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ABSTRACT

Many applications schedule queries before all data is ready.
To return fast query results, database systems can eagerly
process existing data and incrementally incorporate new
data into prior intermediate results, which often relies on
incremental view maintenance (IVM) techniques. However,
incrementally maintaining a query result can increase the
total amount of work mainly as some early work is not
useful for computing the final query result. In this paper,
we propose a new metric incrementability to quantify the
cost-effectiveness of IVM to decide how eagerly or lazily
databases should incrementally execute a query. We further
observe that different parts of a query have different levels
of incrementability and the query execution should have a
decomposed control flow based on the difference. Therefore,
to address these needs, we propose a new query processing
method Incrementability-aware Query Processing (InQP).
We build a prototype InQP system based on Spark and show
that InQP significantly reduces resource consumption with
a similar latency compared with incrementability-oblivious
approaches.

CCS CONCEPTS

· Information systems → Database query processing;
Query optimization; Query planning.

KEYWORDS

incremental view maintenance; non-positive query; resource
efficiency; incrementability; query service; cloud database

ACM Reference Format:

Dixin Tang, Zechao Shang, Aaron J. Elmore, Sanjay Krishnan,

Michael J. Franklin. 2020. Thrifty Query Execution via Incrementabil-

ity. In Proceedings of the 2020 ACM SIGMOD International Con-

ference on Management of Data (SIGMOD’20), June 14ś19, 2020,

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SIGMOD’20, June 14ś19, 2020, Portland, OR, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6735-6/20/06. . . $15.00

https://doi.org/10.1145/3318464.3389756

TimeD
at

a

TimeD
at

a

TimeD
at

a

Query

Work

Query

Work

New Records Query Start Query Finish

(a)

(b)

(c)

Query

Work

Figure 1: How incrementability can impact query la-

tency and the amount of work done.

Portland, OR, USA. ACM, New York, NY, USA, 16 pages. https:

//doi.org/10.1145/3318464.3389756

1 INTRODUCTION

Almost all open-source and commercial database systems
support triggers, which are stored procedures executed when
an event occurs. Examples of triggering events include a time
frequency (e.g. every hour), a progress condition (e.g. data
completely loaded), or a constraint violation (e.g. duplicate
user ids added to a database). As is often the case, the stored
procedure is itself a query, and there is an interesting ques-
tion of how to process this pending query. One could simply
wait until the trigger to begin processing in a way similar
to traditional batch query execution. Or, one could treat the
query like a standing query in a streaming system by con-
tinuously updating the results in anticipation of a future
trigger. In general, there is a trade-off space between the
resource-hungry but low-latency streaming approach and a
resource-efficient but higher-latency batch evaluation [40].

This paper studies how a user can effectively exploit such
a middle-ground for scheduled or triggered queries. For ex-
ample, suppose she would like to reduce her latency by 50%,
how much more resources would she have to use? In the
context of triggered queries, an important question towards
this goal is when to start processing a query. Consider the
motivating example in Figure 1, where data is being progres-
sively loaded into the database and the goal is to compute
the result of a pre-defined query. In Figure 1a, a traditional
batch query does not begin until all new data arrives. No
resources are held or used while data are arriving. If a system
wanted to provide the result earlier, it would need to start
processing existing data earlier by investing additional re-
sources and incrementally incorporating new data into prior
results (Figure 1b). Exactly how much benefit there is for
eager processing depends on the structure of the pending
query; for example, the latency could see less improvement
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as in Figure 1c. Some queries are amenable to incremental
computation while others can incur steep overheads that
may not be worth the additional resources.
Not surprisingly, our study is related to algorithms for

Incremental View Maintenance (IVM). Prior work [6, 23,
25] shows IVM is efficient for select-project-join-aggregate
(SPJA) queries, but less so for more complex queries, such
as those involving nested queries or outer/anti-joins [16].
One major reason is that many complex queries are non-
monotonic: newly arriving data can force these queries to
delete previously produced output tuples. For example, con-
sider a SQL query that finds all tuples with an above-average
attribute value. To incrementally maintain this result, on
each new tuple, the maintenance algorithm has to not only
update the running average, but also re-scan all the previ-
ous tuples to update query result if the average changes. In
other words, some amount of the incremental work in such a
query removes old results instead of simply making forward
progress; making it less beneficial to maintain frequently.
However, we noticed that many such queries, while ex-

pensive to incrementally maintain, have substructures that
are amenable to incremental computation. For the example
query above, a better strategy is to eagerly maintain the av-
erage values, and less frequently re-scan to find the tuples
that are above the average. State-of-the-art IVM systems
lack the ability to tune maintenance frequencies for individ-
ual dataflow paths to optimize overall system performance.
Making these tuning decisions requires a metric of łincre-
mentabilityž to indicate how amenable a particular operator
or pipeline of operators is for incremental execution.

One of our contributions is to propose such a metric aptly
called incrementability. A query with a high incrementability
reduces its final work without much increase to its total
work. We define total work as all work done by the system
for the query to compute the final query result (which can
be a viewed as a proxy for resource consumption) and final

work as the work spent after data is complete and the trigger
starts the query (which can be viewed as a proxy for a query’s
latency). We quantify the final work and total work based
on the cost metric in a RDBMS optimizer, which could be a
unified cost of estimated CPU time and I/O operations, or
number of tuples processed by all operators.

Ideally a system would more eagerly schedule query parts
with higher incrementability than those with a lower one.
We leverage this definition to propose a new query pro-
cessing paradigm, Incrementability-aware Query Processing

(InQP), that leverages incrementability to efficiently improve
query performance. We decompose a query into query paths
of tuples’ data flow between buffered operations. We pro-
pose a new cost model that computes incrementability for
each query path from a decomposed query. To intelligently

Customer ⋈
Customer𝑄𝑢𝑒𝑟𝑦 𝑃𝑎𝑡ℎ𝐴

𝑄𝑢𝑒𝑟𝑦 𝑃𝑎𝑡ℎ𝐶
𝑄𝑢𝑒𝑟𝑦 𝑃𝑎𝑡ℎ𝐵Γ𝐴𝑣𝑔(𝐵𝑎𝑙) 𝐵𝑎𝑙 > 𝐴𝑣𝑔(𝐵𝑎𝑙)Π(𝐼𝐷, 𝐵𝑎𝑙)

Figure 2: A query with multiple query paths.

improve performance, InQP executes query paths at differ-
ent paces (or frequencies) based on their respective incre-
mentability. For our initial prototype, users specify a final
work constraint, and InQP automatically minimizes the total
work under the given constraint.

We address two challenges of InQP. First, computing incre-
mentability requires estimation of total work and final work,
but conventional cost models are designed for one-batch
processing instead of incremental executions. We address
this with a cardinality estimation method that works better
for incremental executions. Specifically, we separately esti-
mate cardinalities of tuples that are new, updated, or deleted.
Second, we need to assign different paces for different query
paths. We propose a greedy algorithm to decide the paces to
minimize a query’s total work and meet a final work goal.

Our major contributions include: 1) defining and integrat-
ing incrementability for resource efficient incremental query
execution; 2) a new cost model that accounts for inserts, up-
dates, and deletes for incremental execution plans; and 3) an
implementation in a popular data processing system, Spark.

2 BACKGROUND AND DEFINITIONS

In this section, we introduce the problem context and assump-
tions, InQP’s system model, formally define incrementability
that captures the ratio of reduced final work to increased
total work, and analyze the key factors for incrementability.

2.1 Problem Context and Assumptions

We consider an application scenario where data is being
loaded into a database and users want to query the loading
data based on trigger conditions, such as time-based (e.g.
daily loaded data) or count-based (e.g. for every 100M tuples)
conditions. Each triggered query returns an exact result over
its conditioned data (e.g. daily loaded data). We emphasize
that our approach also applies to general incremental query
evaluation and view maintenance, including stream query
processing. We assume knowledge of the data arrival rate,
which can be predicted based on historical statistics [39].
With this knowledge, we can estimate when a query is trig-
gered, and the final work and total work of a triggered query
based on our cost model in Section 3.1. For simplicity, we
assume a steady arrival rate for our cost model and we show
our robustness for a bursty arrival rate in Section 5.4.
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2.2 System Model

Unlike conventional IVM systems, InQP decomposes a query
into different query paths.

Query paths: A query path is a dataflow segment in the
query operator tree delineated by blocking operators, inputs,
or outputs. We note that an operator may belong to multiple
query paths. Figure 2 illustrates a sample query that finds the
IDs and balance of customers with a balance larger than the
average balance (i.e. Bal > Avд(Bal )). This query has three
query paths: (1) the first query path A takes balance from
Customer to compute the average balance (i.e. ΓAvд (Bal )), (2)
the second query path B takes ΓAvд (Bal ) , joins it with the all
tuples from Customer and outputs customer IDs and balance,
and (3) query path C takes tuples from Customer and joins
them with the average value.
Intuitively, query paths represent a stream of tuples be-

tween buffers in a pipelined query execution engine. All
blocking operators including aggregate, sort, and distinct
have output buffers. Similarly, all base relations or delta logs
can be treated as buffers as well, and so can the output of
the whole query. On the other hand, simple operators like a
filter or a join can yield outputs in a streaming fashion.

Query paths naturally decompose the query operator tree,
and the individual dataflow paths are the ideal unit for fine-
grained resource or latency management. Buffers for block-
ing and scan operators can be flushed with a varying fre-
quency (called the pace) depending on the incrementability.

Pace configuration: Generally, the buffers could be flushed
in different ways, such as a count-based flush (i.e., after 1000
tuples in buffer), a time-based flush (i.e., every 10 seconds),
or a heuristic-based flush. For simplicity in our prototype,
we use mini-batch execution and consider a flushing with
respect to the percentage of the total number of tuples ar-
rived for the system. Each query path with a pace k flushes
its input buffer whenever the system has received new 1

k
of

all the estimated tuples. A pace configuration can be repre-
sented as a vector P = (K1,K2, . . . ,KQ ) for Q query paths.
A special pace configuration P1 = (1, 1, . . . , 1) represents
batch processing where all tuples are processed by a single
final step.

2.3 Incrementability Definition

Incrementability: Incrementability describes how incre-
mentable a pace configuration is. For a pace configuration P ,
we define CF (P ) as its final work and CT (P ) as its total work.
Recall that final work means the work the system does after
data is complete and total work is all work done by the sys-
tem to compute the result. Consider two pace configurations
P2 > P1, such that each query path’s pace in P2 is no smaller
than the pace in P1, and there is at least one query path in

Total work

F
in

al
 w

o
rk

X

Batch processing

X

Incremental view maintenance

Additional work

Reduced 

final work

Figure 3: An example of the benefit (i.e. reduced final

work) and cost (i.e. additional work) for an incremen-

tal execution plan.

P2 whose pace is larger than the pace in P1. Here, P2 has a
larger total work than P1 and the incrementability of P2 over
P1 (e.g. the łbenefitž of extra total work) is defined as:

INC(P1, P2) =
CF (P1) − CF (P2)

CT (P2) − CT (P1)
(1)

This is defined on two pace configurations that evaluate the
same query plan. A similar relationship could also be ex-
tended to pairs of different query plans, or more generally,
to pairs of two broadly defined łmechanismsž that answer
the query (e.g., one count-based trigger and one time-based
trigger), but we leave this for future work. Figure 3 shows an
example of the benefit and cost of more incremental execu-
tions. This curve presents the trade-off between total work
and final work. It starts at the point of batch processing (i.e.
P = P1). When we invest more resources into incremental
executions (i.e. by increasing pace in P ), the final work drops
and the total work increases. A special incrementability that
is relative to the batch executionmay be of particular interest.
Specifically, INC(P , P1) models the effectiveness of how extra
total work saves final work, compared to batch processing.
There are three levels of incrementability. If there is no

additional total work for incremental executions (i.e. CT (P )
equals CT (P1)), the incremental executions are fully incre-

mentable. Here the incrementability is∞. If Incrementability
is less than∞, but larger than 0, it means incremental exe-
cutions are partially incrementable, that is, we need to pay
some additional cost for total work to reduce the final work.
If Incrementability is no larger than zero, more total work is
not helpful in reducing the final work, or it even prolongs
the overall final work. Here, the query is non-incrementable

and thus should not be executed until a result is triggered.
We summarize the three cases in the following:
• Incrementability = ∞: Fully incrementable
• 0 < Incrementability < ∞: Partially incrementable
• Incrementability ≤ 0: Non-incrementable
We note the levels of incrementability depend on both

input data and query semantics. We now use examples to
illustrate this.

Fully incrementable: Positive queries (e.g. SPJ queries)
with insert data are fully incrementable because prior output
tuples are not removed by new insert tuples and early work
of outputing tuples is not wasted.
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Partially incrementable: When we have non-positive
queries or the data involving deletes or updates, later execu-
tions will remove some of prior output tuples, which makes
queries partially incrementable. One such example is left-
outer-join. In addition to joined tuples, it outputs tuples from
the left side that do not match right side tuples. It is possible
that new tuples from the right side successfully join with a
previous unmatched left tuple, which shall be removed from
the output. Therefore, outputting the unmatched tuples too
eagerly wastes resources and is less incremental.

Non-incrementable: This is an extreme case of partially
incrementable queries. For example, if all data we have pro-
cessed are deleted later, we should not start incremental
executions. Therefore, this case is non-incrementable.

3 COMPUTING INCREMENTABILITY

To calculate incrementability, we need to compute CT (P ) and
CF (P ) given a pace configuration P . A critical challenge for
this task is how to estimate the incremental computation cost
for each incremental execution given a pace configuration.
We first discuss our modifications on existing cost models
for computing CT (P ) and CF (P ). and then discuss how to
compute total work and final work given a pace configura-
tion in Section 3.2. In this paper, we support queries with
negations (i.e. deletes and updates). Specifically, we support
operators for select, project, join (i.e. inner, outer, anti, and
semi-join), aggregate, distinct, sort, and limit.

3.1 Cardinality Estimation for
Incrementability

As shown in prior work [29, 36, 44], cost modeling involves
two key pieces: output cardinality estimation (i.e. the number
of tuples each operator output) and relating cardinalities to
a unit of work such as I/O cost or CPU time. We find that
existing cardinality estimation approaches are ill-suited for
the problems studied in this paper, especially for non-positive
queries. So we focus on the problem of cardinality estimation,
and adopt the cost functions in conventional RDBMS cost
model [29, 31, 36] for the second factor.

3.1.1 Problem and Intuition. We emphasize that the prob-
lem cardinality estimation for InQP is different as existing
solutions [29, 44] for either batch processing or incremental
execution, mainly consider the positive queries where extra
inputs only produce new outputs but never remove previous
outputs. However, an important source of non-incrementable
execution are operators that output tuples which are later
removed. Therefore, existing cardinality estimation solutions
cannot fully consider the effects of non-incrementable parts
and fail to compute an accurate incrementability. Anti-join,
for example, is not a positive operator. R Anti-join S out-
puts tuples in R that do not match any tuples in S . However,

extra input tuples of S could delete prior joined tuples be-
cause tuples in R that were unmatched become matched.
The core of our solution is to distinguish the cardinali-

ties of three categories of tuples: inputs, updates, and deletes.
Specifically, updates are those tuples who change previously
emitted tuples. Note that we do not regard this as the primary
contribution of this paper, but our approach does advance
the state-of-the-art [44] in this area. We distinguish these
three types of tuples’ cardinalites for three reasons.
First, three types of tuples usually have different mainte-

nance costs. For example, if tuples are materialized in a log
structure (i.e., unsorted append-only array), inserts are much
more efficient to perform than deletes and updates. Distin-
guishing the cardinalities gives us a better cost estimation.
Conventional cost models do not distinguish types, as they
typically focus on inserts.

Second, different types of inputs could have different prob-
abilities to produce outputs. Consider natural join as an ex-
ample. If the insert tuples’ join keys are randomly distributed
and delete tuples are those who have been previously joined,
then the expected cardinalities of their output are different.
Third, operators in incremental executions are stateful,

and the cardinality estimator is supposed to take the statis-
tics of states (e.g., the size of the hash tables in a hash join
operator) into consideration, and maintain these statistics
during/after the estimation so following estimations have
accurate information. Distinguishing three types of tuples
helps us maintain the statistics of an operator’s state. For ex-
ample, being able to tell whether the input tuples are inserts
or updates gives us a better estimation of the hash table size.

3.1.2 Operators. We use a volcano-style query execution
model [20] and assume operators are pipelined such that out-
put tuples of operators are not materialized as intermediate
results, but directly sent to their parent operators. We sup-
port inserts, deletes, and updates for all operators in InQP
including scan. A delete is a tuple that has the same con-
tent (e.g. attributes and values) as their insert counterparts
with an additional tombstone bit indicating the delete. We
represent an update as a delete plus an insert tuple. We addi-
tionally include a bit in the delete tuple to show that it is the
leading tuple of an update.

For each operator, we first discuss its physical design that
is borrowed from prior work [14], and then present the car-
dinality estimation based on the physical choice. Note that
we include the physical designs of supported operators for
completeness and do not perceive them as our contribution.
We represent insert, update, and delete cardinalities as a
vector C = (CI ,CU ,CD ). We denote input’s and output’s
cardinality vectors as CIN and COUT.

As with conventional cardinality estimation, we use statis-
tical information to help estimate cardinalities. This includes
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Figure 4: An example selectivity matrix.

select selectivity that models the probability that a tuple satis-
fies a certain predicate, join selectivity factor [44] that models
the probability that any two tuples from two relations suc-
cessfully join, and number of groups for aggregate operators.
As in prior work on estimating cardinalities for incremental
execution [44], we use statistical information from previous
executions as the estimation for upcoming query executions.
We also perform an experimental analysis in Section 5.4 to
show how biased statistical information impacts the perfor-
mance of InQP.

Select and project: As select and project operators are
stateless, the incremental approach effectively has no dif-
ference from a batch execution. For a select operator insert
and delete tuples only produce insert and delete outputs cor-
respondingly. However, an update tuples could emit delete
and/or insert tuples as a changed tuple may no longer satisfy
the predicate (or vice-versa). For its cardinality estimation,
different types of tuples could have different selectivity val-
ues, which highly depend on the application that generates
the input data. Thus, instead of a single selectivity, we use
a selectivity matrix S ∈ R

3×3. Figure 4 shows an example,
where columns represent the input operation and rows rep-
resents the output operation. So a cell at S[Delete,Update]
represents the probability of an update tuple generating a
tuple of delete operation, which is 0.01 in our example. We
estimate the cardinality as COUT = S × CIN. Project operators
do not change the cardinality.

Sort and limit: Sort operators maintain a sorted array for
all processed tuples emitted. When new tuples arrive, we
buffer them into a temporary array. If the sort operator needs
to output an updated sorted array, we sort the temporary
array and merge it with the original sorted array. During the
merge, a delete tuple will remove the corresponding tuple in
the original array, which also applies for deletes generated
by an update tuple. Before we output the new array as insert
tuples, we output the original array with all tuples as deletes
to invalidate the prior output. Assuming that the size of the
original array isK , the size of new array isK +CI

IN
−CD

IN
. The

output cardinality (CI
OUT
,CU

OUT
,CD

OUT
) = (K + CI

IN
− CD

IN
, 0,K ).

We only consider limit operators that have a sort as its
child. A limit operator takes a parameter N and outputs the
first N tuples with respect to the order they arrive from its
child sort operator. Recall that the incremental execution of

a sort operator first removes all prior output tuples and then
inserts newly sorted tuples. For an incremental execution of
a limit operator, it outputs the first N delete tuples arrived
from its sort child to remove the prior output tuples. For the
newly inserted tuples, it outputs the first N .

Aggregate and distinct:We implement the aggregate oper-
ator using a hash-based aggregation and support SUM, AVG,
COUNT, MAX, and MIN aggregate operations. Since we re-
gard an update as a delete and an insert, we only discuss the
case of processing insert/delete tuples. For each input tuple,
a hash aggregate operator identifies its group-by attributes
and incorporates that tuple into that group’s aggregated
value. To maintain aggregate operators with deletes and up-
dates, we include a counter for each group to indicate how
many tuples are aggregated [23]. We output an insert for a
group when that group is first created. If one group’s value
is changed and its counter is larger than zero, we output an
update for this group. When the counter reaches zero, we
remove this group from the hash table and output an delete
tuple. To support MAX and MIN with deletes and updates,
we materialize all prior input tuples for each group. When
the tuple for the current aggregate max/min value is deleted,
we find the new max/min value in the materialized tuples.

Cardinality estimation on aggregate operators is based on
our observation that the operator has different behaviors
when all groups are covered by at least one tuple or not.
Specifically, when the number of tuples is big enough that all
groups have at least one tuple (i.e., łsaturatedž), new insert
tuples only produce update outputs. Otherwise it can output
insert, delete, and update tuples.

Based on this intuition, we leverage statistics that estimate
the total number of groups. This can come from previous exe-
cutions or statistical approaches [15]. We denote this number
asM . When we estimate cardinalities for each incremental
execution, we also track the total number of tuples of łnetž
input tuples as its state information. It represents the sum of
input inserts minus input deletes in all previous incremental
estimations, which is denoted as N . The estimation of output
cardinality is divided into two cases:
• If N ≥ M , we consider each group has at least one tuple.
So each input tuple, regardless of its type, updates a group
and thus emits an update tuple. So (CI

OUT
,CU

OUT
,

CD
OUT

) = (0,CI
IN
+ CU

IN
+ CD

IN
, 0).

• If N < M , each group has less than one tuple łon av-
eragež. We adopt a simple model that each of N groups
has one tuple, and the remaining groups contain no tuple
at all. Thus, each delete input tuple removes one group.
So CD

OUT
= min(CD

IN
,N ). Similarly, each insert tuple goes

to an empty group, and emit a new aggregation tuple, so
CI
OUT
= min(CI

IN
,M − N ). Update tuples update existing

non-empty groups, so CU
OUT
= min(CU

IN
,N ).
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We implement distinct operators using a hash table which
uses the whole tuple as key and the number of duplicated
tuples as value. We estimate its cardinalities in a similar way
to aggregate operators.

Physical design of join operators: For equi-join we use
a symmetric hash join [46], which maintains two hash ta-
bles for input tuples from the left and right children. For
each hash table, we use the join key as the key and the in-
put tuples as the value. A new tuple from one side updates
the corresponding hash table and probes the other one to
produce output tuples. For non-equi-join, we maintain two
arrays that materialize input tuples from the left and right
children. For one new tuple from a child sub-tree, we update
its corresponding array, join the new tuple with all tuples
in the other array, and produce output tuples. The types of
the output tuples (e.g. insert, delete, or update) depend on
the types of input tuples and the semantics or join operators
(e.g. inner or outer), which we discuss next.

Inner-join, semi-join: We denote two left and right sub-
relation cardinalities as CLIN and CRIN, and assume that the
sizes of łnetž input tuples from previous incremental estima-
tions for left and right sub-relation are |L| and |R | respectively
(e.g. number of tuples in a hash table or a materialized ar-
ray). |L| and |R | are state information and should be updated
for each incremental estimation. We first discuss inner-join,
which emits all pairs of input tuples from left and right sub-
relation that meet the join condition. Without loss of gener-
ality, we discuss the scenario that input comes from left. In
contrast to prior approach that uses a single join selectivity
factor to estimate select-project-join queries [44], we use a
matrix of join selectivity factors SL ∈ R

3. A selectivity factor
in SL represents the probability of an input tuple with a spe-
cific operation (e.g. update) successfully joining one tuple
from R and producing a tuple with a specific operation (e.g.
insert). Given that we have |R | tuples for right sub-relation,
we estimate the cardinality as CLOUT = SL × CLIN × |R |.

Semi-join is different from inner-join in the way that it
only outputs tuples from the left sub-relation that matchwith
at least a tuple from the right sub-relation. The cardinality
of this operator is estimated similarly as inner-join.

Outer-join and anti-join: Estimating cardinality of outer-
join and anti-join output is more challenging. One fundamen-
tal difference between outer/anti-join from inner/semi-join
is they output tuples that do not meet the join condition. We
use left outer-join as an example, and right/full outer-join or
anti-join can be handled similarly. Left outer-join, besides
the matched tuples, also output tuples from the left sub-
relation that are not matched. We denote them as unmatched

tuples. Estimating the cardinality of matched tuples is similar
to inner/semi-join, and here we focus on the cardinality of

unmatched tuples. We discuss how to estimate cardinality
when inputs come from the left and right sub-relation:
• If input comes from the left side, we need to estimate
the probability of one input tuple not matching all tuples
of the right sub-relation. Assume that the probability that
an insert is matched with one right sub-relation tuple is pl .
Then the probability of an inserted left tuple not matching
with any tuples in right sub-relation is (1−pl )

|R | where |R |
is the size of the right sub-relation. Thus, the cardinality
of unmatched inserts is CI

LIN × (1 − pl )
|R | . The cardinality

of unmatched deletes is the same, and an update can be
treated as an insert plus a delete.
• If input comes from the right side, it could turn a left
tuple from matched to unmatched or vice versa. Assume
a right tuple is an insert, it changes a left tuple from un-
matched to matched if the left one has no match so far, and
the two tuples match together. Assume the probability of
a right insert matching with one left tuple is pr and there
are |L| tuples for left sub-relation. So the number of tuples
in L that match with this insert tuple is |L| × pr . Among
these matched tuples in L, we further consider whether
they do not have matches before (and thus the current
insert tuple is their first match). Recall that the probability
of one tuple on the left side not having any matches for
R is (1 − pl )

|R | . So among |L| × pr , the number of tuples
that do no have matches before and we need to delete is
|L| × pr × (1 − pl )

|R | . For the deletes from right, they may
flip left tuples from matched to unmatched status, and
thus emit insert outputs for these unmatched tuples. The
cardinality of such inserts can be estimated similarly, and
an update can be treated as an insert plus a delete.

3.2 Computing Incrementability with a
Cost Model

We now discuss how to utilize the cost model to compute
incrementability. Recall that given two pace configurations

P1 and P2, INC(P1, P2) =
CF (P1 )−CF (P2 )
CT (P2 )−CT (P1 )

. So we focus on how

to estimate CF (P ) and CT (P ) for a given pace configuration
P . Cost estimation for a pace configuration is challenging for
two primary reasons. First, the paces of a parent query path
and its child query path may be different. Here, the parent
query path needs to know the correct input cardinality from
child query path to estimate the cost of its incremental exe-
cutions. Second, a join operator may have two input query
paths with different paces. So the join operator will inter-
leave the incremental executions of different input query
paths. One incremental execution of one query path impacts
the state information for the other query path. The challenge
here is how to estimate the cost for interleaved incremental
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Algorithm 1: Computing CT (P ) and CF (P ).

1 (K1,K2, · · · ,KQ ) ← (0, 0, · · · , 0)

2 form ← 1 toM do

3 IGlobal ←
m
M

4 PathSet ← ∅

5 for i ← 1 to Q do

6 if IGlobal −
Ki
Pi
≥ 1

Pi
then

7 Add path i to PathSet

8 end

9 for i ∈ PathSet do

10 Ki ← Ki + 1

11 end

12 cost ← Estimated cost of a simulated execution

13 that involves flushing buffers of paths in PathSet

14 CT (P ) ← CT (P ) + cost

15 if IGlobal = 100% then

16 CF (P ) ← cost

17 end

executions of input query paths. We approach the two chal-
lenges by simulating the process of incremental executions
based on a pace configuration.

We first discuss how to estimate the cost for an incremen-
tal execution of a query path. Recall that an incremental
execution of a query path takes all input buffered tuples and
flush them all the way to the end of this query path. Here, we
use our cardinality estimation methods to recursively com-
pute the cardinalities of each operator in this query path for
an incremental execution and use cost functions to convert
the cardinalities into cost. After, we also update the state in-
formation for each operator based on their input cardinality
(e.g. updating the number of input tuples for a join operator).

Given that we know how to estimate the cost for a single
query path, we now discuss computing CT (P ) and CF (P )
for the pace configuration P . Since we assume base rela-
tions have steady arrival rates, we use a global indicator
IGlobal ∈ [0, 1] to represent the data arrival progress of all
input data. For example, IGlobal = 50% means 50% of total
data has arrived. Assuming that P has Q query paths, we ad-
ditionally include an array K = (K1,K2, · · · ,KQ ) to record
how many times each query path has simulated flushing
its input buffer. Algorithm 1 shows the algorithm of com-
puting CT (P ) and CF (P ). We simulate the continuous data
arrival process in a discrete way, which includes M steps,
where each step represents 1

M
of total data. Here, M is the

maximally allowed pace. Afterm steps, the current progress
IGlobal is

m
M
. For each simulation step, we need to find query

paths that should be triggered to flush their input buffers.
Given a query path with pace Pi , it flushes its buffer if at

least another 1
Pi

of new data arrives since its last flush (i.e.
Ki
Pi
), that is, IGlobal −

Ki
Pi
≥ 1

Pi
. After we find the set of paths

(i.e. PathSet ), we estimate the cost of a simulated execution
that involves flushing buffers for query paths in PathSet . We
add this cost to CT (P ). When IGlobal reaches 100%, all query
paths flush the buffers and the cost is CF (P ).

Complexity analysis: We note that each operator has a
cost estimation function.We use the number of cost functions
being invoked to quantify the complexity. The worst case of
our simulation is all paces for a pace configuration are M ,
the maximally allowed pace. This means for each simulation
step, we need to invoke cost functions for all query paths
and thus all operators. Assuming the number of operators
in a query is N . Note that the number of simulation steps is
M . So in the worst case, the simulation algorithm needs to
run O (N ×M ) numbers of cost estimation functions.

4 INCREMENTABILITY-AWARE QUERY
PROCESSING

In this section, we discuss how to utilize incrementability to
find a pace configuration for a query to make a better trade-
off between final work and total work than the approach of
assigning a uniform pace for the whole query. Specifically,
given the same target final work InQP uses less total work,
or given the same target total work, InQP uses less final
work. The basic idea is to execute query paths with higher
incrementability more eagerly (i.e., higher pace) and query
paths with lower incrementability more lazily (i.e., smaller
pace). We consider two optimization tasks: we choose a pace
configuration to 1) minimize total work given a maximum
final work constraint, or 2) minimize final work given a max-
imum total work constraint. We focus on the first problem
and discuss the second later.

4.1 Problem Formalization

We define final work constraint L as the ratio between the
final work users want to achieve and the final work of ex-
ecuting the query in one batch, where L ∈ [0, 1]. Consider
an example of a final work constraint L = 0.3. The pace
configuration for batch processing is P1. If we increase pace
configuration of P1, we decrease final work. When we reach
30% of the final work of P1, we meet the constraint L = 0.3.
The problem is formally stated as:

minimize
P

CT (P )

subject to CF (P ) ≤ L × CF (P1)

Pi ≤ Pj ,∀j ∈ children(i )

The constant L is specified by the user, which indicates the
maximally allowed final work. Query path j is the direct
child of query path i: its output tuples are query path i’s
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Algorithm 2: Greedy algorithm of selecting pace config-
uration for query paths by minimizing total work with a
final work constraint L.

1 P ← P1

2 while true do

3 i ← argmax
i :Pi<Pj ,∀j ∈children(i )

∂i (P )

4 Pnew ← P[i\Pi+1]
5 if CF (Pnew) ≤ L × CF (P1) then

6 return Pnew
7 if P = P∞ or ∂i (P ) < 0 then
8 return P

9 P ← Pnew
10 end

input. We specifically require Pi ≤ Pj so query path i always
has the necessary input data to process.

4.2 Greedy Algorithm

We can solve the optimization problem by enumerating all
possible pace configurations and find the pace configuration
that satisfies the final work constraint and has the lowest
total work. However, this approach has exponential complex-
ity and is very time-consuming as shown in our experiments
(Section 5.6). Instead, we design a greedy algorithm that
leverages incrementability to reduce the search space and
still generates a query plan that has low total work.

The greedy algorithm starts with a pace configuration P1,
where total work is the smallest. When we increase the pace
configuration P , we increase total work, but decrease final
work. The algorithm stops when we first meet the final work
constraint. The intuition of our algorithm is that given we
need to meet the final work constraint L × CF (P1), we want
to increase pace for the query path that decreases the most
final work per unit of total work increased, so that we can
best utilize the additional total work.
We find that when we increase a pace configuration for

a query from P1 to P2, the ratio between the decreased final
work (i.e. CF (P1) − CF (P2)) and the increased total work
(i.e. CT (P2) − CT (P1)) is the definition of incrementability.
Intuitively we should always increase the pace for the query
path with the highest incrementability, so query paths with
higher incrementability are executed more eagerly, while
query paths with lower incrementability are executed more
lazily. We notice that as we increase the pace for a query
path, its incrementability changes. Thus, we increase at the
minimum granularity and recompute the incrementability
after each step. We formalize this approach as follows. For a
pace configuration P , we denote itsmarginal incrementability

at query path i as

∂i (P ) = INC(P[i\Pi+1], P )

where P[i\c] represents another pace configuration by replac-
ing the i-th query path’s pace by c . In short, ∂i (P ) represents
the incrementability of increasing i-th query path’s pace by
1. We note that if we increase a pace configuration from P1
to P2 and both final work and total work can increase (i.e.
non-incrementable case) we should never increase the pace
no matter whether we currently meet the final work con-
straint. This mainly happens when a pace configuration has
very large paces. We also set a maximum pace configuration
P∞ = (M,M,M, . . . ,M ), whereM is the maximally allowed
pace for each query path.

Our algorithm is illustrated in Algorithm 2. We start with
the initial pace configuration P1. We search for the query
path i that gives the highest marginal incrementability and
is also feasible to increase (i.e. strictly less than all children
paces). At each search step, we increase it by 1 and terminate
when one of the three conditions is met: 1) the increment
first meets the constraint; 2) the incrementability is less than
0 (i.e. non-incrementable); 3) we reach P∞.

Optimizing final work: Previously we discuss how to op-
timize total work given a final work constraint. Now we
consider how to minimize final work given a total work con-
straint. The algorithm is similar to the previous one. We start
with pace configuration P1. We increase pace for query paths
unless decrements violate the total work constraint. Each
time we choose the query path i with the maximal incre-
mentability. We terminate the algorithm if one of the three
conditions is met: 1) a decrement violates the constraint; 2)
we reach the maximum allowed pace configuration P∞; 3)
the incrementability is less than 0.

Complexity analysis: Assuming that we have Q query
paths, for each step we need to compute the incrementability
for all of them. Combined with the complexity of computing
incrementability, the complexity for each step isO (Q×N×M ).
This greedy algorithm runs at most Q ×M steps, so in total
the greedy algorithm needs to runO (Q2×N ×M2) number of
cost estimation functions. We test its overhead in Section 5.6.

4.3 Applicability of InQP

InQP can be applied to systems that support incremental
view maintenance, such as Spark [2], Flink [8], and a Post-
greSQL modified for incremental executions [40]. For sys-
tems that only support insert tuples (e.g. Spark), operators
need to be modified to support deletes and updates (Sec-
tion 3.1.2). In addition, to control the execution frequencies
of different query paths the system needs a mechanism to
pause and start the execution of a query path. Recall that
we break a query plan tree into query paths at the blocking
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operators. Therefore, a query path either starts at a scan or
a blocking operator. If we choose to pause a query path, a
scan operator buffers input tuples, and a blocking operator
processes the input tuples, but delays pushing changes to
the query path. To start the execution of a query path, we
include a variable into the query path’s starting operator
(i.e. a scan or blocking operator), which indicates whether
this query path is executable or not. InQP is responsible for
setting this variable to control which query paths to execute
or delay.

5 EXPERIMENTS

Our experimental study addresses the following questions:
• Compared to an incrementability-oblivious approach,
which uses a uniform pace for a single query, and an ap-
proach that processes input tuples for leaf nodes at differ-
ent paces [24], how much computing resources does InQP
save given the similar query latency goal? (Section 5.3)
• How do the accuracy of our cost model and bursty
workloads impact InQP’s performance? (Section 5.4)
• What is the accuracy of our cardinality estimation com-
pared to PostgreSQL? (Section 5.5)
• What are the overhead and benefits of the greedy algo-
rithm of InQP? (Section 5.6)
We evaluate InQP in one server with 196 GB of main

memory and two Intel Xeon Silver 4116 processors, eachwith
12 physical cores. For all experiments, we use 20 physical
cores and the rest for the OS (Ubuntu 18.04).

5.1 Prototype Implementation

We implement InQP in Spark 2.4.0 [2], and extend Struc-
tured Streaming to support deletes and updates based on
existing IVM algorithms [14] and support incremental exe-
cution based on a pace configuration. We reduce the cost of
starting Spark jobs for each incremental execution based on
techniques in Venkataraman et al. [43]. We use a Kafka [1]
cluster on a different machine with the same hardware con-
figuration as the data source of Spark queries.
Users submit a SQL query to Spark and InQP maintains

the query results with a stream of data loaded from Kafka.
Our evaluation focuses on the optimization of minimizing
total (or extra) work, but nothing in our solution prohibits
the dual optimization. For our system, users specify a final
work constraint that indicates the percentage of final work
to reduce to compared to the final work of executing the
query in one batch, and InQP finds a pace configuration to
minimize total work. For example, a constraint of 0.02 means
users want to reduce the final work to 2% of batch process-
ing’s final work. This optimization explores the trade-off
between resource consumption and query latency. In this
experiment, we use additional time to represent the resource

consumption invested into incremental executions. It is de-
fined as the total query processing time for all incremental
executions minus the time of executing the query in one
batch. A query’s latency is defined as the time of the final
incremental execution or the processing time if the query is
executed in one batch.
We use the Spark SQL optimizer to generate a physical

query plan for the submitted query and decompose the query
plan into query paths. After, InQP determines the pace con-
figuration of this query plan for computing the query result
with respect to the performance constraint.

5.2 Experiment Setup

We use the TPC-H benchmark in our experiments, and our
prototype supports all 22 TPC-H queries, where 10 of them
are not fully incrementable. We additionally write 2 queries
based on the TPC-H schema to test partially incrementable
parts caused by individual operators including aggregate
operators and outer-join operators. The 2 queries are shown
in the following:
Q_AggJoin: SELECT AVG(avg_price)

FROM customer c,

(SELECT o_custkey ,

AVG(o_totalprice) avg_price

FROM orders GROUP BY o_custkey) agg_o

WHERE c.c_custkey = agg_o.o_custkey

Q_Outer: SELECT COUNT (*) FROM part

LEFT JOIN partsupp on p_partkey = ps_partkey

JOIN lineitem on p_partkey = l_partkey

JOIN orders on l_orderkey = o_orderkey

where Q_AggJoin joins an aggregate operator with a base
table, and Q_Outer is a left-outer-join with two equal-joins.
We preload the full dataset into Kafka, but let InQP pull
data from Kafka at a data rate of 1GB/min. We generate
datasets that are large enough to show the performance im-
pact of partially-incrementable parts. Using a single large
scale factor results in some queries running out of memory
on the test machine. The reason is that the table Lineitem in
TPC-H occupies more than 70% of the data. Queries that in-
volve Lineitem have significantly larger data to process than
queries that do not involve Lineitem. To make sure that ev-
ery query has enough data and does not run out of memory,
we generate two datasets: scale factor 100 and 10, where the
former is used for queries that do not access Lineitem (i.e.
Q2, Q11, Q13, Q16, Q22, Q_AggJoin), and the latter is used
for the rest queries. While we only show insert-only work-
loads, operators within a query plan can generate deletes and
updates. We also evaluated a workload with mixed inserts
and deletes and find similar performance to the insert-only
workload: InQP has a much lower resource consumption
and similar latency compared to the baselines. To simulate
prior executions, we calibrate our cost model statistics with
several warm up runs. We show how the quality of statistical
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Figure 5: Additional time and query latency for a final work constraint. It is set to 0.02 for a query if the costmodel

finds the query can meet the constraint, otherwise we use constraint 0.05 (i.e. Q17, Q_AggJoin, and Q_Outer).

information impacts InQP in Section 5.4. We set the max
pace for a query path to 100. In our experiments, we run
each test three times and report the average.

We compare InQP with an incrementability-oblivious base-
line (IncObv), which is a mini-batch approach in Spark that
uses a single pace value for all query paths of a query. For this
approach, we search over uniform paces using InQP’s cost
model to find a pace configuration we estimate to meet the
performance constraint. We also evaluated against a strategy
with a hand-tuned single pace, where the pace is the inverse
of the final work constraint (e.g. for constraint 0.02, we use
pace 50). We test 5 constraints (0.5, 0.2, 0.1, 0.05, and 0.02) for
TPC-H queries and find that the hand-tuned approach meets
the target query latency constraint in only 8% of the time,
compared to 64% for InQP and 38% for IncObv. Additionally,
the trade-off between latency and resource consumption be-
tween the hand-tuned approach and IncObv is the similar
as both use the a uniform pace configuration. Therefore, in
our experiments we only include the results of IncObv. We
note that it is possible the cost model estimates that some
queries cannot meet the final work constraint 0.02. In this
case, we do not report the results of final work constraint
0.02 and use constraint 0.05 instead. These queries include
Q17, Q_AggJoin, and Q_Outer.

5.3 Low Resource Consumption with
Similar Latency

In this subsection, we examine how much InQP lowers re-
source consumption compared with similar query latencies
for IncObv. We use final work constraints (1.0, 0.2, 0.05, 0.02),

and minimize the additional time. Recall that final work con-
straint is the percentage of final work we want to reduce to
compared to the final work of executing the query in one
batch. Inspired by prior work [24], we consider an alterna-
tive approach, Leaf, where query paths are made from the
leaf nodes (scans) to the root node. As the original paper
considers a different optimization (i.e. minimizing the work
to refresh a stale view), Leaf uses InQP’s cost model and
greedy algorithm to find a pace configuration to minimize
total work and satisfy a final work constraint. We discuss the
difference between InQP and this work in the related work.

We test all 24 queries, and report additional time and the
ratio of query latency to the latency of executing a query
in a batch for a fixed final work constraint 0.02. If the cost
models find it is impossible to meet this constraint, we use
the constraint of 0.05, which occurs for Q17, Q_AggJoin
and Q_Outer. Figure 5 shows the results of all 24 queries.
Figure 5a shows that InQP has much lower additional time
and similar query latency compared to IncObv and Leaf for
not-fully incrementable queries (right of the vertical dashed
line). Specifically, InQP uses as low as 1.5% of additional
time compared to IncObv and Leaf for the same final work
constraint (i.e. Q15). For fully-incrementable queries (left of
the vertical dashed line), InQP has a similar additional time
and query latency to IncObv and Leaf. We note that Leaf
has similar additional time to InQP when we test Q_Outer.
The partially incrementable parts for Q_Outer come from
its left-outer-join operator. To reduce the cost of partially
incrementable parts, both InQP and Leaf consider flushing
tuples for base relations at different paces. Therefore, they
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Figure 6: Trade-off between resource consumption and query latency under different final work constraints.
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(Q17, constraint = 0.05).

have similar pace configurations for flushing input tuples of
base relations and have similar additional time.

We report additional time and query latency with different
final work constraints, which are in Figure 6. For each final
work constraint, we compare their additional time and query
latency. For the same final work constraint we use the same
point shape for all approaches, which is highlighted in the
legend. For the same shape note that InQP has similar latency
but with much lower additional time. If a query cannot meet
the final query constraint based on the cost model, we do not
show its results. Here, we see that InQP uses much less re-
source consumption with a similar query latency compared
to IncObv and Leaf, especially when the constraint is low
(e.g. 0.05 or 0.02). InQP makes a better trade-off for these
queries because we selectively increase the pace of query
path with higher incrementability. Consider Q17 as an ex-
ample, it includes an aggregate operator that joins with two
relations (i.e. Lineitem and Part). When aggregated values
change, it needs to output the new values and delete the old
ones. The tuples inserted, but deleted later, need to join with
Lineitem and Part, but do not contribute to the final query
result. InQP delays outputting the updated values for the
aggregate operator to reduce additional time, and eagerly
executes other operators to meet the final work constraint.

In addition, we find in Q15 IncObv and Leaf have a higher
query latency when we reduce the final work constraint. Q15
has two aggregate operators, where the parent aggregate

operator is a max without group-by and the child aggregate
operator is a sum with a group-by statement. So the child
aggregate operator sum will update the sum value per group
and the max value in the parent max operator. In this case, we
need to sort all input values for the max operator to find the
new max value. When we set a lower final work constraint,
the cost model tends to increase the pace (i.e. higher number
of incremental executions), which increases the chance of
updating the max value. So IncObv has higher query latency
when the constraint is low. While Leaf is able to tune the fre-
quencies of flushing tuples for base relations, it cannot delay
the incremental executions for aggregate operators, which
makes it has similar performance to IncObv. Specifically, the
case of updating the max value of the max operator happens
when we set the constraint to 0.05 and 0.02.

To highlight the cost-effectiveness of InQP, we report the
ratio between the reduced query latency compared to batch
processing and the additional time. The higher the ratio is,
the more latency we reduce per unit of additional time we
invest. Figure 7 shows the average ratio of all queries in Fig-
ure 6 by constraint. This figure shows InQP is more thrifty
at utilizing computing resources to reduce query latency,
especially when the final work constraint is larger. An inter-
esting question to explore is how systems could expose such
information to users, so they can make decisions about the
trade-offÐespecially in pay-per-use environments.
We also report the trace of CPU usage during query pro-

cessing to show how InQP reduces computing resources
with similar query latency to IncObv and Leaf. We report the
average CPU usage every 60s for Q17 with the final work
constraint as 0.05 in Figure 8. Q17 uses the 10GB dataset
and the whole data loading process takes 600 seconds (data
rate of 1GB/min). Figure 8 shows that InQP has lower CPU
consumption than IncObv and Leaf, which reduces total time
of query processing. We also trace, but do not show, the I/O

Research 14: Query Optimization and Execution  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1251



IncObv InQP

0.2 0.25 0.33 0.5 1.0 2.0 3.0 4.0 5.0
Bias ratio of statistical information

0
20
40
60
80

100

A
dd

iti
on

al
 ti

m
e 

(s) Q2 (Additional time)

0.2 0.25 0.33 0.5 1.0 2.0 3.0 4.0 5.0
Bias ratio of statistical information

0
3
6
9

12
15

La
te

nc
y 

(s)

Q2 (Latency)

0.2 0.25 0.33 0.5 1.0 2.0 3.0 4.0 5.0
Bias ratio of statistical information

0

50

100

150

200

A
dd

iti
on

al
 ti

m
e 

(s) Q17 (Additional time)

0.2 0.25 0.33 0.5 1.0 2.0 3.0 4.0 5.0
Bias ratio of statistical information

0
3
6
9

12
15

La
te

nc
y 

(s)

Q17 (Latency)

Figure 9: Performance impact of biased statistical information.
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Figure 10: Performance impact of a bursty arrival rate (Q17).

operations for Q17 and find that InQP has 47% and 53% less
I/O operations compared to IncObv and Leaf respectively.

5.4 Performance Impact of the Accuracy of
Cost Model and Bursty Workloads

InQP utilizes statistical information of previous executions
to build a cost model and uses the cost model to compute in-
crementability to decide the pace configuration. Examples of
collected statistical information include selectivity for joins
and select operators, and number of groups for aggregate
operators. In this subsection, we first test the performance
impact of biased statistical information on InQP and IncObv.
Note that the performance of IncObv is affected by the statis-
tical information because we use the cost model to determine
its pace configuration. After, we test how bursty workloads
impact the performance of InQP. We use Q2 with the final
work constraint 0.02, and Q17 with the constraint 0.05.

For the first experiment, we apply a bias ratio to the sta-
tistical information we collect. The bias ratio represents the
ratio between the biased statistical information and the one
we collect. For example, if the collected selectivity is 0.1 and
the bias ratio is 0.2, the biased selectivity is 0.02. We consider
two cases: overestimation and underestimation. For the first
one, we vary the bias ratio from 2.0 to 5.0 with an interval
1.0. For a given ratio R, we allow each operator chooses a
random ratio between [1.0, R]. For the underestimation case,
we use the ratio {0.5, 0.33, 0.25, 0.2} to represent that we
underestimate by a factor of 2, 3, 4, 5 respectively. For each
given bias ratio, we test 10 times and report the average,
minimum, and maximum additional time and query latency.
We show the results of Q2 and Q17 in Figure 9. We see

that for Q2, with the value of bias ratio increasing InQP has
higher resource consumption, but lower query latency. The
reason is that high bias ratio makes the cost model schedule
incremental executions more eagerly. For InQP, it needs to

schedule the non-incrementable parts more frequently to
meet the final work constraint, which increases the addi-
tional time of executing the query and decreases the query
latency. However, in an extreme case (i.e. bias ratio = 5.0)
InQP has lower additional time and similar query latency
compared to IncObv. For Q17, we have similar observation
to Q2. When we overestimate, the additional time increases
and and the query latency decreases for both approaches.
The average additional time of InQP is lower than IncObv
when bias ratio is no larger than 4.0. When the bias ratio
reaches 5.0, both approaches have similar additional time.
These experiments show that biased statistical information
could increase additional time of InQP, and makes the per-
formance of InQP similar to the performance of IncObv.
We now report the performance impact of bursty work-

loads. We decide the paces for InQP and IncObv assuming a
steady rate of 1GB/min. We generate bursty workloads by
introducing a spike in the data arrival. We vary the ratio
between the spike rate and steady rate from 1 to 5. Note that
we load the same amount of data, so when we increase the
spike rate, data rates of other periods drop. The whole data
loading process takes 10 mins. We use Q17 and set the time
span of the spike rate to 1 min. We test two cases where the
spike is in the middle or at the end (i.e. the last min) of the
data loading processing.
Figure 10 shows the test results. We see that the spike

in the middle does not change additional time of InQP, but
slightly decreases its latency (i.e. the two leftmost figures
in Figure 10). On the other hand, both additional time and
latency drop for IncObv. The reason for both approaches
having lower latency is that when the spike rate increases in
the middle, the data rate at the end drops. Compared to In-
cObv, InQP has higher latency than IncObv because it delays
some partially incrementable work to the end. Additional
time drops for IncObv because with the spike rate increasing,
more data are processed in one batch for the spike and thus
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Q2 Q11 Q13 Q15 Q16 Q17 Q18 Q20 Q21 Q22

InQP -15.5% -28.6% 41.7% -9.1% -36.8% 7.4% -0.1% -3.4% -2.0% 2.9%

PostgreSQL -53.2% -13.9% -89.2% -85.0% -71.6% -45.3% -7.5% -99.7% -45.1% -85.1%

Table 1: Accuracy of cardinality estimation of InQP and PostgreSQL for incremental executions.
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IncObv does less incremental work. This reduces the cost of
partially incrementable parts of IncObv. Nevertheless, InQP
has a much lower additional time than IncObv. If the spike
is at the end, the query latency for both InQP and IncObv
increases because they do not expect a high arrival rate in the
last minute (i.e. the two rightmost figures in Figure 10). We
see that InQP has a lower latency compared to IncObv since
InQP executes its incrementable parts eagerly and has lower
work for the last mini-batch, which makes it less sensitive
to the higher rate.

5.5 Cardinality Estimation Accuracy
Compared to PostgreSQL

We evaluate the accuracy of our cardinality estimation for
incremental executions and compare it with PostgreSQL’s
estimation. Note that we choose PostgreSQL because it sup-
ports a wide range of complex queries and existing cardinal-
ity estimation for incremental executions [44] only supports
select-project-join queries. In InQP, we need to support com-
plex queries such as the query in Figure 2 that involves an
aggregate operator in the query plan tree. For PostgreSQL,
we obtain the estimated cardinality for each incremental
execution in three steps: 1) we first use its batch-based cost
model to estimate the cardinality for existing data; 2) we then
insert input data for the incremental execution into the base
relations and obtain the cardinality for new data; 3) finally,
we use the difference of two estimated cardinalities as the
cardinality for this incremental execution. We use a pace
of 100 incremental executions and test the partially incre-
mentable queries in TPC-H. We use our best effort to adjust
the Spark SQL query plan to make sure that a query running
on Spark and PostgreSQL has exactly the same physical plan
for this experiment. Only Q20 has a different plan on the
two systems because PostgreSQL enforces the index scan
for Q20, but Spark only uses sequential scan. We collect the
ground truth by running queries on Spark.
We compute the accuracy of cardinality estimation as

Accuracy =
Estimated −Ground Truth

Ground Truth
. If the value is 0, it

means the estimation is the same as the ground truth. If the

value is positive (i.e. estimated cardinality > ground truth),
it represents the case of overestimation. On the other hand, a
negative value represents the case of underestimation. We re-
port the average accuracy of all 100 incremental executions.
Table 1 shows that InQP has a more accurate estimation com-
pared to PostgreSQL in all queries except Q11, and in some
queries (e.g. Q21 and Q22) utilizing cardinality estimation of
PostgreSQL could be very inaccurate.

5.6 Overhead and Benefits of InQP’s
Greedy Algorithm

We evaluate the planning time of InQP’s greedy algorithm
(Greedy) and compare it with a brute-force method (Brute-
Force) that enumerates all possible pace configurations to
find a plan that has the lowest total work while meeting the
final work constraint. We vary the maximally allowed pace
from 20 to 100 and report the planning time. We use final
work constraint 0.01 to force Greedy to take the maximum
number of search steps, as Greedy takes less planning time
with a larger constraint. Figure 11 shows Greedy has much
lower planning time than Brute-Force for Q17 as Greedy
leverages the key metric incrementability to largely prune
the search space. We test all queries and find the maximum
planning time is 640ms and the 80th percentile is 340ms.

We test query latency and additional time of the generated
query plan for the above methods, and include a sampling
method (Sample) that randomly samples pace configurations
and selects the one with the lowest total work while meet-
ing the final work constraint. We allow Sample to run the
same planning time as Greedy. We test Q17 with final work
constraint 0.05 for 10 times, and report the mean, min, and
max query latency and additional time. Figure 12 shows that
Greedy has similar performance to the optimal plan gener-
ated by Brute-Force, and that the additional time of Sample
varies. While Sample can find a plan that has similar perfor-
mance to Brute-Force, it has much larger additional time in
the average and worst case compared to Greedy and Brute-
Force. The two experiments show that our greedy algorithm
can find a good plan with limited planning time.

6 RELATEDWORK

Incremental View Maintenance Algorithms Material-
ized views are cached or pre-computed query results that are
derived from base tables [14]. When base tables are updated,
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incremental view maintenance (IVM) algorithms incremen-
tally incorporate new data into the prior viewwithout recom-
puting the view from scratch. Larson et al. [6] introduces IVM
algorithms for select-project-join (SPJ) views. Later work pro-
poses new IVM algorithms for more complex queries such
as maintaining views with negation and aggregate opera-
tors [22, 23], supporting recursive views and nested sub-
queries [23, 34, 47], and optimizing incremental executions
for semi-join, outer join, and acyclic joins [21, 26, 28]. We be-
lieve that these algorithms are orthogonal to InQP. InQP does
not propose new IVM algorithms, but execute different parts
of a query at different frequencies based on incrementability.

View Materialization Policies There are several different
policies for maintaining a materialized view to makes dif-
ferent trade-offs between view maintenance cost and query
latency [17]. Immediate view maintenance updates the view
whenever base tables are updated [3, 11, 13]. This approach
lowers query latency with higher cost of view maintenance.
On the other hand, a deferred view [16] does not update the
view immediately, but defers view maintenance to some fu-
ture point such as when the view is queried or when the
system has free cycles for view maintenance [48]. InQP is dif-
ferent from these approaches in that it decomposes a query
into multiple query paths and assign each query path a differ-
ent pace based on their incrementability, while existing IVM
approaches use a uniform execution pace for maintaining
the whole query.
He et al. [24] observes the asymmetric maintenance cost

for different access methods (e.g. index scan or sequential
scan). Therefore, they propose to process modifications of
different base relations at different batch sizes. This work
focuses on SPJA queries, but InQP considers more complex
queries, such as outer-joins. In addition, InQP decomposes
the query plan into query paths that offer more fine-grained
control flow compared to this work, which only considers
paths from a leaf to the root.

Continuous query and stream systems Many continu-
ous query processing and stream systems adopt IVM as its
query execution engine to provide low query latency [2, 8,
10, 11, 13]. These systems often provide a trade-off between
query latency and computing resource consumption by al-
lowing users to adjust the amount of tuples to be processed
for each incremental execution [2, 8, 10]. Several projects
focus on finding query plans or execution plans to optimize
different performance metrics, such as maximizing output
rate [45], minimizing per-tuple processing latency [9], low-
ering memory consumption [5, 9], producing fast early re-
sults [41], or a mix of these metrics [4, 37].
However, all these works are limited in SQL support and

only allow select-project-join-aggregate queries. For com-
plex queries, they do not consider the semantics (e.g. outer

join) that make the query not fully incrementable. InQP is
different from the aforementioned works in that it supports
complex queries and exploits the knowledge of diverse levels
of incrementability within a query to execute different parts
of a query at different paces.

Cardinality Estimation Conventional databases [29, 36]
use statistical information (e.g. selectivity or number of dis-
tinct values) collected from base tables, to estimate cardinali-
ties. Several techniques, such as data sketching [7, 18], index
sampling [30], sampled executions [42], and leveraging run-
time execution information [12], are proposed to improve or
bound the accuracy of cardinality estimation. Different from
statistics-based cardinality estimation, some recent works
consider leveraging machine learning techniques to more ac-
curately estimate cardinality [27, 32, 33, 35, 38]. However, all
these research works are focused on the context of batch pro-
cessing and are limited in the estimation for incremental exe-
cutions. We also find that several works focus on estimating
cardinality or statistics for incremental executions [19, 44].
Viglas et al. [44] introduces rate-based cardinality estimation
to estimate output data rate of each operator in a continu-
ous query. But this work only considers select-project-join
operators and does not address the problem of estimating
cardinalities for deletes or updates. Cardinality estimation
in InQP is different from these works as it uses different
estimation methods based on operation semantics (i.e. insert,
delete, and update), which can more accurately compute the
cardinalities for incremental executions.

7 CONCLUSION

We present InQP as a new query processing paradigm that
models how amenable a query is for incremental execu-
tion and uses fine-grained control flow to schedule more
incrementable parts (e.g. dataflow paths) eagerly for efficient
query execution. We propose a metric, incrementability, to
quantify the cost-effectiveness of incremental executions,
a cost model for computing incrementability, and a greedy
solution for minimizing additional work for incremental
execution subject to a final work goal (i.e. latency). We im-
plement an InQP prototype in Spark and demonstrate that
compared to a baseline using coarse-grained scheduling (via
mini-batch size), InQP reduces final work up to 3.3x per unit
of additional work.
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