
Visualizing Spreadsheet Formula Graphs Compactly
Fanchao Chen

Fudan University

chenfc18@fudan.edu.cn

Dixin Tang

UC Berkeley

totemtang@berkeley.edu

Haotian Li

HKUST

haotian.li@connect.ust.hk

Aditya G. Parameswaran

UC Berkeley

adityagp@berkeley.edu

ABSTRACT

Spreadsheets are a ubiquitous data analysis tool, empowering non-

programmers and programmers alike to easily express their com-

putations by writing formulae alongside data. The dependencies

created by formulae are tracked as formula graphs, which play

a central role in many spreadsheet applications and are critical

to the interactivity and usability of spreadsheet systems. Unfortu-

nately, as formula graphs become large and complex, it becomes

harder for end-users to make sense of formula graphs and trace

the dependents or precedents of cells to check the accuracy of

individual formulae and identify sources of errors. In this paper,

we demonstrate a spreadsheet formula graph visualization tool,

TACO-Viewer, developed as a plugin for Microsoft Excel. Our plu-

gin leverages TACO, our framework for compactly and efficiently

representing formula graphs. TACO compresses formula graphs

using a key spreadsheet property: tabular locality, which means

that cells close to each other are likely to have similar formula

structures. This compact representation enables end-users to more

easily consume complex dependencies and reduces the response

time for tracing dependents and precedents. TACO-Viewer, our

visualization plugin, depicts the compact representation of TACO

and supports users in visually tracing dependents and precedents.

As part of our demonstration, attendees can compare the visual-

izations of different formula graphs using TACO, Excel’s built-in

dependency tracing tool, and an approach that does not compress

formula graphs, and quantitatively compare the different response

time of different approaches.

1 INTRODUCTION

Spreadsheet systems are unquestionably the most popular interac-

tive data analysis tools on the planet, with a user base of around

1 Billion [6]. A major reason for their popularity is because they

empower non-programmers and programmers alike to express so-

phisticated computation by embedding formulae along with data.

A formula can accept raw data values or the computed results of

other formulae as input, generating a network of dependencies

across formulae and raw data. These dependencies are typically

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 1 ISSN 2150-8097.

doi:XX.XX/XXX.XX

A N

2 ? =M2

3 =IF(A3=A2,N2+M3,M3)?

4 =IF(A4=A3,N3+M4,M4)?

6949 =IF(A6949=A6948,N6948+M6949,M6949)?

1 CP id Nov Settle $ Total

M

Nov Settle $

?

?

?

?

N2:N6949M2:M6949 Mi -> Ni, i in [2, 6949]

N3:N6949

N2:N6948
N(i-1) -> Ni, i in [3, 6949]

A2:A6948 A(i-1) -> Ni, i in [3, 6949]

A3:A6949
Ai -> Ni, i in [3, 6949]

A Spreadsheet Example

The Compressed Formula Graph by TACO

Figure 1: A real spreadsheet with tabular locality [8]

internally tracked using a formula graph, where each dependency

is modeled as an edge in this graph. Formula graphs support several

crucial spreadsheet functions, and are critical to the interactivity

and usability of a spreadsheet system. Therefore, many spreadsheet

systems, such as Excel [2] and LibreCalc [5], provide tools for visu-

ally tracing dependents and precedents of cells to help users check

the accuracy of formulae and identify sources of errors, which are

particularly rife in spreadsheets [3, 10]. Recently, a spreadsheet bug

led to a severe under-counting of COVID-19 cases [7], while studies

indicate that nearly 90% of all spreadsheets contain errors [9].

Spreadsheet errors are commonly caused due to the complexity

and scale of formula graphs, which makes it difficult for spreadsheet

users to easily and efficiently make sense of formula dependencies.

For example, our previous study on real spreadsheets has shown

that the number of dependents of a single cell can be as high as

300K while a single path can be as long as 200K edges in a formula

graph [11]. But existing spreadsheet systems visualize these edges

one by one [2, 5], making it hard for users to understand the overall

patterns of the edges or the network, or identify potential errors.

To address this problem, we demonstrate TACO-Viewer, our

plugin for visualizing spreadsheet formula graphs that leverages an

efficient and compact formula graph representation, called Tabular
Locality-based Compression or TACO [11], developed by us in prior

work. TACO leverages tabular locality, a key property in spread-

sheets, wherein cells that are close to each other in the tabular

spreadsheet layout often employ similar formula structures. Fig-

ure 1 shows a column of formulae of a real-world spreadsheet that

follows tabular locality. The formulae in the column N follow the

following pattern starting from N3: the IF formula in each row ref-

erences the cell of the same row and the row above from column

https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX

A

1 ?

2 ?

3 ?

4 ?

A1:B3 C1

Spreadsheet Formula Graph

A2:B4 C2
A3:B5 C3 Ai:B(i+2) -> Ci, i in [1, 4]

A1:B6

C1:C4

compress
C

=SUM(A1:B3)

=SUM(A2:B4)

=SUM(A3:B5)

=SUM(A4:B6)

B

?

?

?

?

A4:B6 C4

(a) Relative plus Relative (i.e., sliding window)

A C

1 ? =SUM(A1:B4)

2 =SUM(A2:B4)?

3 =SUM(A3:B4)?

A1:B4 C1

Spreadsheet Formula Graph

A2:B4 C2
A3:B4 C3

Ai:B4 -> Ci, i in [1, 4]

A1:B4

C1:C4

B

?

?

?

4 =SUM(A4:B4)? ?

A4:B4 C4

compress

(b) Relative plus Fixed (i.e., shrinking window)

A C

1 ? =SUM(A1:B1)

2 =SUM(A1:B2)?

3 =SUM(A1:B3)?

A1:B1 C1

Spreadsheet Formula Graph

A1:B2 C2

A1:B3 C3
A1:Bi -> Ci, i in [1, 3]

A1:B3

C1:C3

B

?

?

?

compress

(c) Fixed plus Relative (i.e., expanding window)

A C

1 ? =SUM(A1:B3)

2 =SUM(A1:B3)?

3 =SUM(A1:B3)?

C1

Spreadsheet Formula Graph

C2A1:B3

C3

A1:B3

C1:C3

B

?

?

?

A1:B3 -> Ci, i in [1, 3]

compress

(d) Fixed plus Fixed (i.e., fixed window)

Figure 2: Examples of four basic patterns for capturing tabular locality

A (e.g., N3 references A3 and A2), the cell to the left (e.g., M3 for

N3), and the cell above (e.g., N2 for N3). Tabular locality is preva-

lent in real-world spreadsheets because users often do not write

each formula by hand but use existing spreadsheet tools, such as

copy-paste and autofill, to generate formulae automatically. For

example, autofill allows users to repeat the pattern of a cell to fill

adjacent cells. Users could also programmatically generate a large

spreadsheet, which still likely respects tabular locality.

Therefore, TACO leverages tabular locality to compress the for-

mula graphs, helping end-users easily consume the complex de-

pendencies via a more compact representation. For the example

in Figure 1, we compress the dependencies into 4 edges, where

each edge is annotated with the information for reconstructing the

original dependencies. The first compressed edge, for instance, rep-

resents the dependenciesM2 → N2,M2 → N3, · · · ,M6949 → N6949

as Ni → Mi, where i varies from 2 to 6949. This way, end-users can

easily identify patterns or outliers in formula graphs.

From a technical perspective, TACO defines four basic patterns to

capture tabular locality based on analysis of real-world spreadsheets

and adopts a generic framework that compresses formula graphs

based on these predefined patterns. This framework additionally

includes novel algorithms for finding dependents or precedents

directly on the compressed graph and incrementally maintaining

the compressed formula graphs with respect to updates to reduce

response time.

In this demonstration, we implement a Excel plugin that visual-

izes the compact representation of TACO, called TACO-Viewer,

where users can visually explore formula graphs compactly, and

find dependents or precedents given a spreadsheet region. As part of

the demonstration, users can compare the visualizations of different

formula graphs for TACO-Viewer, Excel’s built-in dependency trac-

ing tool, and a baseline approach that does not compress formula

graphs, and compare the response time and usability of different

approaches. In the rest of this paper, we will first introduce TACO in

Section 2, and then present TACO-Viewer and our demonstration

plan in Section 3. Additional details about TACO can be found in

our recent paper [11].

2 THE TACO FRAMEWORK

We briefly introduce some key concepts before introducing TACO.

Preliminaries. A spreadsheet organizes a set of cells in a tabular

layout, where each cell is referenced using its column index, i.e., A,

· · · , Z, AA, · · · , and row index, i.e., 1, 2, · · · . A range is a rectangular
region of cells, identified by the top-left (called head) and bottom-

right (called tail) cells. A cell that contains is called a formula

formula cell. A formula graph is a directed acyclic graph (DAG) that

stores the dependencies of formulas referencing other ranges as

edges. Each formula is parsed to get the set of ranges the formula

references, with a directed edge added from each referenced range

to the formula cell. Given a directed edge 𝑒 = (prec, dep), we call prec
the direct precedent of dep, while dep is called the direct dependent
of prec. Compared to a regular graph, one unique property of a

formula graph is that a vertex in this graph can be a range. So, to

quickly find ranges that overlap with an input range, we will build

an index (e.g., R-Tree) to accelerate this operation.

TACO framework components. The TACO framework includes

two parts: the patterns for capturing tabular locality and algorithms

for efficiently compressing, querying, and maintaining formula

graphs. Each pattern will compress 𝑁 dependencies into one edge

and implement four key functions. Given these patterns along with

their key functions, we design novel algorithms that employ these

key functions to compress, query, and maintain the formula graphs.

2.1 Patterns for Capturing Tabular Locality

TACO patterns. TACO considers four basic patterns for capturing

tabular locality. Our discussion assumes each pattern compresses

the dependencies of a column of adjacent formula cells, where each

formula has only one referenced range. This can be extended to the

case when there are multiple referenced ranges, and when there is

a row of adjacent formula cells. We use the examples in Figure 2 to

illustrate each of the basic patterns.

The first basic pattern involves each formula cell having the

same relative positions with respect to both the head and tail cell

of its referenced range, referred to as Relative plus Relative or RR

for short. Figure 2a shows an example, where each formula cell Ci

references the ranges Ai:B(i+2), where i varies from 1 to 4.

The second pattern has the head cell of each referenced range

being relative to the corresponding formula cell, but the tail cell is

fixed, referred to as Relative plus Fixed or RF for short. For example,

2

1

2

3

4

C

=SUM(B1:B1)*A1

=SUM(B1:B2)*A1

 =SUM(B1:B3)*A1

=SUM(B1:B4)

D

=SUM(B1:B4)

A

?

?

?

?

B

?

?

?

?

?

?

?

B1:B4

C1:C4

B1:Bi -> Ci, i in [1, 4]

A1 A1->Ci, i in [1, 3]

D4B1:B4 -> D4

C1:C3

Spreadsheets The Compressed Formula Graph

Figure 3: A compressed formula graph

Figure 2b shows that each formula cell Ci references the range Ai:B4,

where i varies from 1 to 4.

The third pattern, Fixed plus Relative or FR, is symmetrical to

RF. The final pattern, Fixed plus Fixed or FF, has each formula cell

referencing the same range, as shown in Figure 2d.

Algorithms for the key functions. The key functions are used

to build, query, and maintain an compressed edge. We design al-

gorithms to support these functions while not decompressing the

edge. In this paper, we describe the key ideas of the algorithms

for building and querying a compressed edge. The details of all

algorithms can be found in our full paper [11].

The compression algorithm considers compressing a depen-

dency into a compressed edge or another dependency based on

the definition of the basic patterns. For example, we can compress

A5:B7 → C5 into the compressed edge in Figure 2a since it follows

the Ai:B(i+2) → Ci pattern and C5 is adjacent to C1:C4.

Two key functions are adopted to support finding dependents

or precedents for an input range in a compressed edge. For the

example in Figure 2a, if the input range is A2:A3, its dependents are

C1:C3. Our algorithms leverage the relative positions along with the

range of the compressed formula cells to find the dependents and

precedents at a constant time, independent of the size of the input

range, which reduces the time for finding dependents or precedents.

2.2 Compressing, Querying, and Maintaining

Formula Graphs

The algorithms in the TACO framework will employ the key func-

tions of each pattern to compress, query, and maintain formula

graphs. We now describe the key ideas for the compression and

querying algorithms. Additional details and complexity analysis

can be found in our full paper [11].

The compression algorithm. This algorithm compresses a list of

dependencies between formula cells and their referenced ranges by

repeatedly inserting each dependency into the compressed graph

and determining how the dependencies are compressed using the

aforementioned patterns. Since we compress the dependencies for

adjacent formula cells, we use this constraint to quickly find the

candidate edges that one inserted dependency can be compressed

into. If there are multiple candidate edges, we leverage several

heuristics based on our analysis of real-world spreadsheets to decide

the edge that can best reduce the graph size (e.g., prioritize column-

wise compression over row-wise).

Querying the formula graph. Finding dependents or precedents

in a compressed formula graph is done via a modified Breadth-

First-Search (BFS). We use the example in Figure 3 to illustrate the

modifications and assume the case of finding the dependents of B2.

Similar to conventional BFS, the overall algorithm starts with

the input range and recursively finds their direct dependents. There

are two major differences when finding the direct dependents for

an input range. First, we need to consider all of the ranges that

overlap with the input range when finding direct dependents. In

our example, we need to consider B1:B4, which overlaps with B2.

This step is done via an index (e.g., R-Tree) that is built on the

vertices in the formula graph. Second, since an edge in the formula

graph can be a compressed one, we need to find the real direct

dependents that are related to the input range. For our example,

one direct dependent of B1:B4 is C1:C4, but only C2:C4 depend on B2.

Therefore, we use the key function for the corresponding pattern

to find the real direct dependents for the input range (e.g., C2:C4 for

B2 in the edge B1:B4 → C1:C4). After that, we will recursively find

the direct dependents of C2:C4 until the search ends.

3 DEMONSTRATION PLAN

We leverage TACO’s compact representation, and visualize it as

part of a Microsoft Excel plugin that we call TACO-Viewer. As part

of the demonstration, users can explore formula graphs and trace

dependents or precedents within TACO-Viewer and compare it

with other approaches.

3.1 Implementation and User Interface

TACO-Viewer is a web application that leverages the JavaScript

API provided by Excel to access the worksheets [4]. This application

is supported by a web server that implements the TACO frame-

work and provides the functionalities for building, querying, and

maintaining formula graphs. We adopt the Cytoscape library [1] to

visualize formula graphs.

The interface of TACO-Viewer is shown in the right half of

Figure 4. When users click the Generate the Entire Graph
button, the plugin will send the content of the current worksheet

to the web server to build the compressed formula graph and then

visualize the graph. We assign different colors to different edges

based on their compression patterns. For example, in Figure 4,

the blue color represents the RR pattern while the orange color

represents the FF pattern. Users can also zoom in/out and pan

to explore different parts of the formula graph. In addition, users

can inspect the (direct) dependents/precedents of a spreadsheet

range. To do this, they select the range they are interested in on the

worksheet and click the corresponding button in the plugin. Then,

the corresponding dependents/precedents are visualized.

For each operation, including generating the entire graph and

finding (direct) dependents/precedents of a selected range, the plu-

gin will track the end-to-end time for the corresponding operation

and display the time in the “Response Time” text, as shown in Fig-

ure 4. This way, users can quantitatively compare the response time

of TACO with other approaches.

3.2 Baselines

Within TACO-Viewer, we have also implemented a baseline ap-

proach, called NoComp, to allow users to directly explore the un-

compressed formula graph. The button at the top of the plugin

allows users to switch between the two approaches. Finally, users

can try Excel’s built-in dependency tracing tool and compare it

with TACO and NoComp. The visualization for Excel’s tracing tool

is shown on the left half of Figure 4, where each dependency is

visualized as a blue arrow.

3

Figure 4: TACO Plugin in Excel

Figure 5: Dependents of N2:N958 Figure 6: Dependents of N2:N958 after fixing the outlier edge

3.3 Usage Scenario

As part of the demo, we will prepare ten spreadsheets whose un-

compressed formula graphs have the largest numbers of edges from

Enron and Github datasets[8, 11]. Their uncompressed formula

graphs have 1,343,107 edges on average, and the largest one con-

tains over 3,000,000 edges. TACO can reduce its number of edges

to less than 0.01% of the original number of edges.

In addition to allowing users to explore the formula graph, we

will design use cases where users use TACO-Viewer to detect

potential errors. We now describe one such user case in one real-

world spreadsheet.

Overview of the Formula Graph. First, the user can see an

overview of the formula graph for this spreadsheet, as in Figure 4.

The user will find most blue edges are connected to two nodes on

the left part of the visualized formula graph. After zooming in, the

user will find the two nodes represent ranges O2:O958 and N2:N958.

Finding Dependents and Outlier Detection. To understand

the dependents of the two ranges, the user will adopt the “Find

Dependents” button. Assuming that the user wants to check the

dependents of N2:N958, which are visualized in Figure 5, the user

will find that the cells Z2:Z958 and many columns to the right (e.g.,

AA2:AA958) reference N2:N958 using the RR pattern (e.g., Ni → Zi),

but there is an edge that is related to Z2 but does not follow this

pattern (i.e., the gray edge).

The user can check the formula cell at Z2 or other related cells

to decide whether this is an outlier edge. If the user chooses to

remove it, then all cells in column Z follow the same pattern, as

shown in Figure 6. Without TACO’s compressed formula graph and

compact visualization, it will be much more time-consuming for

the user to understand the patterns in the formula graph and detect

the potential errors.

4 CONCLUSION

We demonstrate TACO-Viewer, which visualizes TACO’s compact

formula graph representation and allows users to compare our tool

with a baseline and with Excel’s built-in tracing tool for exploring

formula graphs. This demonstration highlights how TACO can help

users more easily make sense of the patterns in formula graphs,

find dependents/precedents, and detect potential errors.

REFERENCES

[1] Cytoscape. https://cytoscape.org/.

[2] Display the relationships between formulas and cells. https://support.microsoft.

com/en-us/office/display-the-relationships-between-formulas-and-cells-

a59bef2b-3701-46bf-8ff1-d3518771d507.

[3] EuSpRIG Horror Stories. http://www.eusprig.org/horror-stories.htm.

[4] Excel javascript api. https://learn.microsoft.com/en-us/office/dev/add-ins/

reference/overview/excel-add-ins-reference-overview.

[5] Trace Dependents. https://help.libreoffice.org/latest/lo/text/scalc/01/06030300.

html.

[6] Excel vs. Google Sheets usage — nature and numbers. https://medium.com/grid-

spreadsheets-run-the-world/excel-vs-google-sheets-usage-nature-and-

numbers-9dfa5d1cadbd, 2018.

[7] L. Kelion. Excel: Why using microsoft’s tool caused covid-19 results to be lost.

BBC News, 5, 2020.
[8] B. Klimt and Y. Yang. Introducing the enron corpus. In CEAS, 2004.
[9] S. Leung. Sorry, your spreadsheet has errors (almost 90% do), 2014.

[10] R. R. Panko. What we don’t know about spreadsheet errors today: The facts,

why we don’t believe them, and what we need to do. CoRR, abs/1602.02601, 2016.
[11] D. Tang, F. Chen, C. D. Leon, T. Wattanawaroon, J. Yun, S. Seshadri, and A. G.

Parameswaran. Efficient and Compact Spreadsheet Formula Graphs. In ICDE’23.

4

https://cytoscape.org/
https://support.microsoft.com/en-us/office/display-the-relationships-between-formulas-and-cells-a59bef2b-3701-46bf-8ff1-d3518771d507
https://support.microsoft.com/en-us/office/display-the-relationships-between-formulas-and-cells-a59bef2b-3701-46bf-8ff1-d3518771d507
https://support.microsoft.com/en-us/office/display-the-relationships-between-formulas-and-cells-a59bef2b-3701-46bf-8ff1-d3518771d507
http://www.eusprig.org/horror-stories.htm
https://learn.microsoft.com/en-us/office/dev/add-ins/reference/overview/excel-add-ins-reference-overview
https://learn.microsoft.com/en-us/office/dev/add-ins/reference/overview/excel-add-ins-reference-overview
https://help.libreoffice.org/latest/lo/text/scalc/01/06030300.html
https://help.libreoffice.org/latest/lo/text/scalc/01/06030300.html
https://medium.com/grid-spreadsheets-run-the-world/excel-vs-google-sheets-usage-nature-and-numbers-9dfa5d1cadbd
https://medium.com/grid-spreadsheets-run-the-world/excel-vs-google-sheets-usage-nature-and-numbers-9dfa5d1cadbd
https://medium.com/grid-spreadsheets-run-the-world/excel-vs-google-sheets-usage-nature-and-numbers-9dfa5d1cadbd

	Abstract
	1 Introduction
	2 The TACO Framework
	2.1 Patterns for Capturing Tabular Locality
	2.2 Compressing, Querying, and Maintaining Formula Graphs

	3 Demonstration Plan
	3.1 Implementation and User Interface
	3.2 Baselines
	3.3 Usage Scenario

	4 Conclusion
	References

