. Effects of descriptor quantization – Severe drop in descriptor discriminative power. We generated a scatter plot of descriptor discriminative power before and after quantization (for a very large sample set of SIFT descriptors d in Caltech-101, each for its respective class C). We then averaged this scatter plot along the y-axis. This yields the “Average discriminative power after quantization” (the RED graph). The display is in logarithmic scale in both axes. NOTE: The more informative (discriminative) a descriptor d is, the larger the drop in its discriminative power.

Figure 4. NN descriptor estimation preserves descriptor density distribution and discriminativity. (a) A scatter plot of the 1-NN probability density distribution $p_{NN}(d|C)$ vs. the true distribution $p(d|C)$. Brightness corresponds to the concentration of points in the scatter plot. The plot shows that 1-NN distribution provides a very accurate approximation of the true distribution. (b) 20-NN descriptor approximation (Green graph) and 1-NN descriptor approximation (Blue graph) preserve quite well the discriminative power of descriptors. In contrast, descriptor quantization (Red graph) severely reduces discriminative power of descriptors. Displays are in logarithmic scale in all axes.
NBNN

The NBNN Algorithm:
1. Compute descriptors d_1, \ldots, d_n of the query image Q.
2. $\forall d_i \ \forall C$ compute the NN of d_i in C: $\text{NN}_C(d_i)$.
3. $\hat{C} = \arg\min_C \sum_{i=1}^{n} \| d_i - \text{NN}_C(d_i) \|^2$.

with multiple feature types:

$$\hat{C} = \arg\min_C \sum_{j=1}^{t} w_j \cdot \sum_{i=1}^{n} \| d_i^j - \text{NN}_C(d_i^j) \|^2.$$
Bosch Kernels used in original Varma paper have been withdrawn...

<table>
<thead>
<tr>
<th>NN-based method</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPM NN Image [27]</td>
<td>42.1 ± 0.81%</td>
</tr>
<tr>
<td>GBDist NN Image [27]</td>
<td>45.2 ± 0.96%</td>
</tr>
<tr>
<td>GB Vote NN [3]</td>
<td>52%</td>
</tr>
<tr>
<td>SVM-KNN [30]</td>
<td>59.1 ± 0.56%</td>
</tr>
<tr>
<td>NBNN (1 Desc)</td>
<td>65.0 ± 1.14%</td>
</tr>
<tr>
<td>NBNN (5 Desc)</td>
<td>72.8 ± 0.39%</td>
</tr>
</tbody>
</table>

Table 1. Comparing the performance of non-parametric NN-based approaches on the Caltech-101 dataset (\(n_{label} = 15\)). All the listed methods do not require a learning phase.
Back to shape: Parts-based Representation

- Object as set of parts
 - Generative representation

- Model:
 - Relative locations between parts
 - Appearance of part

- Issues:
 - How to model location
 - How to represent appearance
 - Sparse or dense (pixels or regions)
 - How to handle occlusion/clutter

Figure from [Fischler & Elschlager 73]
History of Parts and Structure approaches

- Fischler & Elschlager 1973
- Yuille ‘91
- Brunelli & Poggio ‘93
- Lades, v.d. Malsburg et al. ‘93
- Cootes, Lanitis, Taylor et al. ‘95
- Amit & Geman ‘95, ‘99
- Perona et al. ‘95, ’96, ’98, ’00, ’03, ’04, ’05
- Felzenszwalb & Huttenlocher ’00, ’04
- Crandall & Huttenlocher ’05, ’06
- Leibe & Schiele ’03, ’04
- Many papers since 2000
Object class recognition using unsupervised scale-invariant learning

Rob Fergus
Pietro Perona
Andrew Zisserman

Oxford University
California Institute of Technology
Goal

- Recognition of object categories
- Unassisted learning
Some object categories

Learn from examples

Difficulties:

- Size variation
- Background clutter
- Occlusion
- Intra-class variation
Main issues

- Representation
- Learning
- Recognition

Slide credit: Fergus
Sparse representation

+ Computationally tractable (10^5 pixels → 10^1 -- 10^2 parts)
+ Generative representation of class
+ Avoid modeling global variability
+ Success in specific object recognition

- Throw away most image information
- Parts need to be distinctive to separate from other classes
Detection & Representation of regions

- Find regions within image
- Use Kadir and Brady's salient region operator [IJCV '01]

Location
(x,y) coords. of region center

Scale
Diameter of region (pixels)

Appearance

Normalize → 11x11 patch → Projection onto PCA basis →

\[\begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_{15} \end{bmatrix} \]

Gives representation of appearance in low-dimensional vector space.

Slide credit: Fergus
Generative probabilistic model

Foreground model

- Gaussian shape pdf
- Gaussian part appearance pdf
- Gaussian relative scale pdf

Clutter model

- Uniform shape pdf
- Gaussian background appearance pdf
- Uniform relative scale pdf
- Poisson pdf on # detections

Based on Burl, Weber et al. [ECCV '98, '00]
Motorbikes

Samples from appearance model

Shape model

Part 1 – Det:5e-18
Part 2 – Det:8e-22
Part 3 – Det:0e-10
Part 4 – Det:1e-19
Part 5 – Det:3e-17
Part 6 – Det:4e-24
Background – Det:5e-19

Slide credit: Fergus
The correspondence problem

- Model with P parts
- Image with N possible assignments for each part
- Consider mapping to be 1-1

N^P combinations!!!
The correspondence problem

- 1 – 1 mapping
 - Each part assigned to unique feature

As opposed to:

- 1 – Many
 - Bag of words approaches
 - Sudderth, Torralba, Freeman ’05
 - Loeff, Sorokin, Arora and Forsyth ‘05

- Many – 1
 - Quattoni, Collins and Darrell, 04
Learning

- Task: Estimation of model parameters
- Chicken and Egg type problem, since we initially know neither:
 - Model parameters
 - Assignment of regions to foreground / background
- Let the assignments be a hidden variable and use EM algorithm to learn them and the model parameters
Learning procedure

• Find regions & their location, scale & appearance

• Initialize model parameters

• Use EM and iterate to convergence:
 E-step: Compute assignments for which regions are foreground / background
 M-step: Update model parameters

• Trying to maximize likelihood – consistency in shape & appearance
Experimental procedure

Two series of experiments:

- **Fixed-scale model**
 - Objects the same size (manual normalization)

- **Scale-invariant model**
 - Objects between 100 and 550 pixels in width

Datasets

Training
- 50% images
- No identification of object within image

Motorbikes

Airplanes

Frontal Faces

Testing
- 50% images
- Simple object present/absent test

Cars (Side)

Cars (Rear)

Spotted cats

Slide credit: Fergus
Motorbikes

Shape model
Background images evaluated with motorbike model
Frontal faces
Airplanes
Spotted cats
Summary of results

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Fixed scale experiment</th>
<th>Scale invariant experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motorbikes</td>
<td>7.5</td>
<td>6.7</td>
</tr>
<tr>
<td>Faces</td>
<td>4.6</td>
<td>4.6</td>
</tr>
<tr>
<td>Airplanes</td>
<td>9.8</td>
<td>7.0</td>
</tr>
<tr>
<td>Cars (Rear)</td>
<td>15.2</td>
<td>9.7</td>
</tr>
<tr>
<td>Spotted cats</td>
<td>10.0</td>
<td>10.0</td>
</tr>
</tbody>
</table>

% equal error rate

Note: Within each series, same settings used for all datasets

Slide credit: Fergus
Comparison to other methods

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Ours</th>
<th>Others</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motorbikes</td>
<td>7.5</td>
<td>16.0</td>
<td>Weber et al. [ECCV '00]</td>
</tr>
<tr>
<td>Faces</td>
<td>4.6</td>
<td>6.0</td>
<td>Weber</td>
</tr>
<tr>
<td>Airplanes</td>
<td>9.8</td>
<td>32.0</td>
<td>Weber</td>
</tr>
<tr>
<td>Cars (Side)</td>
<td>11.5</td>
<td>21.0</td>
<td>Agarwal Roth [ECCV '02]</td>
</tr>
</tbody>
</table>

% equal error rate

Slide credit: Fergus
Robustness of Algorithm

![Graphs showing the robustness of an algorithm for Face and Motorbike datasets.](image)
Summary -- Fergus

- Comprehensive probabilistic model for object classes
- Learn appearance, shape, relative scale, occlusion etc. simultaneously in scale and translation invariant manner
- Same algorithm gives \(\leq 10\% \) error across 5 diverse datasets with identical settings

Limitations → future work

- Very reliant on region detector
 Different part types (e.g. edgel curves)

- Only learns a single viewpoint
 Use mixture models

- Need lots of images to learn
 Bayesian learning - fewer images [ICCV ’03 (Fei Fei, Fergus, Perona)]

- Need more through testing
 Looking towards testing 100’s of datasets

Datasets available from:
http://www.robots.ox.ac.uk/~vgg/data
Implicit Shape Model
[Leibe, Schiele04]

Mario Fritz
Learning Object Appearance Models via Transformed Dirichlet Processes

Erik Sudderth
University of California, Berkeley

Joint work with
Antonio Torralba
William Freeman
Alan Willsky
Visual Object Categorization

• **GOAL:** Visually *recognize* and *localize* object categories

• Robustly *learn* appearance models from few examples
 - Hierarchical model *transfers* knowledge among categories
 - Nonparametric, *Dirichlet process* prior gives flexibility
Scenes, Objects, and Parts

Scene

Objects

Parts

Features
Outline

Object Recognition with Shared Parts
- Learning parts via Dirichlet processes
- Hierarchical DP model for 16 object categories

Multiple Object Scenes
- Transformed Dirichlet processes
- Part-based models for 2D scenes
- Joint object detection & 3D reconstruction
Describing Objects with Parts

Pictorial Structures
Fischler & Elschlager, IEEE Trans. Comp. 1973

Constellation Model
Fergus, Perona, & Zisserman, CVPR 2003

Cascaded SVM Detectors
Heisele, Poggio, et. al., NIPS 2001

Model-Guided Segmentation
Mori, Ren, Efros, & Malik, CVPR 2004
Counting Objects & Parts

How many parts? How many objects?
From Images to Features

- Some invariance to lighting & pose variations
- Dense, multiscale, over-segmentation of image
A Discrete Feature Vocabulary

SIFT Descriptors
- Normalized histograms of orientation energy
- Compute ~1,000 word dictionary via K-means
- Map each feature to nearest *visual word*

\[w_{ji} \rightarrow \text{appearance of feature } i \text{ in image } j \]

\[v_{ji} \rightarrow \text{2D position of feature } i \text{ in image } j \]

Lowe, IJCV 2004
Generative Model for Objects

For each image: Sample a reference position

For each feature:
- Randomly choose one part
- Sample from that part’s feature distribution
Objects as Mixture Models

- For a fixed reference position, our generative model is equivalent to a finite mixture model:

\[p(w_{ji}, v_{ji} | \rho_j) = \sum_{k=1}^{K} \pi_k \eta_k(w_{ji}) \mathcal{N}(v_{ji} | \mu_k + \rho_j, \Lambda_k) \]

- How many parts should we choose?
 - Too few reduces model accuracy
 - Too many causes overfitting & poor generalization
Dirichlet Process Mixtures

\[p(x) = \sum_{k=1}^{\infty} \pi_k f(x \mid \theta_k) \]

- **Dirichlet processes** define a prior distribution on weights assigned to mixture components:

\[\pi_k = \beta_k \prod_{\ell=1}^{k-1} (1 - \beta_\ell) \]

\[\beta_k \sim \text{Beta}(1, \alpha) \]

Stick-Breaking Construction: Sethuraman, 1994
Why the Dirichlet Process?

\[p(x) = \sum_{k=1}^{\infty} \pi_k f(x | \theta_k) \]

Nonparametric ≠ No Parameters

- Model complexity grows as data observed:
 - Small training sets give *simple, robust* predictions
 - Reduced sensitivity to prior assumptions

Flexible but Tractable

- Literature showing attractive *asymptotic properties*
- Leads to simple, effective *computational methods*
 - Avoids challenging model selection issues
Objects as Distributions

\[p(w_{ji}, v_{ji} | \rho_j) = \sum_{k=1}^{\infty} \pi_k \eta_k(w_{ji}) \mathcal{N}(v_{ji}; \mu_k + \rho_j, \Lambda_k) \]

- Parts are defined by \textit{parameters}, which encode distributions on visual features:
 \[\theta_k = \{ \eta_k, \mu_k, \Lambda_k \} \]

- Objects are defined by \textit{distributions} on the infinitely many potential part parameters:
 \[G(\theta) = \sum_{k=1}^{\infty} \pi_k \delta(\theta, \theta_k) \quad \pi \sim \text{Stick}(\alpha) \]
Dirichlet Process Object Model

Part-based object model sampled from DP prior:

\[G \sim \text{DP}(\alpha, H) \]

\[G(\theta) = \sum_{k=1}^{\infty} \pi_k \delta(\theta, \theta_k) \]

\[\pi \sim \text{Stick}(\alpha) \]

For each of J images, sample a reference position:

\[\rho_j \sim \mathcal{N}(\rho; \phi) \]

For each of N features, sample part parameters:

\[\bar{\theta}_{ji} \sim G(\theta) \]

Sample multinomial feature appearance:

\[w_{ji} \sim \bar{\eta}_{ji}(w) \]

Sample Gaussian feature position:

\[v_{ji} \sim \mathcal{N}(v; \bar{\mu}_{ji} + \rho_j, \bar{\Lambda}_{ji}) \]

\[\bar{\theta}_{ji} = \{\bar{\eta}_{ji}, \bar{\mu}_{ji}, \bar{\Lambda}_{ji}\} \]
Dirichlet processes have many desirable analytic properties, which lead to efficient *Rao-Blackwellized* learning algorithms.
Decomposing Faces into Parts

- 4 Images
- 16 Images
- 64 Images
Generalizing Across Categories

Can we transfer knowledge from one object category to another?
Learning Shared Parts

- Objects are often locally similar in appearance
- Discover *parts* shared across categories
 - How many total parts should we share?
 - How many parts should each category use?
Sharing Parts: 16 Categories

- Caltech 101 Dataset (Li & Perona)
- Horses (Borenstein & Ullman)
- Cat & dog faces (Vidal-Naquet & Ullman)
- Bikes from Graz-02 (Opelt & Pinz)
- Google…
Visualization of Shared Parts

Pr(appearance | part)

Pr(position | part)
Visualization of Shared Parts

\[\text{Pr(position | part)} \]

\[\text{Pr(appearance | part)} \]
Visualization of Shared Parts

Pr(position | part)

Pr(appearance | part)
Visualization of Part Densities

MDS Embedding of Pr(part | object)
Visualization of Part Densities

Hierarchical Clustering of $Pr(\text{part | object})$
Detection Task
Detection Results

Shared Parts more accurate than Unshared Parts

Modeling feature positions improves shared detection, but hurts unshared detection

6 Training Images per Category
(ROC Curves)
Detection Results

6 Training Images per Category
(ROC Curves)

Detection vs. Training Set Size
(Area Under ROC)
Sharing Simplifies Models

- Position & Appearance, HDP
- Position & Appearance, DP
- Appearance Only, HDP
Recognition Task
Recognition Results

6 Training Images per Category
(ROC Curves)

Detection vs. Training Set Size
(Area Under ROC)
Outline

Object Recognition with Shared Parts
- Learning parts via Dirichlet processes
- Hierarchical DP model for 16 object categories

Multiple Object Scenes
- Transformed Dirichlet processes
- Part-based models for 2D scenes
- Joint object detection & 3D reconstruction
Semi-supervised Learning
Object vs. Visual Categories

- Assume training data contains object category labels
- Discover underlying visual categories automatically
Multiple Object Scenes

- How many cars are there?
- Where are those cars in the scene?

Standard dependent Dirichlet process models (Gelfand et. al., 2005) inappropriate
Spatial Transformations

• Let global DP clusters model objects in a *canonical* coordinate frame
• Generate images via a random *set of transformations*:

\[\tau((\mu, \Lambda); \rho) = (\mu + \rho, \Lambda) \]

Parameterized family of transformations
Shift cluster from canonical coordinate frame to object location in a given image

Layered Motion Models *(Wang & Adelson, Jojic & Frey)*
Nonparametric Transformation Densities *(Learned-Miller & Viola)*
A Toy World: Bars & Blobs
Transformed Dirichlet Process

\[H \]

Mixture Parameters

\[\gamma \]
\[\alpha \]

Transformations

\[\theta \]
\[\rho \]

\[V \]

\[N \] \[J \]
Importance of Transformations

HDP

TDP
Counting & Locating Objects

- How many cars are there?
- Where are those cars in the scene?
Street Scene Visual Categories

- Building
- Road
- Car
- Tree
- Building

Global Probabilities
Street Scene Segmentations
Appearance Only

- “Bag of features” model, ignores feature positions
- Inferior segmentations, cannot count objects
Segmentation Performance

![Graphs showing detection rate vs. false alarm rate for different categories: Building, Tree, Road, Car. Each graph compares multiple part TDP, single part TDP, and appearance only methods.](image)
Objects & 3D Reconstruction

An Office Scene

- Given 3D structure, segmentation is easier
- Identifying objects regularizes depth estimation
Office Scene Training Images

Objects at Multiple Scales

Computer Screens
Desks
Bookshelves
3D Structure from Stereo

Depth = Disparity

Reference (left) Image
Potential Matches
Depth Densities

Overhead View
Greedy Depth Estimates

Reference (left) Image

Potential Matches

Depth Densities

Green ↔ Near
Red ↔ Far
TDP for 3D Scenes

Global Density
Object category
Part size & shape
Transformation prior

Transformed Densities
Object category
Part size & shape
Transformed locations

3D Scene Features
Object category
3D Location

2D Image Features
Appearance Descriptors
2D Pixel Coordinates
Single-Part Office Scene Model

Background Bookshelves Computer Screen Desk

1 meter 1 meter 0.5 meter

Probabilities

Global classes
Multi-Part Office Scene Model

- Background
- Bookshelves
- Computer Screen
- Desk

![3D diagram of office scene with labeled parts and probability distributions]
Stereo Test Image I
Ongoing Work: Monocular Test
Ongoing Work: Context

- Developed *fixed-order* contextual scene model
- Extension to Transformed DP model is an open problem
- Needed: Richer models for *background* scene structure
Sudderth Conclusions

Transformed Dirichlet Processes allow…

- flexible *transfer* of knowledge among related object categories
- robust learning from small, *partially labeled* datasets
- an *integrated* view of object recognition & 3D reconstruction
- potential *scaling* of nonparametric methods to complex domains
Learning a dense multi-view representation for detection, viewpoint classification and synthesis of object categories

*H. Su *M. Sun L. Fei-Fei and S. Savarese.
Our goals

- Detect objects under generic view points
- Estimate object pose
- Predict object appearance from novel views

Azimuth θ, Zenith φ
Our goals

- Detect objects under generic view points
- Estimate object pose
- Predict object appearance from novel views
- Generic and work for any category
Current paradigm

- Single view models are independent
 - No information is shared [except Torralba et al. ’03]
 - No sense of correspondences of parts under 3D transformations
- Non scalable to large number of categories/view-points
A new recent paradigm

Sparse set of interest points or parts of the objects are linked across views.
A new recent paradigm

- Canonical parts captures view invariant diagnostic appearance information
- 2d ½ structure linking parts via weak geometry

Savarese, Fei-Fei, ICCV 07
Savarese, Fei-Fei, ECCV 08
Sun, Su, Savarese, Fei-Fei, CVPR 09
Drawbacks

• Supervision
 • Part labels required
 • Pose labels required
 • Except [Savarese & Fei-Fei 07, 08], but...
 [Arie-Nachimson & Basri ICCV 09]

• No pose estimation
 • Except [Savarese & Fei-Fei 07, 08], [Sun et al 09], [Liebelt 08], [Arie-Nachimson & Basri ICCV 09]
 • Few poses (at most 8 azimuth, 3 zenith)
 • Still inaccurate

• No or limited ability to synthesize novel views

• Tested on few categories
 • Usually 1-2, but no more than 8 [Savarese & Fei-Fei 07, 08], [Sun et al 09]
Propose a new multi-view model to:

- Detect objects from any viewing angles
- Accurately estimate object pose
- Synthesize object appearance from novel views
Key contributions

• **Representation**

 • **Learning** representation on the viewing sphere:
 • Model object appearance and shape from any position on the viewing sphere
 • Enable view synthesis from novel view points

• **Multi-view generative part-based model** [Sun et al. CVPR 09]
 • Object is represented by collections of parts
 • Parts are linked across views
 • Parts and relationships are probabilistic

• **Semi-supervised learning**
 • No part or pose labels are required

• **Incremental**:
 • Training images can be provided sequentially
Dense representation on view-sphere

- Triangle T
- Morphing parameter S
View morphing constraints

\[
m(S) = \sum_{g=1}^{3} m^g_T \cdot s_g
\]

\[
W(S) = \sum_{g=1}^{3} W^g_T \cdot s_g
\]

For first time used for modeling object categories!

Seitz & Dyer SIGGRAPH 96
Xiao & Shah CVIU ’04
Conditions for geometrically consistent morphing

1. Correct correspondence between parts must be established
2. Key views are rectified by a pre-warping transformations H
Key contributions

• Representation:
 • Dense representation on the viewing sphere:
 • Model object appearance and shape from any position on the viewing sphere
 • Enable view synthesis
 • Multi-view generative part-based model [Sun et al. cvpr 09]
 • Object is represented by collections of parts
 • Parts are linked across views
 • Parts and relationships are probabilistic

• Learning:
 • Semi-supervised learning
 • No part or pose labels are required
 • Incremental:
 • Training images can be provided sequentially
Multi-view generative part-based model

\[Y_n = \text{Codeword} \]
\[X_n = \text{Location} \]
Multi-view generative part-based model

\(\alpha = \text{Part Prop. Prior} \)

\(\pi \sim \text{Dir}(\alpha) \)

\(R \sim \text{Mult}(\pi) \)

\(Y_n \sim \text{Mult}(\eta) \)

\(X_n \sim N(\theta) \)

\(\eta = \text{Part Appearance} \)

\(\theta = \text{Part Location/shape} \)

\(Y_n = \text{Codeword} \)

\(X_n = \text{Location} \)

\(Y_n \rightarrow \alpha \)

\(R_1 \rightarrow \pi \)

\(R_2 \rightarrow \pi \)

\(R_K \rightarrow \pi \)

\(X_n \leftarrow A \cdot X \)
\[P(X, Y, T, S, R, \pi) \propto P(\pi | \alpha) \]
\[
\prod_n \{ P(X_n | \theta_{TR_n}(S), A) P(Y_n | \eta_{TR_n}(S)) P(R_n | \pi) \}
\]

\(\alpha \) = Part Prop. Prior

\(\pi \sim Dir(\alpha) \)

\(R \sim Mult(\pi) \)

\(Y_n \sim Mult(\eta) \)

\(X_n \sim N(\text{theta}) \)

\(\eta \) = Part Appearance

\(\theta \) = Part Location/shape

\(Y_n = \text{Codeword} \)

\(X_n = \text{Location} \)
\[P(X, Y, T, S, R, \pi) \propto P(\pi | \alpha_T) \]
\[\prod_n \{ P(X_n | \theta_{TR_n}(S), A) P(Y_n | \eta_{TR_n}(S)) P(R_n | \pi) \} \]

Exact Inference is intractable!
We use Variational EM

\(\alpha = \text{Part Prop. Prior} \)
\(\pi \sim \text{Dir}(\alpha) \)
\(R \sim \text{Mult}(\pi) \)
\(Y_n \sim \text{Mult}(\eta) \)
\(X_n \sim N(\text{theta}) \)
\(\eta = \text{Part Appearance} \)
\(\theta = \text{Part Location/shape} \)

\(Y_n = \text{Codeword} \)
\(X_n = \text{Location} \)
Key contributions

• **Representation:**

 • Dense representation on the viewing sphere:
 • Model object appearance and shape from any position on the viewing sphere
 • Enable view synthesis

 • **Multi-view generative part-based model** [Sun et al cvpr 09]
 • Object is represented by collections of parts
 • Parts are linked across views
 • Parts and relationships are probabilistic

• **Learning:**

 • Semi-supervised learning
 • no part or pose labels are required

 • Incremental:
 • Training images can be provided sequentially
Semi-supervised

• Class label
• Object bounding box
• No part labels

• No pose labels [unlike Sun CVPR 09]
• No need to observe same object instance from multiple views [unlike Savarese & Fei-Fei, 07, 08]
Incorporating geometrical constraints

- Parts are linked across views
- Part topology is preserved under morphing transformation
Within-triangle constraints

$M_{i \rightarrow j} \cdot m^i \approx m^j$

Encoded as a penalty term in variational EM
Incremental learning

- Enable unorganized and on-line collection training images
- Increase efficiency in learning (no need large storage space)
Incremental learning

• Sequentially assign new training images to triangles on view sphere
Incremental learning

- Sequentially assign new training images to triangles on view sphere
- Evidence of training image used to update model parameters

See paper for detailed equations!
Initializing the model

- Estimating key views and triangles
- Defining initial parts

\[\pi : I^h \rightarrow \{P_1^h, P_2^h, P_3^h, O^h\} \]
\[\tau : I^k \rightarrow \{P_1^k, P_2^k, P_3^k, O^k\} \]

Sequential ransac
J-linkage
Example of part learning
Examples of learnt part-based models

Car
Examples of learnt part-based models

Bicycle
Examples of learnt part-based models

Binocular microscope
Examples of learnt part-based models

Travel iron
Let’s use our model!

• **Detect** objects from any viewing angles
• Accurate **pose estimation**
• **Synthesize** object shape and appearance from novel views
Detection – UIUC 3D dataset [Savarese & Fei-Fei 07]
Detection - UIUC 3D dataset

Car

Bicycle

ROC

Detection Rate

False Alarm Rate

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

Our model
Min et al, CVPR 09
Savarese & Fei-Fei ICCV ’07
Detection - Pascal 2006 dataset
Detection - Pascal 2006 dataset

Car

Bicycle

0.35 (average p)

0.347 (average p)

Our model
Detection - Household Item Dataset
Detection - Household Item Dataset

![Graph showing detection rate vs. false alarm rate]
Viewpoint Classification

Car from UIUC 3D Dataset

<table>
<thead>
<tr>
<th>Viewpoint</th>
<th>Classification Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>0º</td>
<td>0.7</td>
</tr>
<tr>
<td>45º</td>
<td>0.5</td>
</tr>
<tr>
<td>90º</td>
<td>0.6</td>
</tr>
<tr>
<td>135º</td>
<td>0.8</td>
</tr>
<tr>
<td>180º</td>
<td>0.7</td>
</tr>
<tr>
<td>225º</td>
<td>0.6</td>
</tr>
<tr>
<td>270º</td>
<td>0.5</td>
</tr>
<tr>
<td>315º</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Our model
Savarese & Fei-Fei ICCV ’07
Viewpoint Classification

Car- Pascal 2006 dataset

First the time!

[180°] 90° 180° 270°

Classification Accuracy

0°

Our model
Min et al, CVPR 09

[Arie-Nachimson & Basri ’09]
Viewpoint Classification
Household Item Dataset

Avg. Accuracy

All
Bicycle

Notice the viewpoint variability in the dataset!
Binocular Microscope
Car
Travel Iron
Novel view object synthesis from a single image

For the first time!

[For natural scenes, see Hoiem et al 07; Saxena et al 07]
Novel view object synthesis from a single image For the first time!

[For natural scenes, see Hoiem et al 07; Saxena et al 07]
Saravese Conclusions

• A new part-based multi-view representation for object categories

• Incremental learning scheme with little supervision

• Achieve accurate pose estimation tested on up to 16 categories

• Image based rendering from just one single image!
Today

- Naïve-Bayes Nearest Neighbor (Irani)
- ISM (Liebe)
- Constellation Models (Fergus)
- Transformed LDA Models (Sudderth)
- 3-D view models (Saravese)