HYBRID AUTOMATA AND ε-ANALYSIS ON A NEURAL OSCILLATOR

A. Casagrande1 \quad T. Dreossi2 \quad C. Piazza2

1DMG, University of Trieste, Italy

2DIMI, University of Udine, Italy
Intuitively...

Motivations:

- Reachability Analysis of Hybrid Automata with applications to Biological Models
- Automatic analysis (…as much as possible)
- Exploit existing “approximation” techniques
- Avoid ad-hoc studies

Case of study:

- Neural oscillator
- Rhythmic neural activity
- Interaction between neurons
Intuitively...

Saddle point

Avoid ad-hoc studies
Outline

1. Hybrid Automata
2. “Approximation” Techniques
3. Neural Oscillator Model
4. Computations
5. Conclusions
Hybrid Automata

Syntax

- **Finite state automaton** $H + \text{Continuous variables } Z, Z'$
- **State**: pair $\langle v, r \rangle$

Example: Thermostat
Hybrid Automata

Semantics - Continuous Transition: \(\langle \nu, r \rangle \xrightarrow{t} C \langle \nu, s \rangle \)

- **Continuous trajectory:** \(f_\nu : \mathbb{R}^{d(H)} \rightarrow (\mathbb{R}^+ \rightarrow \mathbb{R}^{d(H)}) \)
 where \(\text{Dyn}(\nu)[Z, Z', T] \) is \(Z' = f_\nu(Z)(T) \)
- \(r = f_\nu(r)(0), s = f_\nu(r)(t) \)
- **Invariant:** \(\text{Inv}(\nu)[f_\nu(r)(t')] \) for each \(t' \in [0, t] \)

![Diagram showing the transition between On and Off states with equations for \(Z_1 \) and \(Z'_1 \)]
Hybrid Automata

Semantics - Discrete Transition: \(\langle v, r \rangle \xrightarrow{e} D \langle v', s \rangle \)

- **Discrete jump**: \(e = \langle v, v' \rangle \)
- **Activation**: \(Act(e)[r] \)
- **Reset**: \(Res(e)[r, s] \)

\[
\begin{align*}
Z_1 &\leq 22 \\
Z_1' & = Z_1 e^T \\
\text{On} &
\end{align*}
\]

\[
\begin{align*}
Z_1 &\geq 18 \\
Z_1' & = Z_1 e^{-T} \\
\text{Off} &
\end{align*}
\]

\[
\begin{align*}
Z_1 &\geq 21 \\
Z_1' & = Z_1
\end{align*}
\]

\[
\begin{align*}
Z_1 &\leq 19 \\
Z_1' & = Z_1
\end{align*}
\]
Hybrid Automata Reachability \Rightarrow Undecidable! [HKPV95]

“Approximation” Techniques:

- Noise and Disturbed Automata [Frä99]
- Approximate Bisimulations and Simulations [GP07]
- ϵ-Semantics [CPP09]
- Template Polyhedral [SDI08]
- Abstractions for Hybrid Systems [Tiw08]
Techniques
Noise and Disturbed Automata [Frä99]

- Continuous variables provide unbounded quantity of memory
- Trajectories of real systems are subject to noise

Definition

\tilde{H} is a disturbance variant of H of noise level ϵ or more if for each pair of states s, s' such that $\delta(s, s') < \epsilon$ it holds that if $r \xrightarrow{t} s$ in H, then $r \xrightarrow{t} s'$ in \tilde{H}.

- A hybrid automaton H is robust if there exists an ϵ s.t.
if a does not reach a' in H, then a does not reach a' in \tilde{H}
- Noise ensures (semi-)decidability of reachability problem
Techniques

Approximate Bisimulations and Simulations [GP07]

- Relaxation of bisimulations and simulations
- Simplification of dynamics and resets
- Observation map: $\langle\langle \cdot \rangle\rangle : \mathbb{R}^{d(H)} \rightarrow \mathbb{R}^d$
Techniques

ϵ-Semantics [CPP09]

- Infinite precision is an approximation of reality
- *Semantics* of a formula ψ is the set of points $\{|\psi|\} \subseteq \mathbb{R}^n$ which satisfies ψ
- Formulae semantics of “dimension of at least ϵ”
- $B(S, \epsilon) = \{ q \in \mathbb{R}^n \mid \exists p \in S(\delta(p, q) < \epsilon)\}$

Example (Sphere Semantics)

- $(|t_1 \circ t_2|)_\epsilon \overset{\text{def}}{=} B(|t_1 \circ t_2|, \epsilon)$, for $\circ \in \{=, <\}$
- $(|\psi_1 \land \psi_2|)_\epsilon \overset{\text{def}}{=} \bigcup_{B({p}, \epsilon) \subseteq (|\psi_1|)_\epsilon \cap (|\psi_2|)_\epsilon} B({p}, \epsilon)$
- $(\forall X \psi[X, Z]|)_\epsilon \overset{\text{def}}{=} (\bigwedge_{r \in \mathbb{R}} \psi[r, Z]|)_\epsilon$
Techniques

Comparison

ϵ-bisimulation

ϵ-semantics

Noise
Techniques

Computing ϵ-Semantics

Translation for any $\varphi[X] \in T$ and $\epsilon \in \mathbb{R}_{>0}$

$\hat{\varphi}[X] \in T$ such that $(|\varphi[X]|)_{\epsilon} = \{|\hat{\varphi}[X]|\}$

Example

$((t_1 \circ t_2)[Y, W])_{\epsilon} \overset{\text{def}}{=} \exists W_0((t_1 \circ t_2)[Y, W_0] \land \delta(W_0, W) < \epsilon), \text{ for } \circ \in \{=, <\}$

$(\hat{\varphi}[Y, W] \land \hat{\psi}[Y, W])_{\epsilon} \overset{\text{def}}{=} \exists W_0(\forall W_1(\delta(W_0, W_1) < \epsilon \rightarrow ((\hat{\varphi})_{\epsilon} \land (\hat{\psi})_{\epsilon})[Y, W_1]) \land \delta(W_0, W) < \epsilon)$

$(\forall X \hat{\varphi}[Y, X, W])_{\epsilon} \overset{\text{def}}{=} \exists W_0(\forall W_1(\delta(W_0, W_1) < \epsilon \rightarrow \forall X_0((\hat{\varphi}[Y, X_0, W_1])_{\epsilon} \land \delta(W_0, W) < \epsilon))$
Neural Oscillator

Model

Continuous model [TMBD99]

\[f(\tau, \lambda) : \begin{cases}
\dot{X}_e &= -\frac{X_e}{\tau} + \tanh(\lambda \cdot X_e) - \tanh(\lambda \cdot X_i) \\
\dot{X}_i &= -\frac{X_i}{\tau} + \tanh(\lambda \cdot X_i) + \tanh(\lambda \cdot X_i)
\end{cases} \]

Piecewise model

\[\tilde{f}_\alpha(\tau, \lambda) : \begin{cases}
\dot{X}_e &= -\frac{X_e}{\tau} + h_{\lambda, \alpha}(X_e) - h_{\lambda, \alpha}(X_i) \\
\dot{X}_i &= -\frac{X_i}{\tau} + h_{\lambda, \alpha}(X_e) + h_{\lambda, \alpha}(X_i)
\end{cases} \]

\[h_{\lambda, \alpha}(X) \text{ approximating } \tanh(\lambda \cdot X) \]
Hybrid Automaton $H\tilde{f}$ associated to $\tilde{f}_\alpha(\tau, \lambda)$
Neural Oscillator

Experimental results

\(\varepsilon\)-Noise:

- \(\langle 0, 0 \rangle\) is an unstable equilibrium
- \(H_{\tilde{f}}\) is fragile \(\Rightarrow\) \(\langle 0, 0 \rangle\) in \(\tilde{H}_{\tilde{f}}\) is different from \(\langle 0, 0 \rangle\) in \(H_{\tilde{f}}\)
- It is not possible to define robust models \(\Rightarrow\) Unsafe

\(\varepsilon\)-(Bi)Simulations:

- \(\varepsilon\)-simulation \(\Rightarrow\) Reduction of analysis complexity
- \(\langle 0, 0 \rangle\) is a singularity of the model:
 - \(\langle 0, 0 \rangle\) neighborhood reaches the limit cycle
 - No \(\varepsilon\)-(bi)simulation relates \(\langle 0, 0 \rangle\) with any other state
Neural Oscillator

Experimental results

\(\epsilon\)-Semantics:

1. Approximating (polynomials) solutions of differential equations
2. Translating \(\epsilon\)-semantics (Sphere Semantics)
3. Computing exploiting cylindrical algebraic decomposition

Original evolution
First degree approximation evolution
Neural Oscillator

Experimental results

ϵ-Semantics (formally and automatically proves that):

- Flow tube including limit cycle
- $\langle 0, 0 \rangle$ reaches the limit flow tube
- No need to modify the automaton (syntax)

but . . .

- ϵ-semantics translation increases fromulæ complexity
- Direct computation of reach set \Rightarrow high complexity
- Reformulation of the problem in form of a property:

"Convergence to the limit cycle"
Convergence

and Formulae reduction
Conclusions:

- ϵ-semantics better reflects the real system behaviour
- ... high computational complexity

Future works:

- Combine several hybrid automata
- Integrations of numerical approximation techniques
- Automatic simplification of the formulæ
REFERENCES I

A. Casagrande, C. Piazza, and A. Policriti.
Discrete semantics for hybrid automata.

M. Fränzle.
Analysis of hybrid systems: An ounce of realism can save an infinity of states.

A. Girard and G. J. Pappas.
Approximation metrics for discrete and continuous systems.
T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What’s decidable about hybrid automata?

S. Sankaranarayanan, T. Dang, and F. Ivancic. Symbolic model checking of hybrid systems using template polyhedra.