
Efficient and Compact Spreadsheet Formula Graphs
Dixin Tang, Fanchao Chen1§, Christopher De Leon, Tana Wattanawaroon2, Jeaseok Yun, Srinivasan Seshadri, Aditya G. Parameswaran

UC Berkeley | Fudan University1 | UIUC2

{totemtang, chrisdeleon333, jonathanyun, srinivasan.seshadri, adityagp}@berkeley.edu,
chenfc18@fudan.edu.cn, wattana2@illinois.edu

Abstract—Spreadsheets are one of the most popular data
analysis tools, wherein users can express computation as formulae
alongside data. The ensuing dependencies are tracked as formula
graphs. Efficiently querying and maintaining these formula
graphs is critical for interactivity across multiple settings. Un-
fortunately, formula graphs are often large and complex such
that querying and maintaining them is time-consuming, reducing
interactivity. We propose TACO, a framework for efficiently
compressing formula graphs, thereby reducing the time for
querying and maintenance. The efficiency of TACO stems from
a key spreadsheet property: tabular locality, which means that
cells close to each other are likely to have similar formula
structures. We leverage four such tabular locality-based patterns,
and develop algorithms for compressing formula graphs using
these patterns, directly querying the compressed graph without
decompression, and incrementally maintaining the graph during
updates. We integrate TACO into an open-source spreadsheet
system and show that TACO can significantly reduce formula
graph sizes. For querying formula graphs, the speedups of TACO
over a baseline implemented in our framework and a commercial
spreadsheet system are up to 34,972× and 632×, respectively.

I. INTRODUCTION

Spreadsheets are widely used for data analysis, with a user-
base of nearly 1 billion [1], [2]. They support a variety of
applications, from planning and inventory tracking, to complex
financial, medical, and scientific data analysis. Their popularity
is attributable to an intuitive tabular layout and in-situ formula
computation [3]. Users directly analyze their data by writing
embedded formulae alongside data, akin to database views [4].
These formulae take the results of other formulae or raw data
values as input, creating dependencies between the output of
formulae and their inputs. These dependencies are internally
represented as a formula graph. Querying formula graphs
is critical to the interactivity of spreadsheets for multiple
applications, including:

• Formula recalculation: When a cell is modified, the
spreadsheet system needs to query the formula graph to find
its dependents and calculate new results [5], [6]. In addition,
the performance of identifying dependents is critical for
returning control to users interactively for an asynchronous
execution model [7]. Here, the spreadsheet system marks the
formulae to be recalculated as invisible and returns control
to the user such that the user can interact with the visible
cells. Therefore, finding dependents is on the critical path
for returning control to the user and its performance is
important in ensuring interactivity.
• Formula dependency visualization: Spreadsheet sys-

tems, such as Excel and LibreCalc, provide tools for finding
and visualizing the dependents and precedents of cells to
help users check the accuracy of formulae and identify

§Work done at UC Berkeley.

(0, 100] (100, 1000] (1000, 10000] (10000, +)
Enron

0.00

0.20

0.40

0.60

0.80

1.00

Pe
rc

en
ta

ge

Maximum Dependents
Longest Path

(0, 100] (100, 1000] (1000, 10000] (10000, +)
Github

0.00

0.20

0.40

0.60

0.80

1.00

Pe
rc

en
ta

ge

Maximum Dependents
Longest Path

Fig. 1: Probability distributions for the maxinum number of depen-
dents and the longest path in the Enron and Github datasets

A N

2 ? =M2

3 =IF(A3=A2,N2+M3,M3)?

4 =IF(A4=A3,N3+M4,M4)?

6949 =IF(A6949=A6948,N6948+M6949,M6949)?

1 CP id Nov Settle $ Total

M

Nov Settle $

?

?

?

?

N2:N6949M2:M6949

N3:N6949

N2:M6948

A2:M6948
A3:M6949

A Spreadsheet Example The compressed formula
graph by TACO

Fig. 2: A real spreadsheet with tabular locality [13]
sources of errors [8]–[12]. For these applications, the per-
formance of finding dependents/precedents is also critical
to maintain interactivity.

Unfortunately, real-world spreadsheets often include large and
complex formula graphs, where a cell update can have a
large number of dependent cells. Traversing these graphs to
find dependents can be time-consuming and lead to high re-
sponse times. We analyze two real-world spreadsheet datasets,
Enron [13] and Github (a dataset we crawled; details in
Sec. VI-A). We compute, for each spreadsheet, the maximum
number of dependents for a given cell, as well as the longest
path in the formula graph. We plot the probability distributions
for these two quantities for the two datasets in Fig. 1. We
see that the number of dependents of a single cell can be
as high as 300K, while a path can be as long as 200K
edges. Therefore, finding dependents and precedents in real
spreadsheets may take a long response time, which in turns
hinders data exploration. In fact, our experiments in Sec. VI
show that using a baseline approach to find dependents in
formula graphs can take up to 49 seconds for real spreadsheets.
A previous study has shown that even an additional delay of
0.5 seconds “results in reduced interaction and reduced dataset
coverage during analysis” [14].

In this paper, we study how we can reduce the execution
time for finding dependents and precedents in formula graphs
by leveraging predefined patterns found in real spreadsheets.
These patterns can be used to compress the formula graph and
enable fast look-ups of dependents and precedents directly on
the compressed graph. Specifically, our key insight is that cells
that are close to each other in the tabular spreadsheet layout
often employ similar formula structures, a property we refer
to as tabular locality. Fig. 2 shows a column of formulae of
a real-world spreadsheet that follows tabular locality. While
the formulae in the column N look complicated at first glance,

1

they follow the same pattern starting from N3: the IF formula
in each row references the cell of the same row and the
row above from column A (e.g., N3 references A3 and A2),
the cell to the left (e.g., M3 for N3), and the cell above
(e.g., N2 for N3). Tabular locality is prevalent in real-world
spreadsheets mainly because users often do not write several
distinct formulae by hand, but use spreadsheet features, such
as copy-paste and autofill, to generate formulae automatically.
Autofill, for instance, allows users to drag a cell to fill adjacent
cells by repeating the pattern of the source cell. Users could
also programmatically generate a large spreadsheet, which still
likely respects tabular locality.

However, leveraging tabular locality to efficiently find de-
pendents and precedents requires addressing several chal-
lenges in compressing, querying, and maintaining formula
graphs. First, as we show in the experiments (Sec. VI-B),
formula references are complex: a formula could include
multiple references to different rows or columns (e.g., N3
in Fig. 2 references 4 different cells). Disentangling these
multiple references across cells, identifying common patterns
across them and compressing these common patterns can be
time-consuming. Therefore, the compression algorithm should
balance between the quality of the compression (e.g., the
number of common patterns detected) and the compression
time. While it may be possible to track user actions (e.g.,
during autofill) to identify and compress formula dependencies
directly, this approach does not apply when spreadsheets are
shared via files (e.g., xlsx files), losing track of the actions that
generated them. It also cannot compress formula dependencies
generated programmatically [15], [16]. Furthermore, develop-
ing a compressed representation and algorithms for directly
querying the compressed graphs to reduce look-up time is
also an open challenge Finally, the formula graph needs to be
maintained over time, which requires incrementally updating
the compressed graph to avoid decompression overhead.

To address these challenges, we present Tabular Locality-
based Compression or TACO. In TACO, we leverage four
basic patterns that serve as building blocks for other more
complicated patterns, and identify one extended pattern based
on the analysis of real spreadsheets. We propose a generic
framework that decomposes messy formulae and extracts their
predefined patterns. This framework is also extensible to
support new patterns. We prove that compressing a formula
graph using predefined patterns is NP-HARD via a reduction
from the rectilinear picture compression problem [17]. We
develop a greedy algorithm to efficiently compress formula
graphs while maintaining low compression overhead. Further,
we design algorithms for finding dependents or precedents
directly on the compressed graph, and for maintaining the
graph incrementally, and analyze the complexity of each algo-
rithm. Our experiments show that for querying formula graphs,
the speedups of TACO over a baseline and a commercial
spreadsheet system are up to 34,972× and 632×, respectively.

While there is a lot of work on graph compression [18], this
work does not leverage tabular locality or take into account
the spatial nature of spreadsheet ranges. In addition, most of

this work does not support directly querying the compressed
graph, so these compression algorithms will not be faster
than an approach without compression in terms of finding
dependents/precedents. Fan et al. [19] propose a method for
directly executing reachability and pattern matching queries
on a compressed graph, but do not leverage tabular locality
nor supporting finding dependents/precedents. TACO is also
different from columnar compression [20], [21] because TACO
compresses formula dependencies as opposed to columnar
data. A recent paper proposes a specialized algorithm for
compressing formula graphs [7]. However, this algorithm in-
troduces false positives. In addition, it has a high compression
and maintenance time, which we will show in Sec. VI. It turns
out that Excel has a capability wherein it identifies identical
formulae and stores duplicate formulae as pointers to the
first formula [22]. But it does not consider compressing and
querying the formula dependencies based on tabular locality.

II. BACKGROUND AND PROBLEM

In this section, we present the problem of compressing,
querying, and maintaining formula graphs.

A. Background

Spreadsheets A spreadsheet consists of a set of cells organized
in a tabular layout. Each cell is referenced using its column and
row index. Columns are identified by letters A, · · · , Z, AA, · · · ,
and rows are identified by numbers 1, 2, · · · . For simplicity,
for a cell we also use integers (i, j) to represent its position,
where i and j are column and row indices, respectively, both
starting from 1. A range, akin to a 2D window, is a rectangular
region of cells, identified by the top-left (called head) and
bottom-right (called tail) cells. For example, the range A1:B2
contains cells A1, A2, B1, B2, with head and tail cells A1 and
B2, respectively.

A cell contains a formula or a pure value. A pure value
is a constant belonging to a fixed type while a formula
is a mathematical expression that takes pure values and/or
cell/range references as input. The result of an evaluated
formula is an evaluated value. For example, the cells in column
A in Fig. 2 include pure values while the cells in column N
include formulae. In the rest of the paper, we use “value” to
refer to either the pure or evaluated value of a cell. A cell that
includes a formula is called a formula cell.
Formula graphs A formula graph is a directed acyclic graph
(DAG) that stores the dependencies of each formula referenc-
ing other ranges as edges. Specifically, each formula is parsed
to get the set of ranges the formula references, with a directed
edge added from each referenced range to the formula cell.
We call this directed edge a dependency. Given a directed
edge e = (prec, dep), we call prec the direct precedent of dep
or the precedent of the edge e. Symmetrically, we call dep the
direct dependent of prec or the dependent of e.

Fig. 3 shows a spreadsheet with four formulae along with
its formula graph. The cells denoted as ? are pure values.
B1 and B2 have the same formula SUM(A1:A3), so the direct
dependents of A1:A3 include B1 and B2. C1 references B1 and

2

B3, so we add two edges. Finally, C2 references B2:B3, which
adds an edge with separate vertices although B2:B3 overlaps
with the vertices B2 and B3.

The formula graph is used to quickly find the dependents
or precedents of an input range. The dependents of an input
range are the set of cells that are reachable from the input
range in the formula graph. Symmetrically, the precedents are
the set of cells that can reach the input range in this formula
graph via a directed path. For example, the dependents of A1
are {B1, B2, C1, C2} in Fig. 3. Since a vertex in the graph can
be a range, we can build an index (e.g., R-Tree [23]) over the
vertices to quickly find the ranges that overlap with an input
range. (e.g., find A1:A3 given a cell A1).

One application of the formula graph is to find the depen-
dents when users update the spreadsheet to ensure that users
do not see stale or inconsistent results. Specifically, when a cell
is updated, the formulae of its dependents will be re-evaluated
in sequence to refresh their values. A key prerequisite to
updating the formulae is identifying which formulae require
recomputation in the first place. If the update is to a formula
cell, the formula graph will be modified. The formula graph is
also useful for visualizing formula dependencies, which allows
users to trace the dependents/precedents of a cell to check the
accuracy of formulae or find the sources of errors [8], [9],
[12], [15]. In both applications, the performance of querying
the formula graph is critical to ensure interactivity.

B. Compressing, Querying, and Maintaining Formula Graphs

Formula graph problems Finding the dependents and prece-
dents of an input range is often time-consuming due to
the size or complexity of the graph. Therefore, we propose
compressing formula graphs by leveraging tabular locality to
significantly reduce graph size. Directly querying the com-
pressed graph and incremental maintenance can decrease the
time taken for finding dependents/precedents and maintaining
the graph, respectively, while introducing the modest overhead
of building the compressed graph.
Patterns in formula graphs We capture and distill tabular
locality in a formula graph via patterns. For a set of edges A of
arbitrary size, a pattern is a constant-size (i.e., O(1)) represen-
tation that can reconstruct A (with size O(|A|)). In addition,
finding the direct dependents or precedents of an input range
in a pattern should also be constant time. Consider Fig. 2 as
an example. Each formula cell Ni starting from N3 follows the
pattern that Ni depends on Ai, A(i-1), Mi, and N(i-1). By storing
the relative positions between Ni and Ai, i.e., Ai is 13 columns
left to Ni, and the valid range of Ni, i.e., N3:N6949, we can
represent the edges Ai → Ni using constant-size information.
We can also find dependents/precedents in this compressed
edge in constant time. For example, for input range A3:A10,
we can use the information of relative positions to find the
dependents N3:N10 in constant time. We can represent and
query other edges in a similar way. Therefore, leveraging
patterns greatly reduces formula graph sizes and consequently
reduces the time for finding dependents/precedents.

A B

1 ? =SUM(A1:A3)

2 =SUM(A1:A3)?

3 ?

Spreadsheet Formula Graph
C

=AVG(B2:B3)

=B1+B3

? ?

A1:A3
B1

B2

B2:B3 C2

C1

B3

Fig. 3: An example spreadsheet and its formula graph

Compressed formula graph representation Given a for-
mula graph G′(E′, V ′), we want to find a lossless com-
pressed graph G(E, V) that preserves the results of finding
dependents/precedents. G is generated based on a partition
of the edge set E′ in G′: P = {E′

1, E
′
2, · · · , E′

N}, where
E′ = ∪N

i=1E
′
i. Each E′

i must either contain a single edge
(i.e., uncompressed), or be a set of edges that follow one
of the predefined compression patterns, in which case these
edges will be replaced with a compressed edge. We gen-
erate a compressed edge ei = (prec, dep, p,meta) for each
E′

i = {ei1, ei2, · · · , eiMi
}, where Mi is the size of E′

i. The
components ei.prec and ei.dep are the precedent and the
dependent of ei, computed as ei.prec =

⊕Mi

j=1 e
i
j .prec and

ei.dep =
⊕Mi

j=1 e
i
j .dep.

⊕
is the minimal bounding range

of the input ranges. For example,
⊕

merges the ranges
A1:A3 and A2:A5 into A1:A5. The component ei.p is the
compression pattern while ei.meta encodes the underlying
pattern information such that meta of an edge ei in E is used
to reconstruct the corresponding edges in E′

i. If E′
i contains

a single edge, ei.p is set to Single, which is defined as the
pattern for an uncompressed edge. So E in G comprises the
edges generated from the partition P and |E| = N . The
compressed vertex set V is induced from E.
Problem statement Given a set of predefined pattern types,
we want to build an equivalent compressed graph G(E, V)
of a formula graph G′(E′, V ′) such that the size of G and
the time for finding the dependents/precedents of a cell are
both significantly smaller compared to G′, and the time for
maintaining G is also smaller than the time for maintaining
G′ with respect to the same updates.

To address this problem, we discuss the basic compression
patterns we support (Sec. III). We then present the TACO
framework that leverages the basic patterns to compress, query,
and maintain a formula graph, and analyze the algorithmic
complexity (Sec. IV). Finally, we discuss extending TACO to
support new patterns beyond the basic ones (Sec. V).

III. BASIC PATTERNS

In this section, we define the basic compression patterns
we consider and propose algorithms for using the pattern to
build a compressed edge, finding dependents or precedents,
and maintaining the edge.

A. Basic Patterns

The basic patterns consider tabular locality in adjacent
formula cells and assume each formula cell references a
single range. We can employ the basic patterns multiple times
to compress dependencies when formula cells have multiple
references, as discussed in Sec. IV-A. We focus on adjacent

3

A

1 ?

2 ?

3 ?

4 ?

A1:B3 C1

Spreadsheet Formula Graph

A2:B4 C2
A3:B5 C3

A1:B6

C1:C4

compress hRel=(-2,0)
hFix = NA
tRel=(-1,2)
tFix=NA

C

=SUM(A1:B3)

=SUM(A2:B4)

=SUM(A3:B5)

=SUM(A4:B6)

B

?

?

?

?

A4:B6 C4

(a) Relative plus Relative (i.e., sliding window)

A C

1 ? =SUM(A1:B4)

2 =SUM(A2:B4)?

3 =SUM(A3:B4)?

A1:B4 C1

Spreadsheet Formula Graph

A2:B4 C2
A3:B4 C3

A1:B4

C1:C4

compress hRel=(-2,0)
hFix=NA
tRel=NA
tFix=(2,4)

B

?

?

?

4 =SUM(A4:B4)? ?

A4:B4 C4

(b) Relative plus Fixed (i.e., shrinking window)

A C

1 ? =SUM(A1:B1)

2 =SUM(A1:B2)?

3 =SUM(A1:B3)?

A1:B1 C1

Spreadsheet Formula Graph

A1:B2 C2

A1:B3 C3

A1:B3

C1:C3

compress
hRel=NA
hFix=(1,1)
tRel=(-1,0)
tFix=NA

B

?

?

?

(c) Fixed plus Relative (i.e., expanding window)

A C

1 ? =SUM(A1:B3)

2 =SUM(A1:B3)?

3 =SUM(A1:B3)?

C1

Spreadsheet Formula Graph

C2A1:B3

C3

A1:B3

C1:C3

compress hRel=NA
hFix=(1,1)
tRel=NA
tFix=(2,3)

B

?

?

?

(d) Fixed plus Fixed (i.e., fixed window)
Fig. 4: Examples of four basic patterns of tabular locality

cells in a column for simplicity; the row-wise case can be
derived symmetrically.

Let A′(A′ ⊆ E′) be a set of dependencies in a column
of adjacent formula cells. Our basic patterns capture various
relationships between the precedent and dependent of each
e′ ∈ A′. Recall that e′.dep is a formula cell and e′.prec is a
referenced range, represented by the positions of its head and
tail cell. In a spreadsheet, there are two types of relationships
between the formula cells (i.e., e′.dep) and the head/tail cells
in the referenced range (i.e., e′.prec): fixed and relative [24].

The fixed relationship captures the scenario where each
dependent e′.dep references the same head or tail cell of the
precedent e′.prec. For example, the formulae in a column
all reference a common dollar conversion rate, stored in a
fixed location, i.e., a cell. Here, we have a fixed relationship
with both the head and the tail cell of the referenced range,
which are identical. This is a case of an FF (or Fixed-Fixed)
pattern. The referenced head and tail cell for fixed references
are denoted hFix and tFix, respectively.

The relative relationship, on the other hand, captures the
scenario where each dependent e′.dep has the same relative
position with respect to the head or tail cell of the precedent
e′.prec. The relative position with respect to the head and tail
cell is denoted hRel and tRel, respectively. One example of a
relative position is each formula cell in a column references a
cell to its left. Here there is a relative relationship to both the
head and tail cell of the referenced range, which are identical.
This is a case of an RR (or Relative-Relative) pattern. We use
a pair (p, q) to represent the relative position; p denotes the
relative column distance and q the relative row distance. Given
two cells’ positions u and v, we say u is relative to v by (p, q)
if v.i = u.i+ p and v.j = u.j + q.

Combining the two types of relationships (fixed or relative)
with the two cells that represent the precedent (head and tail),
there are four basic patterns that capture the relationships
between dependents and precedents for a column of dependen-
cies. We additionally include a default pattern called Single
for an uncompressed edge.
Relative plus Relative (RR) RR is the setting where each
e′.dep has the same relative positions to both head and tail
cells of e′.prec. Fig. 4a shows an example. We see that each
formula cell in column C is relative to the head cell of its

referenced range by (−2, 0) (i.e., to the left by two columns)
and relative to the tail cell by (−1, 2). The metadata meta is
(hRel = (−2, 0), hFix = NA, tRel = (−1, 2), tFix = NA)).
NA means that this pattern does not include this information
(e.g., RR does not reference fixed head or tail cells). So
the compressed edge in Fig. 4a is (prec = A1:B6, dep =
C1:C4, p = RR,meta), where meta is as defined above.

Relative plus Fixed (RF) RF is the setting where each e′.dep
has the same relative position to the head cell and references a
fixed tail cell. Fig. 4b shows an example. Here, each formula
in column C is relative to the head cell of its referenced range
by (−2, 0) and points to a fixed tail cell B4 = (2, 4). The
metadata meta equals (hRel = (−2, 0), hFix = NA, tRel =
NA, tFix = (2, 4)).

Fixed plus Relative (FR) FR is the dual pattern of RF.
So each e′.dep points to the same head cell and has the
same relative position for the tail cell. Fig. 4c shows that
the metadata of the compressed edge is (hRel = NA, hFix =
(1, 1), tRel = (−1, 0), tFix = NA).
Fixed plus Fixed (FF) FF is the setting where each e′.dep
references fixed head and tail cells, represented as hFix and
tFix, respectively. Fig. 4d shows that each formula cell always
points to (A1:B3) and its meta is (hRel = NA, hFix =
(1, 1), tRel = NA, tFix = (2, 3)).

Applicability of the basic patterns One major reason why
the basic patterns are prevalent in real spreadsheets is that
modern spreadsheet systems (e.g., Excel, Google Sheets, and
LibreOffice Calc) provide a tool, called autofill, to help users
generate a large number of formulae automatically, and the
patterns adopted by autofill end up being the basic patterns.
Specifically, autofill generates formulae by applying the pat-
tern of one source formula cell to adjacent cells. For the
generated formulae, the formula functions (e.g., SUM) are the
same as in the source cell, but the references (e.g., A1:B1)
are modified based on the following rules: if a reference is
prefixed with a dollar sign $, it is a fixed reference; otherwise
it is a relative reference. Therefore, if a range R in the source
cell does not have $, the generated ranges from R follow
the RR pattern. If R’s head cell does not have $ but the tail
cell does, the generated ranges follow RF. The FR pattern
is generated symmetrically. Finally, if R’s tail and head cells

4

have $, the generated ranges follow FF. But a formula may
mix many ranges and include outliers, which makes extracting
basic patterns from these formulae challenging.

While there are other methods for generating formula cells
(e.g., programmatically), we believe these methods are still
likely to generate the basic patterns since these patterns are
the building blocks for many applications. A concrete example
that follows RR is in Fig. 2; RR is common in sliding-
window-style computation. FR and RF are often employed
for cumulative total computation. A real example involves
a user sorting transactions by date and using a column of
formulae to compute the year-to-date sales amount. FF is
also widely used in real applications for referencing fixed
ranges for point lookups, e.g., a fixed interest rate or monetary
conversion rate in a cell, or range lookups. One example of
a FF range lookup is a column of VLOOKUP formulae, each
of which looks up a value in the same range. In fact, our
experiments in Section VI-B show that leveraging the basic
patterns in Section V reduce the number of edges of formula
graphs for two real spreadsheet datasets to 5% and 1.9%,
respectively, which shows that the basic patterns are prevalent
in real spreadsheets.
Discussion on leveraging the basic patterns One natural
question is whether existing spreadsheets leverage the basic
patterns for compression and querying. Excel does identify
the same formulae and stores them efficiently [22], but does
not leverage these patterns to accelerate traversing formula
graphs, as is verified by our experiments in Sec. VI-E. While
it is possible to track autofill expressions to compress formula
dependencies, this approach does not apply to spreadsheets
generated programatically, and is coupled with a spreadsheet
system. To the best of our knowledge, no spreadsheet systems
compress and query formula dependencies via tabular locality.

Therefore, we develop general compression algorithms that
apply to all spreadsheets. Our algorithms can certainly lever-
age user actions (e.g., autofill) or cues (e.g., dollar sign)
for better compression, but do not rely on it. In addition,
we also design novel algorithms for efficiently querying and
incrementally maintaining these patterns.

B. Algorithms for the Basic Patterns

To integrate a pattern into TACO, TACO requires each
pattern to implement four key functions, as shown in Fig. 5.

• addDep(e, e′): add a dependency e′ to a compressed
edge e, where e′.dep, the formula cell, is adjacent to e.dep;
• findDep(e, r): find the dependents of a range of cells r

within a compressed edge e, where r is contained in e.prec;
• findPrec(e, s): find the precedents of a range of cells
s within a compressed edge e, where s is contained in e.dep;
• removeDep(e, s): remove the dependencies for a range

of formula cells s in an edge e, where s is contained in e.dep
The parameter assumptions are guaranteed by TACO frame-
work, discussed in Sec. IV.
RR The four key functions for RR are shown in Algorithm 1.
Consider addDep(e, e′), which adds a dependency e′ to
a compressed edge e. According to the definition of RR,

Algorithm 1: Algorithms for the RR pattern
1 Algorithm addDep(e, e′)
2 if e.p == Single then
3 if rel(e) == rel(e′) then
4 return

(e.prec
⊕

e′.prec, e.dep
⊕

e′.dep,RR, rel(e′))
5 else if e.meta == rel(e′) then
6 return (e.prec

⊕
e′.prec, e.dep

⊕
e′.dep,RR,meta)

7 end
8 return NULL
9 Procedure rel(e)

10 hRel← e.prec.head− e.dep
11 tRel← e.prec.tail − e.dep
12 return (hRel, tRel)

13 Algorithm findDep(e, r)
14 precdht ← (e.prec.tail.i, r.head .j)

15 dh ← precdht − e.meta.tRel
16 precdth ← (e.prec.head.i, r.tail .j)
17 dt ← precdth − e.meta.hRel
18 return the intersection of (dh, dt) and e.dep
19 Algorithm findPrec(e, r)
20 gh ← r.head + e.meta.hRel
21 gt ← r.tail + e.meta.tRel
22 return (gh, gt);

23 Algorithm removeDep(e, s)
24 newDepSet← delete s from e.dep
25 for newDep ∈ newDepSet do
26 newPrec← findPrec(e, newDep)
27 p← |newDep| == 1 ? Single : RR
28 add (newPrec, newDep, p, e.meta) to retSet
29 end
30 return retSet

Precedent DependentMetadata
Compressed edge

1. addDep
(accepts a dependency)

4. removeDep
(accepts a range)

Actual edges2. findDep
(accepts a range)

3. findPrec
(accepts a range)

Fig. 5: An overview of the four key functions

the dependency e′ can only be added to e if the relative
positions of e′ equal the relative positions (hRel, tRel) in
e.meta. We define rel(e′) as the procedure to compute the
relative positions of e′.dep with respect to the head and tail
cell of e′.prec, respectively (i.e., line 9-12 in Algorithm 1).
For example, if e′ = A5:B7 → C5, the relative positions are
hRel = A5 − C5 = (−2, 0) and tRel = B7 − C5 = (−1, 2).
This dependency can be added to the compressed edge e
in Fig. 4a because e.meta.hRel and e.meta.tRel equal hRel
and tRel, respectively. Therefore, we create a new compressed
edge, where prec = e.prec

⊕
e′.prec, dep = e.dep

⊕
e′.dep,

and meta = e.meta. If e is an uncompressed edge (a single
dependency), we compare rel(e′) and rel(e) to check whether
the two edges can be compressed using the RR pattern.

Next, consider findDep(e, r), which finds the dependents
(denoted as a range d) of a range of cells r that are contained
in e.prec. To determine d, we need to find its head cell dh
and tail cell dt. Since the precedent of each cell in d forms

5

's prec

r

e.prec e.dep

d

's prec

tail of 's prec

head of 's prec

Fig. 6: An example of findDep(e, r)
for RR

r

e.prec e.dep

d

head of 's prec

Fig. 7: An example of
findDep(e, r) for RF

a sliding window on e.prec as shown in Fig. 6, the intuition
for computing dh is that the top row of r must intersect with
the bottom row of dh’s precedent. Similarly, the bottom row
of r must intersect with the top row of dt’s precedent. So we
“back calculate” dh and dt based on r. Specifically, we use
the following invariant to compute dh,

dh + tRel = precdh
t

where precdh
t is dh’s precedent’s tail cell and tRel is the relative

position of dh with respect to precdh
t as shown in Fig. 6. Since

tRel is known, the remaining task is to compute precdh
t . We

know that precdh
t is in the bottom row of dh’s precedent since

it is a tail cell and that the bottom row of dh’s precedent
intersects the top row of r. So precdh

t is in the top row of
r and its row index is the row index of r’s head cell (i.e.,
r.head.j). Since precdh

t is a tail cell, it is in the right-most
column of e.prec. So its column index is e.prec.tail.i.

Finding the tail cell dt adopts a dual procedure. Based on the
invariant dt + hRel = precdt

h , we need to find dt’s precedent’s
head cell precdt

h . As shown in Fig. 6, precdt

h should be in the
last row of r and in the left-most column of e.prec. Therefore,
we have precdt

h .i = e.prec.head.i and precdt

h .j = r.tail.j. We
note this procedure can output a range d that is beyond e.dep.
In this case, we take the intersection between d and e.dep to
return a valid range.

The third function, findPrec(e, s) finds the precedents
(denoted as a range g) for a range of cells s contained in e.dep.
By the definition of RR, the precedents of the cells in s form
“sliding windows” on e.prec as we move from s.head to s.tail;
g is simply the union of the precedents of all cells in s. So
g.head is the head cell of s.head’s precedent and g.tail is the
tail cell of s.tail’s precedent. We have g.head = s.head+hRel
and g.tail = s.tail + tRel.

Finally, consider removeDep(e, s), which removes the
dependencies for a range of formula cells s in e.dep. We
first subtract s from e.dep, after which we are left with a
range or a union of two ranges. For example, if we remove
C2 from C1:C4, the remainder is composed of two ranges:
C1 and C3:C4. For each range newDep in the remaining
dependents, we generate its corresponding precedent newPrec
using findPrec(e, newDep).
RF, FR, FF We now discuss the key functions for RF. The
function addDep(e, e′) for the RF pattern has similar logic
to the one for RR and is different only in the compression
condition. By definition of RF, we first compute the relative
position between e′.dep and the head cell of e′.prec (denoted

hRel) and check whether hRel and e.meta.hRel are the same.
If so, we additionally check whether the tail cell of e′.prec is
the same as e.meta.tFix.
findDep(e, r) finds the range of dependents d for a range

of cells r contained in e.prec. Similar to RR, we need to find
d’s head cell dh and tail cell dt. To compute dh, we use the
intuition shown in Fig. 7: the precedent of e.dep.head equals
e.prec and the precedent of each cell in e.dep shrinks when
we move from e.dep’s head to its tail cell. That is, e.dep.head
references the entire range of e.prec and is the dependent of
any r contained in e.prec. So e.dep.head equals dh.

To compute dt, we use the observation that the precedent
of each cell in e.dep shrinks as we move from dh to dt such
that the bottom row of r should intersect with the top row
of the precedent of dt. Therefore, to compute dt, we leverage
the invariant dt+hRel = precdt

h , where precdt

h is the head cell
of dt’s precedent. Since hRel is known, we need to compute
precdt

h . As Fig. 7 shows, since precdt

h is in the bottom row of
r, its row index is r.tail.j and since precdt

h is a head cell, its
column index is e.prec.head.i.

Consider findPrec(e, s), which finds the precedents (de-
noted as a range g) of s contained in e.dep. Our obser-
vation is that the precedent of s.head contains all of the
precedents of other cells in s since the precedent of each
cell in e.dep is shrinking as we move from s.head to s.tail.
Therefore, g is the precedent of s.head, and is computed as
g.head = s.head + hRel and g.tail = tFix. The function
removeDep(e, s) for RF follows the same logic as RR. We
first remove s from e.dep to return one or two ranges. For
each returned range newDep, we generate their corresponding
precedent newPrec using findPrec(e, newDep) of RF.

FR is a dual pattern of RF, so its algorithms can be easily
derived from the algorithms above. FF’s algorithms can also
be derived from FR and RF. We omit these algorithms due
to space limits.
Algorithmic complexity All algorithms for the basic patterns
are O(1), independent of the number of edges compressed.

IV. TACO FRAMEWORK

We now introduce the TACO framework, which includes
four generic and extensible algorithms for efficiently com-
pressing, querying, and modifying formula graphs. These
algorithms are extensible since they only utilize the four key
functions per pattern as shown in Section III-B and any pattern
can be integrated into the TACO framework if they implement
these functions. In this section, we first introduce these algo-
rithms and analyze their complexity (Sec. IV-A-IV-C). Then,
we compare the complexity of TACO against an approach that
does not compress the formula graph (Sec. IV-D). We assume
the formula graphs in both approaches are implemented via an
adjacency list and we build an R-Tree index on the vertices
to quickly find the overlapping vertices for an input range.
The complexity of operations on an R-Tree varies based
on the design choices. Our analysis assumes the complexity
for searching, inserting, and deleting one range is O(N),

6

Algorithm 2: Compressing a dependency e′ into G(E, V)

1 Algorithm addDep(G(E, V), e′)
2 isCompressed← false
3 pSet← pre-defined patterns
4 eSet← find all e ∈ E whose e.dep is adjacent to
5 e′.dep on column or row axis
6 for candE ∈ eSet do
7 edgePairs← genCompEdges(candE, e′, pSet)
8 edgePairSet.add(edgePairs)
9 end

10 if edgePairSet is not empty then
11 edgePair← sort edgePairSet by heuristics and
12 take the first
13 maintain G using edgePair
14 isCompressed← true
15 break
16 end
17 if isCompressed is false then
18 insert e′ into G
19 Procedure genCompEdges(candE, e′, pSet)
20 if candE.p == Single then
21 for p ∈ pSet do
22 pair← (p.addDep(candE, e′), candE)
23 edgePairs.addIfValid(pair)
24 end
25 else
26 pair← (candE.p.addDep(candE, e′), candE)
27 edgePairs.addIfValid(pair)
28 end
29 return edgePairs

O(logN), and O(logN), respectively, where N is the number
of ranges stored in the R-Tree.

A. Compressing a Formula Graph
We formalize the problem of minimizing the number of

edges of the compressed formula graph based on the prede-
fined basic patterns and present our compression algorithm.

1) Problem formalization: Using the definition of the com-
pressed graph G, the problem of minimizing the number of
edges in G is equivalent to the problem of finding a partition
P = {E′

1, E
′
2, · · · , E′

N} of the uncompressed edge set E′

such that N is minimum, and each E′
i is compressed by

a single pattern or only includes one uncompressed edge.
The optimization problem, which we call Compressed Edge
Minimization (or CEM for short), is defined as follows:

minimize
P={E′

1,··· ,E
′
N

}
N

where E′
i is compressed by a pattern or is

an uncompressed edge,∀i ∈ 1 . . . N

∪i E
′
i = E′

We now show CEM is NP-HARD even when we only consider
each basic pattern.
Theorem 1 (CEM Hardness). Compressing the graph G′ into
G while minimizing the number of edges of G is NP-HARD,
even when restricted to each basic pattern.
Proof. (Sketch) We reduce the rectilinear picture compres-
sion (RPC for short) problem, which is known to be NP-
HARD [17], to CEM. The input to RPC is a m × n matrix

of 0’s and 1’s, with the goal to find the minimal number of
rectangles that precisely cover the 1’s. We reduce RPC to CEM
by mapping the input matrix to a spreadsheet range R: for each
value at column i and row j in the matrix, if the value is 1, we
place a formula at (i, j) in R; otherwise, we place a pure value
at (i, j) in R. If the dependencies of any range of formulae in
R can be compressed into a single edge by a pattern p, then
the RPC problem is equivalent to minimizing the number of
edges of the compressed graph G for R if we only consider
the pattern p.

Therefore, we need to construct a range R for each pattern
p such that the dependencies of any range of formulae in
R can be compressed into a single edge by p. For FF, we
let all of the formulae in R reference the same fixed range
outside R to meet the above condition. Similarly, for RR, we
let each formula in R reference the cell to its left. For RF, we
first construct another range R′ that can be compressed into
a single edge by RF and has the same shape as R. Note that
in R′, the dependencies of any range of formulae can also be
compressed into a single edge by RF. Afterwards, we generate
R by copying the formula at (i, j) in R′ to (i, j) in R if the
cell (i, j) in R is a formula cell. This way, we construct a
range R where the dependencies of any range of formulae in
R can be compressed into a single edge by RF. The case for
FR is done symmetrically.

CEM is also trivially NP-COMPLETE since verifying that
a partition using FF is correct is in PTIME. We tested the
algorithm that enumerates all possible partitions and found
it cannot finish within 30 mins for a spreadsheet with 96
edges because the number of possible partitions is a Bell
number [25]. To reduce the compression overhead, we propose
a greedy compression algorithm.

2) Greedy compression algorithm: Our algorithm com-
presses a list of dependencies between formula cells and their
referenced ranges by repeatedly inserting each dependency
into the compressed graph and determining the partitions as
well as the corresponding compression patterns. Observing
that pre-defined patterns compress the dependencies in ad-
jacent formula cells, we use this constraint to quickly find
the candidate edges that one inserted dependency can be
compressed into. If there are multiple candidate edges, we
leverage several heuristics based on our analysis of real-world
spreadsheets to decide the edge that can best reduce the graph
size (e.g., by leveraging the dollar sign cues in the formula
expression if available).

Algorithm 2 shows our approach for compressing one
dependency e′ = (prec, dep) into a compressed formula graph
G. We use the example in Fig. 8 to explain compressing e′ into
G. The setup of Fig. 8 (the left pane) shows each formula cell
in column C referencing two ranges. The references to column
B follow FR and the references to column A follow FF. In
addition, we have an uncompressed edge of D4 referencing
B1:B4. Our example assumes that a formula SUM(B1:B4) is
inserted at C4 (i.e., e′ = (B1:B4,C4)).

7

1

2

3

4

C

=SUM(B1:B1)*A1

=SUM(B1:B2)*A1

 =SUM(B1:B3)*A1

D

=SUM(B1:B4)

A

?

?

?

?

B

?

?

?

?

SUM(B1:B4)

?

?

?

B1:B3 C1:C3

A1

B1:B4 D4
NoComp

(FR, meta)

(FF, meta)

Compressed Formula Graph

Setup: insert one dependency at C4 Step 1: find candidate edges

B1:B3 C1:C3

A1

B1:B4 D4NoComp

(FR, meta)

(FF, meta) C1:C3
B1:B4 C1:C4

B1:B4 C4:D4

(FR, meta)

(FF, meta)

Step 3: select the final edge

B1:B4 C1:C4

A1

D4
NoComp

(FR, meta)

(FF, meta)

Step 2: find valid edges

Fig. 8: An example of compressing one dependency inserted at C4

Find candidate edges: The first step is to quickly find
candidate edges that the dependency e′ can be compressed
into. Specifically, an edge e is a candidate if e.dep is adjacent
to e′.dep along the row or column axis. Step 1 in Fig. 8 shows
that all three edges meet this condition because e′.dep = C4
is adjacent to both C1:C3 and D4. To find these edges,
we first shift e′.dep by one cell in all four directions (i.e.,
up/down/left/right) and use the index on the vertices (e.g.,
an R-Tree [23]) to quickly find ranges that overlap with the
shifted e′.dep. Then, for each overlapping range (e.g., D4),
we find its precedent (e.g., B1:B4) and add this edge (e.g.,
B1:B4 → D4) into the candidate edge set.

Find valid candidates: Next, we check whether e′ can be
compressed into each candidate edge using addDep(e, e′)
from Sec. III to find the valid compressed edges (i.e.,
genCompEdges in Algorithm 2). We consider two cases.
First, if the candidate edge candE is not compressed, we
check whether e′ and candE can be compressed into a new
edge newEdge using the predefined patterns. If so, we store
newEdge as a valid candidate edge (i.e., addIfValid in
Algorithem 2). If, instead, candE is a compressed edge, we
check whether e′ can be compressed into candE and if so,
we generate a valid edge. Step 2 in Fig. 8 shows two valid
compressed edges because the edge B1:B4 → C4 can be
compressed into B1:B3 → C1:C3 or B1:B4 → D4.

Select the final edge: The final step is to select the final
edge from the valid ones. The selection is based on the
following heuristics, in order. First, we prioritize column-wise
compression over row-wise compression. If this heuristic does
not return a single edge, we further compare the priority of
each remaining edge’s pattern. If one pattern pa is a special
case of another pattern pb, then we choose pa over pb because
we expect the special pattern pa to be more efficient. In
Sec. V, we will describe one such special pattern of RR.
Otherwise, we leverage the dollar sign ($) information, if
available, sometimes specified as part of the formula strings.
For example, for the formula string SUM(B1:B4) at C4,
we will prioritize compressing its dependency B1:B4 → C4
using FR over other patterns because the head cell B1 in
SUM(B1:B4) has dollar sign annotations, but its tail cell
does not, which indicates that SUM(B1:B4) follows the FR
pattern if it is generated via autofill. For our example in
Fig. 8, we choose the compressed edge (B1:B4 → C1:C4)
over (B1:B4 → C4:D4) because the former one uses column-
wise compression. Finally, we delete the old edge and insert
the newly compressed edge.

Algorithmic complexity Our analysis assumes the inserted
dependencies have no duplicates, so its size is |E′|, the

Algorithm 3: Find dependents of a column/row of cells r

in G(E, V)

1 initiate queue as a queue containing only r
2 initiate result as an empty set and an R-Tree for it
3 while queue is not empty do
4 precToVisit← remove the first element in queue
5 precs← find vertices that overlap with
6 precToVisit via the R-Tree on V
7 for prec ∈ precs do
8 edges← {e : e ∈ E and e.prec = prec}
9 for e ∈ edges do

10 dep← e.p.findDep(e, precToVisit)
11 newDepSet← Find the subset of dep not
12 contained in result via the R-Tree on result
13 for newDep ∈ newDepSet do
14 add newDep to result and its R-Tree
15 add newDep to queue
16 end
17 end
18 end
19 end
20 return result

number of uncompressed edges. For each inserted dependency,
we leverage the R-Tree to find the candidate edges, taking
O(|V |) operations, where |V | is the number of vertices in the
compressed formula graph G. The number of the candidate
edges is O(|E|). For these candidate edges, it takes O(|E|)
operations to find the valid compressed edges and the final
edge that the input dependency is compressed into. In addition,
we need to maintain the R-Tree by removing the old and
inserting the new vertices, which takes O(log |V |) operations.
In total, the complexity of inserting |E′| dependencies is
O(|E′| × (|V | + |E| + log |V |)) = O(|E′| × |E|) since each
vertex is connected to at least one edge.

B. Querying a Formula Graph

We now discuss finding the dependents or precedents of
a column/row of cells r in G using the key functions from
Sec. III. Since finding dependents is the dual problem of
finding precedents, we focus on the former. We apply Breadth-
First-Search (BFS), but with three major differences. First,
when we find the direct dependents of r, we need to consider
all of the vertices in G that overlap with r. Second, since
an edge e in G can be a compressed edge, finding the direct
dependents of r in e may not be the full e.dep, but a subset
instead. So we need to find the real dependents within e.dep.
Third, for a “real” dependent, which will in turn serve as a
precedent for subsequent searches, we need to add the subset
of this dependent that has not yet been visited during BFS.
We illustrate the three modifications below.

8

Algorithm 3 shows the modified BFS algorithm: it takes
a column or row of cells r as input and returns the set of
ranges that depend on r. We explain this algorithm using the
compressed graph in Step 3 of Fig. 8. Our example involves
finding the dependents of B2. Our algorithm uses a queue to
store the ranges to be visited in the future and a set result
to store the ranges that depend on r and have been visited.
An additional R-Tree is also built for result. For each range
precToVisit in this queue, we find its direct dependents. As
mentioned earlier, we need to consider the ranges that overlap
with precToVisit (i.e., B1:B4 for B2). Next, we find the direct
dependents of each overlapping range and the corresponding
edges (i.e., B1:B4 → C1:C4 and B1:B4 → D4). Since
some of these edges can be compressed, for a compressed
edge e we need to find the real direct dependent within
e.dep for precToVisit, which is done by the key function
findDep(e, precToVisit). For the example of the input B2, we
return C2:C4 for the edge B1:B4 → C1:C4 since C1 does not
depend on B2. Finally, we find the subset of the real dependent
that has not yet been visited via the R-Tree on the result set,
and add the subset to the queue, the set result, and the R-Tree
on result. We repeat the process until the queue is empty. For
the example of the dependent C2:C4, if we have visited C2:C3,
we will only store C4 in the queue and result.

Algorithmic complexity To analyze the complexity of Al-
gorithm 3, we consider two cases: 1) Algorithm 3 accesses
each edge in G at most once; 2) otherwise. For the first
case, each vertex in G will serve as the precedent at most
once when we find direct dependents (i.e., the inner part of
the first for loop in Algorithm 3). So it will only repeat
O(|V |) times. To find a precedent (i.e., prec in the first for
loop in Algorithm 3), we need to search the R-Tree, taking
O(|V |). To find the real direct dependents for a precedent
using findDep, we need to spend O(dep num) operations,
where dep num is the number of direct dependents of a
precedent and findDep takes a constant time. For each
real direct dependent, we need to additionally find the subset
that is not contained in result using the R-Tree on result,
taking O(size of result). Since each range in result will be
a precedent, the size result is O(|V |). In addition, the total
cost for maintaining the R-Tree on result is O(|V | × log |V |)
since the size of result is O(|V |). To sum up, the complexity
here is O(|V |)×(O(|V |+O(dep num)×O(|V |))+O(|V |×
log |V |) = O(|V |2 + |E| × |V |).

For the second case, the first while loop in Algorithm 3
runs O|V ′| times, where |V ′| is the number of vertices in
the uncompressed graph. This is because the size of result is
O(|V ′|), so the total number of ranges inserted into the queue
is also O(|V ′|). For each range precToVisit in the queue, we
check O(|E|) edges in G. For each edge, we find the real
dependent using O(1) and take O(|V ′|) operations to find the
subset of the real dependent that is not contained in result.
The total cost for maintaining the R-Tree on result is O(|V ′|×
log |V ′|). So the complexity is O(|V ′|)× (O(|V |) +O(|E| ×
|V ′|)) +O(|V ′| × log |V ′| = O(|V ′|2 × |E|).

TACO NoComp
Building O(|E′| × |E|) O(|E′| × log |V ′|)

Querying Case 1: O(|V |2 + |E| × |V |)
Case 2: O(|V ′|2 × |E|) O(|V ′|2 + |E′|)

Maintaining O(|E| log |V |) O(|E′| log |V ′|)

TABLE I: Complexity comparison between TACO and NoComp

C. Maintaining a Formula Graph

We now discuss maintaining the formula graph when users
insert, clear, or update formula cells. We process inserts using
Algorithm 2 . Since an update can be modeled as a clearing
operation plus an insert, we focus on clearing formula cells.

The idea of clearing a column/row of formula cells s is
to delete s from the edges whose dependents (i.e., formula
cells) overlap with s using removeDep(e, s) from Sec. III.
First, we find the relevant edges relEdges whose dependents
overlap with s. Second, for each e ∈ relEdges, we generate
new edges newESet after clearing s for e, which is done by
removeDep(e, s). Finally, we maintain the graph by deleting
the old edge relEdges and inserting the new edges newESet.
Algorithmic complexity For this algorithm, the size of the
relevant edges whose dependents overlap with s is O(|E|)
and searching the R-tree takes O|V |), so the cost for finding
relevant edges is O(|E|). From each relevant edge, clearing
s and maintaining the graph is O(1) while maintaining the
R-tree takes O(log |V |) time. In total, the complexity for
removing s is O(|E| log |V |).

D. Complexity Comparison with a No Compression Approach

We now compare the complexity of TACO with an approach
that does not compress the formula graph, called NoComp.
Table I summarizes the results.

NoComp builds the uncompressed formula graph G′ by
inserting a list of dependencies into G′. For each dependency,
we need to insert its precedent and dependent into an R-Tree,
taking O(log |V ′|) operations, and insert the dependency into
the adjacency list, taking O(1). In total, the complexity of
inserting |E′| dependencies is O(|E′|×log |V ′|). TACO can be
more expensive than NoComp for building the formula graph
because it needs to search the R-Tree and find the edge that
an inserted dependency can be compressed into.

Next, we analyze the complexity of finding dependents of
an input range r via a modified BFS. During BFS, when
we find the direct dependents of an input range r, we need
to consider all of the vertices in G′ that overlap with r
(i.e., via an R-Tree search). Similar to conventional BFS, it
recursively finds dependents starting from the input range
r. Each vertex in G′ may serve as a precedent when we
find direct dependents of a precedent (i.e., O(|V ′|) times),
while the cost for finding one precedent via the R-Tree
is O(|V ′|). Finding direct dependents of one precedent is
O(dep num), where dep num is the number of the direct
dependents. The overall complexity for finding dependents is
O(|V |′)× (O(|V ′|) +O(dep num)) = O(|V ′|2 + |E′|).

We see thatTACO is more efficient than NoComp if the
querying algorithm of TACO accesses each edge in the com-
pressed graph G at most once (i.e., Case 1 in Table I). For Case

9

Spreadsheet

A1:A3 A2:A4
l=ABOVE

hRel=(0,-1), tRel =(0,-1)

Compressed edges
A1

1
2
3
4

?
A

=A1+1
=A2+1
=A3+1

A2 A3 A4
Uncompressed edges

Fig. 9: One example of RR-Chain
2, TACO can be potentially more expensive than NoComp in
theory. To understand the performance of Case 2, we analyze
real spreadsheets to find when this case will happen and
become the performance bottleneck, and adopt an extended
pattern to reduce the cost for this case in Sec. V. In practice,
we find the average number of accesses for an edge during
BFS is relatively low. For the tests for finding dependents in
Sec. VI, the average number of edge accesses during BFS
is no larger than 7 for 98% of the tests. In addition, our
experiments in Sec. VI show that TACO is much more efficient
than NoComp on real spreadsheets.

Finally, clearing a column/row of formula cells s requires
searching the R-tree to find relevant edges (i.e., O(|E′|)).
Then, we will delete each relevant edge and update the R-tree
(i.e., O(log |V ′|)). In total, the complexity is O(|E′| log |V ′|).
As shown in Table I, TACO is more efficient here.

V. EXTENSION AND LIMITATIONS

Supporting a new pattern: RR-Chain As shown in Sec. IV,
our algorithm for finding dependents or precedents may be
slow if an edge is repeatedly accessed multiple times. By
examining real spreadsheets, we find one pattern that leads to
these cases and becomes a performance bottleneck for TACO.
In this section, we discuss supporting this pattern to further
accelerate TACO. Our discussion focuses on a column of
cells and finding dependents as before; the other cases can
be derived symmetrically.

Consider a column of formula cells that form a chain of
dependencies, where each formula cell references its adjacent
formula cell above or below. We will compress these depen-
dencies using RR because each formula cell has the same
relative position with respect to its referenced range. Consider
the example in Fig. 9, where each formula cell starting from A2
increments the value of the above formula cell by one. To find
the dependents of A1, we first find its overlapping vertex A1:A3
and then compute its real direct dependent: A2. Afterwards,
the compressed edge is repeatedly accessed until we reach the
end of this chain, which introduces high searching overhead.

To solve this problem, we introduce a new pattern RR-
Chain as a special case of RR. RR-Chain’s meta additionally
includes a variable l to indicate the direction of a formula
cell referencing its adjacent cell. For example, l is ABOVE in
Fig. 9 because each formula cell references its adjacent cell
above. Our discussion focuses on l = ABOVE; the case for
l = BELOW can be easily derived. To compress a dependency
e′ into e for RR-Chain, we first check the condition of RR,
and then further check whether e′.prec is above e′.dep and if
they are adjacent. To find dependents of a range r, we return a
range d between r.head’s direct dependent and the tail cell of

Enron Github
Vertices Edges Vertices Edges

NoComp 18.6M 23.7M 165.8M 179.8M
TACO-InRow 7.7M (41.2%) 12.5M (52.8%) 55.2M (33.3%) 55.2M (30.7%)
TACO-Full 1.2M (6.3%) 1.2M (5.0%) 4.2M (2.5%) 3.5M (1.9%)

TABLE II: Graph sizes after TACO compression (lower is better)

Max 75th per. Median Mean

Enron
TACO-InRow 142,396 18,196 12,489 18,876
TACO-Full 700,155 37,286 18,380 37,963

Github
TACO-InRow 1,693,698 42,728 19,704 45,303
TACO-Full 3,139,011 75,553 31,608 78,633

TABLE III: The num. of edges reduced by TACO (higher is better)
e.dep. Consider finding dependents of A2 in Fig. 9. We return
the range between A3 (i.e., A2’s direct dependent) and the tail
cell of e.dep (i.e., A4). Finally, clearing formula cells in e.dep
follows the same logic as RR and is omitted.
Limitations One limitation of the patterns in TACO is that
they focus on adjacent formula cells. So, they only represent
a subset of tabular locality in spreadsheets. It is possible to
extend these patterns and exploit other patterns to further
reduce the sizes of formula graphs. For example, one extended
pattern derived from RR could be that the referenced ranges
in the formula cells of every other row follow the RR pattern
(denoted as RR-GapOne). We have tested its prevalence and
found it is much less prevalent than its RR counterpart. Specif-
ically, RR-GapOne reduces the number of edges by 195k
and 275k for Enron and Github datasets, respectively, while
the number of edged reduced by RR is 17.4M and 141.9M,
respectively (Details in Section VI-B). Also, it is possible to
exploit other information, such as a column of formulae having
the same functions, to better compress formula graphs. Fully
exploiting these patterns and information is left to future work.

VI. EXPERIMENTS

Our experiments address the following research questions:
• How much do TACO’s predefined patterns reduce for-

mula graph sizes for real-world spreadsheets? (Sec. VI-B)
• How much time does TACO take to build, query,

and maintain a formula graph compared to NoComp, an
approach specialized for formula graph compression, and
a baseline that implements the formula graph in a graph
database? (Sec. VI-C and Sec. VI-D)
• How much faster does TACO query a formula graph

compared to a commercial spreadsheet system and a base-
line from an open-source spreadsheet system? (Sec. VI-E)

A. Prototype, Benchmark, and Configurations

Prototype TACO is implemented as a Java library. It takes
an xls or xlsx file as input, leverages the POI library [16] to
parse it, and builds a compressed formula graph for the parsed
dependencies.The compressed formula graph is implemented
using an adjacency list. We build an R-Tree [23] on the vertices
of the formula graph to quickly find vertices that overlap with
a given range. TACO provides interfaces of finding dependents
or precedents of a range, and adding or deleting a dependency.
TACO is integrated into DATASPREAD [26]–[28], an open-
source spreadsheet system. DATASPREAD returns control to

10

Min 25th per. Median Mean

Enron
TACO-InRow 0.0042% 6.32% 39.81% 42.27%
TACO-Full 0.0042% 0.47% 1.93% 7.37%

Github
TACO-InRow 0.0005% 0.10% 17.45% 36.48%
TACO-Full 0.0005% 0.03% 0.19% 3.44%

TABLE IV: Remaining edges after compression (lower is better)

Pattern Enron Total Enron Max Github Total Github Max

RR 17,412,246 525,026 141,876,182 2,094,936
RF 1,880 1,413 13,361 9,999
FR 150,845 13,815 178,609 39,008
FF 3,844,351 174,948 24,784,621 1,043,702
RR-Chain 566,348 24,596 5,867,728 399,996

TABLE V: Num. of edges reduced by each pattern (higher is better)
users after it has identified all of the dependents of an update
and hides them; so finding dependents of an update is the
bottleneck for returning control to users. In DATASPREAD, a
formula graph is used to find the dependents of an update and
TACO acts as a drop-in replacement for this formula graph.
TACO can also be integrated into other spreadsheet systems,
such as LibreCalc or MS Excel, to accelerate updating spread-
sheets since these spreadsheets system similarly adopt formula
graphs to track formula dependencies [5], [6]. In addition,
TACO can be used by third-party tools to analyze and trace
formula dependencies. We have additionally implemented a
plug-in using TACO to help users efficiently trace formula
dependencies in Excel [29].
Benchmark Our tests are based on two real-world spreadsheet
datasets. The first one is the Enron dataset [13] with 17K xls
files. We focus on the large spreadsheets (i.e., with no less than
10K dependencies) that do not cause exceptions (e.g., those
requiring passwords), and are left with 593 xls files. Since the
Enron dataset includes only xls files, we further crawl 7.8K
xlsx files from Github that are larger than 10 KB1. We focus
on large spreadsheets and skip the erroneous ones, and get
2,238 xlsx files. In total, we test 2,831 files.
Configurations Unless otherwise specified, the experiments
are run on a t2.2xlarge instance from AWS EC2, which has
32 GB memory and 8 vCPUs, and uses Ubuntu 22.04 as the
OS. We use a single thread, and run each test three times and
report the average number. We configure the POI library to
load spreadsheets by columns.

B. Compressed Formula Graph Sizes

We first test the effectiveness of TACO in reducing the graph
sizes. We test two variants: TACO-InRow and TACO-Full.
TACO-InRow only compresses adjacent column formulae that
reference ranges in the same row, using RR to perform the
compression. This approach captures the pattern of derived
columns, where a subset of columns are computed using
the remaining, which is common in data science and feature
engineering (e.g., storing normalized versions of values in
a column as a new column, or extracting substrings of an
existing column and storing them as a new column). TACO-
Full considers any formulae and adopts all predefined patterns.

1Xlsx files, unlike xls files, support larger spreadsheets (e.g., the row limits
for xlsx and xls files are 1M and 66K, respectively.)

Overall effectiveness of reducing graph sizes We first report
the total number of vertices and edges of the compressed and
uncompressed formula graphs across all the files in Enron and
Github, respectively, in Table II. The uncompressed graphs are
built using NoComp, as discussed in Sec. IV-D. Both TACO-
InRow and TACO-Full significantly reduce the total number
of vertices and edges compared to NoComp. For example,
TACO-Full reduces the number of edges in Github from
179.8M to 3.5M. In addition, TACO-Full has much smaller
graph sizes than TACO-InRow (e.g., 3.5M vs. 55.2M edges for
Github), which shows that many formulae reference different
rows and TACO-Full can efficiently compress these complex
cases that TACO-InRow does not consider.

To further understand the effectiveness of TACO, we com-
pute two additional metrics for each spreadsheet’s uncom-
pressed formula graph G′(E′, V ′) and compressed formula
graph G(E, V): the number of edges reduced by the TACO
(i.e., |E′|−|E|) and the fraction of the number of compressed
edges compared to the uncompressed ones (i.e., |E|

|E′|). Table III
reports the max, 75th percentile, median, and mean value of
the number of reduced edges across all files for both datasets.
Table IV reports the min, 25th percentile, median, and mean
value of the edge fraction after compression.

Table III shows that TACO-Full can reduce the number of
edges by up to 700K and 3.1M in a single spreadsheet for
Enron and Github, respectively. The average edge reduction
by TACO-Full is 38K and 79K for the two datasets. Table IV
shows that the average edge fractions after compression by
TACO-Full are as low as 7.4% and 3.4% for Enron and
Github, respectively. These results show that TACO can effec-
tively reduce formula graph sizes of real spreadsheets.

Effectiveness of TACO patterns Next, we evaluate the
effectiveness of each TACO pattern in reducing the num-
ber of edges. Recall that a partition of edges E′

i in the
original uncompressed graph G′(E′, V ′) corresponds to one
compressed edge ei in G(E, V) in TACO. So the number
of reduced edges of a pattern p in G is computed as:∑

ei∈E [ei.meta.p = p](|E′
i| − 1), where [ei.meta.p = p]

considers the compressed edges for the pattern p, E′
i is the

set of edges that are compressed into ei, and |E′
i| − 1 is the

number of reduced edges by ei. We compute the above metric
for each pattern, and report the total and maximum number of
reduced edges across the tested spreadsheets.

The results in Table V show that RR and FF compress the
most edges. The number of edges reduced by RR is more
than 17.4M and 141.9M for Enron and Github, respectively.
FF reduces around 3.8M and 24.8M edges in total for the two
respective datasets. Other patterns also reduce a significant
number of edges in some spreadsheets. For example, in the
Github dataset RR-Chain reduces the number of edges up
to around 400K for a single spreadsheet. FR and RF, while
not as common, can reduce up to around 39K and 10K edges
for a single spreadsheet, respectively. These results show that
TACO’s patterns are prevalent in real spreadsheets and can
significantly reduce graph sizes.

11

10 10¹ 10² 10³ 10
Time for finding dependents (ms)

0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pe
rc

en
til

e

TACO
NoComp

(a) Maximum Dependents (Enron)

10 10¹ 10² 10³ 10
Time for finding dependents (ms)

0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pe
rc

en
til

e

TACO
NoComp

(b) Longest Path (Enron)

10 10¹ 10² 10³ 10 10
Time for finding dependents (ms)

0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pe
rc

en
til

e

TACO
NoComp

(c) Maximum Dependents (Github)

10 10¹ 10² 10³ 10 10
Time for finding dependents (ms)

0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pe
rc

en
til

e

TACO
NoComp

(d) Longest Path (Github)

Fig. 10: CDFs for the time for finding dependents

10¹ 10² 10³ 10
Time for building graphs (ms)

0.0
0.2
0.4
0.6
0.8
1.0

Pe
rc

en
til

e

TACO
NoComp

(a) Enron

10¹ 10² 10³ 10 10
Time for building graphs (ms)

0.0
0.2
0.4
0.6
0.8
1.0

Pe
rc

en
til

e

TACO
NoComp

(b) Github

Fig. 11: CDFs for the time for building formula graphs

10 10¹ 10² 10³
Time for modifying graphs (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
til

e

TACO
NoComp

(a) Enron

10 10¹ 10² 10³ 10
Time for modifying graphs (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
til

e

TACO
NoComp

(b) Github

Fig. 12: CDFs for the time for modifying formula graphs

max1
max2

max3
max4

max5
max6

max7
max8

max9
max10

max1
max2

max3
max4

max5
max6

max7
max8

max9
max10

 Enron Github

10
10¹
10²
10³
10
10
10

Ti
m

e
(m

s)

TACO NoComp RedisGraph Antifreeze

Fig. 13: Latency on building graphs (Antifreeze and RedisGraph)

max1
max2

max3
max4

max5
max6

max7
max8

max9
max10

max1
max2

max3
max4

max5
max6

max7
max8

max9
max10

 Enron Github

10
10¹
10²
10³
10
10

Ti
m

e
(m

s)

TACO NoComp RedisGraph Antifreeze

Fig. 14: Latency on finding dependents (Antifreeze and RedisGraph)

max1
max2

max3
max4

max5
max6

max7
max8

max9
max10

max1
max2

max3
max4

max5
max6

max7
max8

max9
max10

 Enron Github

10
10¹
10²
10³
10
10
10

Ti
m

e
(m

s)

TACO NoComp RedisGraph Antifreeze

Fig. 15: Latency on modifying graphs (Antifreeze and RedisGraph)

max1
max2

max3
max4

max5
max6

max7
max8

max9
max10

max1
max2

max3
max4

max5
max6

max7
max8

max9
max10

 Enron Github

10
10¹
10²
10³
10
10
10

Ti
m

e
(m

s)

TACO NoComp NoComp-Calc Excel

Fig. 16: Latency on finding dependents (Excel and NoComp-Calc)

C. Performance Comparison with NoComp

We now compare the performance of TACO and NoComp,
including the time for finding dependents, building formula
graphs, and modifying formula graphs. We focus on finding
dependents because finding precedents is the dual problem.
Finding dependents For each spreadsheet we test two cases:
finding dependents for the cell that has the maximum number
of dependents (denoted as the Maximum Dependents case) and
the cell that has the longest path (denoted as the Longest Path
case) in the uncompressed graph. Recall that we consider both
direct and indirect dependents of a cell for finding dependents.
Fig. 10 reports the CDFs for the time of finding dependents for
the two cases in the two datasets. We see that TACO has much
smaller execution time for finding dependents than NoComp.
For Enron and Github datasets, TACO’s maximum execution
time for finding dependents is 78 ms and 167 ms, respectively,
while NoComp’s maximum execution time is 1,730 ms and
48,889 ms, respectively. Across all of the tested spreadsheets,
the speedup of TACO over NoComp is up to 34,972×.
Building and modifying formula graphs We also test the

time for building and modifying formula graphs for the two
datasets. To modify a formula graph of a spreadsheet, we
remove the content of a column of 1K cells starting from the
cell that has the most dependents.

Fig. 11 reports the CDFs for the time of building formula
graphs in two datasets. We see TACO takes more time to build
the formula graphs compared to NoComp due to the com-
pression overhead. For Enron, the longest time for building
a formula graph for TACO and NoComp is 16,626 ms and
7,704 ms, respectively. For Github, this number for TACO and
NoComp is 82,567 ms and 40,103 ms, respectively. We believe
this overhead is acceptable because building formula graphs
only happens once when we load the spreadsheet, and it can be
executed in the background asynchronously and will not be on
the critical path of users interacting with the system. Fig. 12
reports the CDFs for the time taken to modify formula graphs.
We see that for the easy cases composing the first 90% with
less than 10 ms, TACO takes more time to modify formula
graphs than NoComp. For the harder cases, TACO takes less
time than NoComp, which is consistent with our complexity

12

analysis. For example, for Github, the 99th percentiles for
TACO and NoComp are 33 ms and 41 ms, respectively.

D. Performance Comparison with Antifreeze and RedisGraph

We now compare TACO with an approach that involves
compressing formula graphs, Antifreeze [7],2 and another
approach that instantiates formula graphs in a graph database,
RedisGraph [30], without compression. Antifreeze builds an
uncompressed formula graph for the input dependencies, pre-
computes the dependents for each cell, compresses the de-
pendents for each cell via bounding ranges, and stores each
cell along with the compressed dependents in a look-up table.
If formula cells are changed, it modifies the uncompressed
graph and builds the look-up table from scratch. The number
of bounding ranges is set to 20, as in the original paper [7].
To store formula graphs in RedisGraph, we decompose each
edge that involves a range in the original formula graph
into multiple edges that only involve cells, since RedisGraph
and other graph databases do not support finding overlapping
vertices for an input range. For example, an edge A1:A2 → B1
is decomposed into two edges A1 → B1 and A2 → B1. To
efficiently load a formula graph in RedisGraph, we write these
decomposed edges into a CSV file and adopt RedisGraph’s
bulk-load tool [31] to load this file rather than inserting each
edge one by one. We use Cypher [32], a declarative graph
query language, to query and maintain the graph.

For this test, we choose the top 10 spreadsheets for which
TACO has the longest time for building formula graphs from
each dataset 3. We rename top 10 spreadsheets to maxi, where
i represents the order. If the time for building a formula graph
is greater than 300 seconds, this test is regarded as did not
finish (DNF). For RedisGraph, we mark the test for finding de-
pendents as DNF if it cannot finish within 60 seconds since we
observed that the memory consumption grows quickly when
finding dependents in RedisGraph. This is because RedisGraph
does not efficiently optimize the declarative Cypher query and
needs to search one edge multiple times. In the experiment
figures, we use a red X to represent DNF.

Fig. 13-15 report the time for finding dependents of the
cell that has the maximum number of dependents, and the
time for building and modifying a formula graph. We see
that Antifreeze only finishes building the compressed formula
graph for 4 out of the 20 spreadsheets and so its other numbers
are not reported (marked with X). For the spreadsheets where
Antifreeze can finish the tests, TACO has the same execution
time for finding dependents as Antifreeze, and has much
smaller execution time for building and modifying a formula
graph than Antifreeze. RedisGraph cannot finish in many tests,
either, mainly due to the large graphs that only include cell-
to-cell edges. Among the tests where RedisGraph finishes,
TACO has much smaller execution time than RedisGraph in

2Note that graph compression is one of the Antifreeze paper’s contributions;
its main focus is on the asynchronous execution model, metric, and interface.

3We have tried the spreadsheets where TACO has the longest time for
finding dependents, but Antifreeze cannot finish for any of them.

most of these tests. Specifically, the speedup of TACO over
RedisGraph on finding dependents is up to 19,555×.

E. Performance Comparison with Excel and NoComp-Calc

We now compare TACO’s performance of finding depen-
dents with Excel and a baseline derived from OpenOffice
Calc [6], denoted NoComp-Calc. For Excel, we test the VBA
API for finding the dependents of a cell [15]. For NoComp-
Calc, we implemented it based on a document that describes
the design of formula graphs in OpenOffice Calc [6]. Similar to
NoComp, this baseline does not compress dependencies. The
difference from NoComp is that NoComp-Calc does not use an
R-Tree to find the vertices in formula graphs that overlap with
an input range. Instead, it pre-partitions the spreadsheet space
into containers, stores overlapping ranges in each container,
and uses containers to find the overlapping vertices. We use top
10 spreadsheet files for which TACO spends the most time for
finding dependents in each dataset from Sec. VI-C. We rename
the 10 spreadsheets to maxi, where i represents the order. In
each spreadsheet, we test the time for finding dependents of
the cell that has the maximum number of dependents. If a
test cannot finish within 300 seconds, it is marked as a red
X. These experiments are done on a laptop that has one Intel
Core i5 CPU with 4 physical cores and 8 GB of memory, and
uses Windows 10 as the OS.

The results in Fig. 16 show that TACO is much faster than
Excel in all cases. The longest time for finding dependents for
TACO and Excel is 442 ms and 79,761 ms, respectively. The
speedup of TACO over Excel is up to 632× (i.e., max4 from
Enron). It is surprising that Excel takes longer time for finding
dependents than NoComp in all cases. One possible reason
is that Excel compresses formula graphs to reduce memory
consumption, which introduces the overhead of decompression
when the formula graphs are used for finding dependents. We
note that since Excel is a complex system, it may have the
overhead that TACO does not. It is also possible that Excel is
optimized for other scenarios by sacrificing the performance
of finding dependents. For NoComp-Calc, it cannot finish in
two cases. For the other cases, TACO is much faster than
NoComp-Calc and the speedup of TACO over NoComp-Calc
is up to 1,682×.

VII. RELATED WORK

TACO is related to formula computation, graph compres-
sion, column-oriented databases, and scalable spreadsheets.
Formula computation in spreadsheets There has been some
work on improving the interactivity of spreadsheets during
updates. Excel [5] and other spreadsheet systems [6], [33], [34]
track dependents of formula cells to quickly identify the cells
impacted by an update and recalculate them. DATASPREAD
approaches this problem using asynchronous execution [35]–
[37]. It uses the formula graph to identify the impacted formula
cells and mark them dirty, return control to users immediately,
and calculate the dirty cells asynchronously [7]. Unlike TACO,
none of these approaches leverage tabular locality to compress

13

formula graphs. In addition, TACO is orthogonal to the execu-
tion models and can be integrated into an existing spreadsheet
system to improve interactivity.
Graph compression Graph compression has been studied
in many scenarios, such as in the Web [38] and social
networks [39]. A recent survey [18] shows that different com-
pression methods are designed for different goals, including
understanding the structure of a graph [40], reducing graph
sizes with bounded errors [41], or accelerating queries on
graphs [42]. None of these papers leverage tabular locality
and consider the spatial nature of formula graphs. In addition,
most of them do not support directly querying the compressed
graph. Fan et al. [19] support directly executing reachability
and pattern matching queries on a compressed graph, but
do not leverage tabular locality and support finding depen-
dents/precedents. While a recent paper proposes a compressed
graph for spreadsheets [7], we showed that building such a
compressed graph is time-consuming.
Column-oriented databases Column-oriented databases [20],
[21] employ lightweight compression for data in each column
and execute queries directly on the compressed data without
decompression [43]. TACO is instead designed to compress
dependencies (i.e., edges) while column-oriented compression
methods are used to compress columnar data. In addition,
column-oriented databases do not consider decomposing com-
plex patterns in a column of formulae into predefined patterns
as TACO proposes.
Spreadsheets at scale Many prior papers focus on supporting
large-scale data analysis on spreadsheets [26], [27], [44]–
[49]. DATASPREAD [26], [27] adopts databases as a scalable
back-end. ABC [45] provides a spreadsheet interface and
uses approximate query processing techniques, such as online
aggregation [50], to quickly return results. Mondrian [49]
maps spreadsheets to visual images to detect different regions
in spreadsheets and extract layout templates, but does not
consider formula dependency compression. TACO is differ-
ent from these papers because it approaches the scalability
problem using compression techniques.

VIII. CONCLUSION

We presented TACO—a framework that efficiently com-
presses formula graphs in spreadsheets to improve interactiv-
ity. TACO exploits tabular locality, wherein cells close to each
other have formulae with similar structures, and represents
tabular locality via four basic and one extended patterns.
As part of TACO, we introduce algorithms for building
the compressed formula graph based on predefined patterns,
querying this graph without decompression, and incremental
maintenance. Our experiments show that TACO can quickly
find the dependents of spreadsheet cells to significantly reduce
the time of returning control to users while achieving fast
graph maintenance at the same time.

Acknowledgments. We thank the anonymous reviewers for
their valuable feedback. We acknowledge support from grants
IIS-2129008, IIS-1940759, and IIS-1940757 awarded by the

National Science Foundation, funds from the Alfred P. Sloan
Foundation, as well as EPIC lab sponsors: Adobe, Microsoft,
Google, and Sigma Computing. The content is solely the
responsibility of the authors and does not necessarily represent
the official views of the funding agencies and organizations.

REFERENCES

[1] Microsoft UK Enterprise Team, “How finance leaders can drive per-
formance,” https://enterprise.microsoft.com/en-gb/articles/roles/finance-
leader/how-finance-leaders-can-drive-performance/, 2015.

[2] “Excel vs. Google Sheets usage — nature and numbers,”
https://medium.com/grid-spreadsheets-run-the-world/excel-vs-google-
sheets-usage-nature-and-numbers-9dfa5d1cadbd, 2018.

[3] B. A. Nardi and J. R. Miller, The spreadsheet interface: A basis for end
user programming. Hewlett-Packard Laboratories, 1990.

[4] A. Gupta, I. S. Mumick, and V. S. Subrahmanian, “Maintaining
views incrementally,” in Proceedings of the 1993 ACM SIGMOD
International Conference on Management of Data, Washington, DC,
USA, May 26-28, 1993, 1993, pp. 157–166. [Online]. Available:
http://doi.acm.org/10.1145/170035.170066

[5] C. Williams et al., “Excel performance: Improving calculation per-
formance,” https://docs.microsoft.com/en-us/office/vba/excel/concepts/
excel-performance/excel-improving-calcuation-performance, 2017.

[6] “Calc formula dependence,” https://wiki.openoffice.org/wiki/Calc/
Implementation/Formula cell and cells dependence.

[7] M. Bendre, T. Wattanawaroon, K. Mack, K. Chang, and A. G.
Parameswaran, “Anti-freeze for large and complex spreadsheets:
Asynchronous formula computation,” in Proceedings of the 2019
International Conference on Management of Data, SIGMOD Conference
2019, Amsterdam, The Netherlands, June 30 - July 5, 2019,
P. A. Boncz, S. Manegold, A. Ailamaki, A. Deshpande, and
T. Kraska, Eds. ACM, 2019, pp. 1277–1294. [Online]. Available:
https://doi.org/10.1145/3299869.3319876

[8] “Display the relationships between formulas and cells,”
https://support.microsoft.com/en-us/office/display-the-relationships-
between-formulas-and-cells-a59bef2b-3701-46bf-8ff1-d3518771d507.

[9] “Trace Dependents,” https://help.libreoffice.org/latest/lo/text/scalc/01/
06030300.html.

[10] “EuSpRIG Horror Stories,” http://www.eusprig.org/horror-stories.htm.
[11] R. R. Panko, “What we don’t know about spreadsheet errors

today: The facts, why we don’t believe them, and what we
need to do,” CoRR, vol. abs/1602.02601, 2016. [Online]. Available:
http://arxiv.org/abs/1602.02601

[12] “Excel Formula Precedents and Dependents Navigator,” https://www.
breezetree.com/excel-utilities/formula-dependency-audit.

[13] B. Klimt and Y. Yang, “Introducing the enron corpus.” in CEAS, 2004.
[14] Z. Liu and J. Heer, “The effects of interactive latency on exploratory

visual analysis,” IEEE Trans. Vis. Comput. Graph., vol. 20, no. 12, pp.
2122–2131, 2014.

[15] “Range.Dependents,” https://docs.microsoft.com/en-us/office/vba/api/
excel.range.dependents.

[16] “Apache POI,” https://poi.apache.org/.
[17] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide

to the Theory of NP-Completeness. W. H. Freeman, 1979.
[18] Y. Liu et al., “Graph summarization methods and applications: A

survey,” ACM Computing Surveys (CSUR), vol. 51, no. 3, p. 62, 2018.
[19] W. Fan, J. Li, X. Wang, and Y. Wu, “Query preserving graph

compression,” in Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2012, Scottsdale, AZ,
USA, May 20-24, 2012, K. S. Candan, Y. Chen, R. T. Snodgrass,
L. Gravano, and A. Fuxman, Eds. ACM, 2012, pp. 157–168. [Online].
Available: https://doi.org/10.1145/2213836.2213855

[20] P. A. Boncz, M. Zukowski, and N. Nes, “Monetdb/x100: Hyper-
pipelining query execution,” in Second Biennial Conference on
Innovative Data Systems Research, CIDR 2005, Asilomar, CA, USA,
January 4-7, 2005, Online Proceedings. www.cidrdb.org, 2005, pp.
225–237. [Online]. Available: http://cidrdb.org/cidr2005/papers/P19.pdf

[21] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack,
M. Ferreira, E. Lau, A. Lin, S. Madden, E. J. O’Neil, P. E. O’Neil,
A. Rasin, N. Tran, and S. B. Zdonik, “C-store: A column-oriented
DBMS,” in Proceedings of the 31st International Conference on Very
Large Data Bases, Trondheim, Norway, August 30 - September 2, 2005,

14

K. Böhm, C. S. Jensen, L. M. Haas, M. L. Kersten, P. Larson, and B. C.
Ooi, Eds. ACM, 2005, pp. 553–564. [Online]. Available: http://www.
vldb.org/archives/website/2005/program/paper/thu/p553-stonebraker.pdf

[22] “CellFormula,” https://docs.microsoft.com/en-us/dotnet/api/
documentformat.openxml.spreadsheet.cellformula?view=openxml-2.8.1.

[23] A. Guttman, “R-trees: A dynamic index structure for spatial searching,”
in SIGMOD, 1984.

[24] “Absolute and Relative References,” https://support.microsoft.com/en-
us/office/switch-between-relative-absolute-and-mixed-references-
dfec08cd-ae65-4f56-839e-5f0d8d0baca9.

[25] “Bell Number,” https://en.wikipedia.org/wiki/Bell number.
[26] M. Bendre et al., “Dataspread: Unifying databases and spreadsheets,” in

VLDB, 2015.
[27] M. Bendre, V. Venkataraman, X. Zhou, K. C. Chang, and A. G.

Parameswaran, “Towards a holistic integration of spreadsheets
with databases: A scalable storage engine for presentational
data management,” in 34th IEEE International Conference on
Data Engineering, ICDE 2018, Paris, France, April 16-19, 2018.
IEEE Computer Society, 2018, pp. 113–124. [Online]. Available:
https://doi.org/10.1109/ICDE.2018.00020

[28] M. Bendre et al., “Faster, higher, stronger: Redesigning spreadsheets for
scale,” in ICDE, 2019.

[29] “TACO Lens,” https://github.com/taco-org/tacolens.
[30] “Redisgraph,” https://redis.io/docs/stack/graph/.
[31] “Redisgraph-bulk-loader,” https://github.com/RedisGraph/redisgraph-

bulk-loader.
[32] “Cyhper (query language),” https://en.wikipedia.org/wiki/Cypher

(query language).
[33] P. Sestoft, Spreadsheet Implementation Technology: Basics and Exten-

sions. The MIT Press, 2014.
[34] “ZK Spreadsheet,” https://www.zkoss.org/product/sheet.
[35] A. Marcus et al., “Crowdsourced databases: Query processing with

people,” in CIDR, 2011.
[36] A. G. Parameswaran et al., “Deco: declarative crowdsourcing,” in CIKM,

2012.
[37] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web

search engine,” Computer networks, vol. 30, no. 1-7, pp. 107–117, 1998.
[38] P. Boldi and S. Vigna, “The webgraph framework I: compression

techniques,” in Proceedings of the 13th international conference
on World Wide Web, WWW 2004, New York, NY, USA, May
17-20, 2004, S. I. Feldman, M. Uretsky, M. Najork, and C. E.
Wills, Eds. ACM, 2004, pp. 595–602. [Online]. Available: https:
//doi.org/10.1145/988672.988752

[39] F. Chierichetti, R. Kumar, S. Lattanzi, M. Mitzenmacher, A. Panconesi,
and P. Raghavan, “On compressing social networks,” in Proceedings
of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Paris, France, June 28 - July
1, 2009, J. F. E. IV, F. Fogelman-Soulié, P. A. Flach, and
M. J. Zaki, Eds. ACM, 2009, pp. 219–228. [Online]. Available:
https://doi.org/10.1145/1557019.1557049

[40] R. Cilibrasi and P. Vitanyi, “Clustering by compression,” IEEE Trans-
actions on Information Theory, vol. 51, no. 4, pp. 1523–1545, 2005.

[41] S. Navlakha et al., “Graph summarization with bounded error,” in
SIGMOD, 2008.

[42] A. Maccioni and D. J. Abadi, “Scalable pattern matching over com-
pressed graphs via dedensification,” in KDD, 2016.

[43] D. J. Abadi, S. Madden, and M. Ferreira, “Integrating compression
and execution in column-oriented database systems,” in Proceedings of
the ACM SIGMOD International Conference on Management of Data,
Chicago, Illinois, USA, June 27-29, 2006, S. Chaudhuri, V. Hristidis,
and N. Polyzotis, Eds. ACM, 2006, pp. 671–682. [Online]. Available:
https://doi.org/10.1145/1142473.1142548

[44] “1010 Data,” https://www.1010data.com/.
[45] V. Raman et al., “Scalable spreadsheets for interactive data analysis.” in

DMKD, 1999.
[46] “Airtable,” https://www.airtable.com/.
[47] A. Witkowski et al., “Advanced SQL modeling in RDBMS,” TODS,

vol. 30, no. 1, pp. 83–121, 2005.
[48] A. Witkowsk et al., “Query by excel,” in VLDB, 2005.
[49] G. Vitagliano, L. Jiang, and F. Naumann, “Detecting layout templates in

complex multiregion files,” Proc. VLDB Endow., vol. 15, no. 3, pp. 646–
658, 2021. [Online]. Available: http://www.vldb.org/pvldb/vol15/p646-
vitagliano.pdf

[50] V. Raman, B. Raman, and J. M. Hellerstein, “Online dynamic reordering
for interactive data processing,” in VLDB, vol. 99, 1999, pp. 709–720.

15

