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Abstract— We present a simple decentralized algorithm to
solve optimization problems involving cooperative agents. Co-
operative agents share a common objective and simultaneously
pursue private goals. Furthermore, agents are constrained by
limited communication capabilities. The algorithm is based on
dual decomposition techniques and appears to be very intu-
itive. It solves the dual problem of an artificially decomposed
version of the primal problem, replacing one large compu-
tationally intractable problem with many smaller tractable
problems. It returns a feasible solution to the primal problem
as well as an upper bound on the distance between this
solution and the global optimum. Both convex and nonconvex
examples are presented, the complexity of the convex case is
analyzed, and the savings in complexity are demonstrated for
both examples. Finally, by showing that there is no duality
gap in these examples, optimality is certified.

I. INTRODUCTION

We consider optimization problems involving multiple
cooperative agents, which are large in dimension and are in
general NP-hard. Examples include trajectory optimization
for formation control of vehicles [11], [18], [19], [9],
[20], [10], decentralized control of power systems [17],
distributed control of large scale systems [7], [5], [12], and
problems of distributed optimization on sensor networks
[14]. In most of these instances, the treatment is control
oriented: the goal is to prove connectivity and stability
of the system under decentralized control. In this paper,
the approach is different but complementary. We pose the
problem of distributing the decision-making between agents
while optimizing objectives, both local (private) to each
agent and global (common) for the system.

Two techniques are commonly used for dealing with
optimization of large, nonlinear problems. The first is the
branch-and-bound method, which consists of a search that
maintains provable lower and upper bounds on the global
solution. However, there is no guarantee that a solution will
be returned in polynomial time, and an oracle for finding
a ‘good’ lower bound might not be available. The second
technique is the descent method, in which the objective
is progressively optimized, while maintaining a feasible
solution for the problem. This method results in guaranteed
convergence to a local minimum; no information about the
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global solution can be derived. Furthermore, this algorithm
may not be implementable in a decentralized manner.

In this paper, we present a third approach which returns
a feasible solution to the problem as well as a lower
bound on the global optimal solution. It is particularly well
suited to interconnected systems of multiple cooperative
agents, in which communication passing may be restricted.
It consists of an iterative algorithm, in which agents solve
small problems involving their own variables as well as
the variables of agents they communicate with. However,
they do not need communicate with all other agents. The
advantages of the algorithm are first, that it satisfies the
physical constraints on information flow, and second, that
it breaks the global problem into a sequence of smaller and
hence more tractable problems. Whereas solving the global
problem directly is prohibitively complex due to the high
dimension of the system, distributing the computation of
the smaller problems over each agent could be much more
efficient.

Mathematically, the method is based on the dual decom-
position technique. The method of dual decomposition has
been used since the 1960’s, with the historical work of [8].
An excellent modern reference is the sixth chapter of [2].
When solving the dual problem, the dual function should
be assumed to be a nondifferentiable concave function [2].
Therefore, nondifferentiable optimization tools have to be
used [3], [1]. The most well known of these are the cutting
plane method, the ellipsoid method, or more simply, the
subgradient method [2], [16], [15]. While breaking the
problem into a sequence of smaller problems, dual de-
composition introduces a duality gap [6], which represents
the difference between the primal and dual optimal costs.
Here, we use a dualization scheme which maintains a small
duality gap and which results in a very simple algorithm,
easily implementable in a decentralized manner.

This paper is organized as follows. In Section 2, we
present our algorithm and in Section 3, we show how it
has been derived from dual decomposition techniques. In
Section 4 and 5, we solve the formation flight problem in
both convex and nonconvex cases and we prove that, even
in the nonconvex example, the duality gap is zero.

II. DECENTRALIZED ALGORITHM FOR COOPERATIVE

VEHICLE PROBLEMS

A. Problem Formulation

In this section we consider a multiple vehicle coordina-
tion problem, in which vehicles pursue private objectives
as well as global objectives shared with other agents. For
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each vehicle, we introduce xi ∈ R
ni and ui ∈ R

di ,

i ∈ 1, . . . , N, the state and the control input of the vehicle.
The position of each vehicle is designated by yi = Cxi.
For convenience, we also note xi = (xi, ui). The dynamics
of each vehicle is represented by nonlinear constraints on
the state and the control input: xi ∈ Di.
For each vehicle, private objectives are specified by a linear
equality on xi: Aixi = bi. In practice, private objec-
tives range from fuel consumption minimization to target
tracking to trajectory optimization along a specified path.
Therefore, a target tracking objective could be represented
by Cxi = ytarget, and a fuel minimization objective could
be represented by ui = 0.
Concerning the common objective, we consider the par-
ticular case of flight formation. This consists of a set of
objectives that constrains pairs of aircraft. More precisely,
common objectives are a set of linear equalities of the
form: yi − yj = ∆yijdesired. Vehicles are able to maintain
formation while communicating with a limited number of
other vehicles, as determined by the constraints set by
the desired formation. For this purpose, we introduce a
map R : i ∈ {1, . . . , N} → R(i) ⊆ {1, . . . , N} where
R(i) represents the set of aircraft which communicate with
aircraft i.
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Fig. 1. V-formation of 5 aircraft. In this example, aircraft may only
communicate with their closest neighbors and have no information about
other aircraft. Without loss of generality, we may consider other, more
general, communication patterns.

We introduce the quadratic deviation from these private
and common objectives: Ji = ||Aixi − bi||

2
2, i = 1, . . . , N

and ||C(xi − xj) − ∆yij ||
2
2, j ∈ R(i), i = 1, . . . , N . The

problem we are proposing to solve is to minimize these
deviations under the constraints of the dynamics of the
aircraft.

Minimize
N∑

i=1

||Aixi − bi||
2
2 +

N∑
i=1

∑
j∈R(i)

||C(xi − xj) − ∆yij ||
2
2

Subject to xi ∈ Di, i = 1, . . . , N

(P1)

B. Decentralized Algorithm

Whereas most decentralized algorithms [10], [11] consist
of computing the optimal trajectory for each vehicle by
freezing the state of other agents, ours proceeds differently.
We will first present an intuitive description of the algo-
rithm; its mathematical justification and analysis will be
presented in Section 3.
The key quantity for our algorithm is the deviation from
the common objectives:

dij = C(xi − xj) − ∆yij , j ∈ R(i), i = 1, . . . , N. (1)

First, all agents ignore the common objective. They
compute their optimal trajectories, based on their private
objectives only. They send these trajectories to the agents
they share common objectives with, and likewise, receive
the optimal trajectories from these agents. Next, each agent
computes its devation from the common objective (1), and
then it recomputes its optimal trajectory as follows. Each
agent sets up a constant force opposed to its deviation from
the common objective, and then minimizes the sum of (a)
the potential of this force, which tends to drive it back to
the formation, and (b) the deviation from its own private
objective. Once these trajectories have been computed, the
agents calculate the new deviations from common objective
(1) and update these deviations in the direction of the newly
computed deviations. They iterate the procedure until the
deviations converge.

Decentralized Algorithm

Each vehicle i sets its deviations from the common objective
to 0. dij = 0, j ∈ R(i).
Repeat:

1. Each vehicle i sends (resp. receives) its dij (resp. dji)
values to (resp. from) the aircraft it shares objectives
with: {j|j ∈ R(i)}.
2. Each vehicle i computes its optimal trajectory
x∗

i = argmin
xi∈Di

{ ||Aixi−bi||
2
2 +

∑
j∈R(i)

2(dij −dji)
T Cxi }.

3. Each vehicle i sends (resp. receives)
its (resp. their) optimal trajectory(ies) to (resp. from)
vehicles j ∈ R(i).
4. Each vehicle i computes its new deviation (1)
and updates: d new

ij := dij + αl(d
new

ij − dij), where
αl is an update parameter.

Terminate when dij converge.

III. DERIVATION OF THE ALGORITHM USING DUAL

SPLITTING METHOD

The decentralized algorithm presented above has been
derived from the dual decomposition method. This allows
us to prove that the algorithm returns a feasible solution
to the primal problem and gives an upper bound on the
distance between this solution and the global solution of
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the problem.

The motivation for using dual decomposition was primar-
ily that, starting from a large nonlinear problem involving
variables of all agents, the method of dual decomposition
splits the dual of this primal problem into a sequence of
smaller problems; each one associated with an individual
vehicle, only containing the variables accessible by that ve-
hicle. The procedure can therefore be distributed over each
agent, leading to a decentralized algorithm, computationally
inexpensive and highly desirable from a pratical viewpoint,
especially in situations with no centralized authority and
physical communication constraints.

A. Decoupling variables

The first step of the dual decomposition method is to
construct a new primal problem equivalent to (P1), in which
the objective has been decoupled, i.e. no variable appears
in two different terms of the sum. For this purpose, we
introduce slack variables x̃i ∈ R

ni , i = 1, . . . , N , as
follows:

Minimize
N∑

i=1

Ji +
N∑

i=1

∑
j∈R(i)

||C(x̃i − ˜̃xij) − ∆yij ||
2
2

Subject to x̃i = xi, i = 1, . . . , N
˜̃xij = x̃j , j ∈ R(i), i = 1, . . . , N

xi ∈ Di, i = 1, . . . , N

(P2)

The decomposition method then consists of solving an
appropriate dual problem of (P2).
Note that there are many ways to formulate a dual problem.
The choice depends on the constraints that should or should
not be dualized. Ultimately, we would like a dual problem
which may be decoupled, and which results in a small
duality gap. In the next section, we will show that we should
dualize all the constraints except the dynamics constraints.

B. Constraint dualization

The following rules are useful in order to know which
constraints should be dualized.
Rule 1: Dualize the minimum number of constraints.
Writing (P2) in a more compact form:

Minimize f(x) + h(x̃)
Subject to x ∈ D

si(x, x̃) = 0, i = 1, . . . , p,

(P3)

denote g1(µ1, . . . , µp) as the dual function associated
with (P3) when p equality constraints are dualized, and
g2(µ1, . . . , µp−1) when only p − 1 are dualized. Thus (see
Appendix), sup

µ1,...,µp

{g1} ≤ sup
µ1,...,µp−1

{g2}, which means

that the duality gap is smaller when dualizing fewer con-
straints.

Rule 2: Dualize linear equality constraints involving
variables which have convex constraints and on which
the objective function has a convex dependence.
Suppose h(x̃) can be written as h2(x̃, Ax̃) in which the
function h2 is convex and A is a pN × nN matrix.
Consider the problem:

Minimize f(x) + h2(x̃, ˜̃x)
Subject to x ∈ D

x̃ = x
˜̃x = Ax̃

(P4)

Let us denote by g4(µ, ν) the dual function associated to
(P4), where µ is the dual variable associated with the con-
straint x̃ = x and ν is that associated with ˜̃x = Ax̃. g1(µ) is
the dual function associated with (P3), and s1(x, x̃) = x−x̃,
p = 1. Thus, (see Appendix) sup

µ,ν
{g4(µ, ν)} = sup

µ
{g1(µ)},

which means that constraints of the type ˜̃x = Ax̃, whose
variables the objective has a convex dependence on, can be
dualized without augmenting the duality gap. Therefore, in
order to decouple the dual function and to keep the duality
gap small, we dualize all the constraints of the form x̃i = xi

and ˜̃xij = x̃j , but not the dynamics constraints.

C. Lagrangian and Dual Function
Following the rules of the previous section, the Lagrangian,
denoted L, of the optimization problem (P2) may be decou-
pled. Indeed, for i = 1, . . . , N , the ith term of the sum is a
function only of variables relative to aircraft i and to aircraft
{ j | j ∈ R(i) }.

L(x, x̃, ˜̃x, µ, ν) =
NP

i=1

“L1i(xi, µi)z }| {
Ji − µT

i xi +

µT
i x̃i +

X

j∈R(i)

(||C(x̃i − ˜̃xij) − ∆yij ||
2
2 + νT

ij
˜̃xij) −

X

j∈R(i)

νT
jix̃i

| {z }
L2i(x̃i, ˜̃xij , µi, νij , νji|j ∈ R(i))

”

(2)
As a consequence, the dual function is also decoupled:

g(µ, ν) =
NP

i=1

`
inf

xi∈Di

{L1i(xi, µi) } +

inf
x̃i,˜̃xij

{L2i(x̃i, ˜̃xij , µi, νij , νji|j ∈ R(i)) }
´ (3)

After some algebra, g(µ, ν) can be computed as follows

g(µ, ν) =
NP

i=1

 
inf

(xi,ui)∈Di

{L1i(xi, µi) }

−

8>><
>>:

P
j∈R(i)

g2ij(νij) if µi +
P

j∈R(i)

(νij − νji) = 0

and Dνij = 0 , ∀j ∈ R(i)

∞ otherwise

!
,

(4)

in which D = I −

[
C

0

]
, and where the convex function

g2ij(νij) = νT
ij(

νij

4 + CT ∆yij) is quadratic. Setting µi =∑
j∈R(i)(νji − νij), for all i = 1, . . . , N , g can now
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be considered as a function of the variable ν only, with
the additional restriction that Dνij = 0 , j ∈ R(i) , i =
1, . . . , N . Therefore, by noting dij = Cνij , we can reduce
the dimension of the dual space by introducing the function
ĝ(d) = g(µ, ν), where µi =

∑
j∈R(i)(νji − νij) and

Dνij = 0. We will use this function ĝ to maximize the
dual function.

D. Dual function maximization

Finally, in order to solve for the dual problem, we need
to maximize the dual function g, which is equivalent to
maximizing ĝ. The maximization of ĝ is performed using
a subgradient method. Denoting ∂dij

(−ĝ) as the set of
subgradients of −ĝ with respect to variables dij , we have

−Cx∗
i + Cx∗

j +
dij

2
+ ∆yij ∈ ∂dij

(−ĝ) (5)

where

x∗
i = argmin

xi∈Di

{ Ji +
∑

j∈R(i)

(dT
ij − dT

ji)Cxi} (6)

Therefore, maximizing the dual function is equivalent to
the following iteration:
1. Compute x∗

i .
2. Update dij := dij + αk(C(x∗

i − x∗
j ) − ∆yij −

dij

2 ).

where k is the algorithm iteration index and (αk)k≥0 is a
square summable but not summable series.
We are now in a position to draw the link between this
algorithm and the algorithm introduced in section 2. The
dual variables dij have the units of position and are inter-
preted as the deviation from the formation. For example, at
optimality, we have dij = 2(Cx∗

i − Cx∗
j − ∆yij). During

the algorithm, dij represent the iterative guesses of what the
deviations from the formation should be. Given this guess,
each vehicle computes its optimal trajectory as follows: It
optimizes its private objective by taking into account the fact
that deviating from the common objective tends to drive it
back to the formation. Once it has computed its trajectory,
it communicates this information to other vehicles, receives
their trajectories and then computes the resulting deviations
(1). It finally updates the guess for the deviation in the
direction of the newly computed deviation.

IV. CONVEX CASE

We now investigate the particular case of the formation
flying problem in which the problem (P1) is convex. We
consider a linear dynamics for each of the N vehicles:

żi(t) = Aczi(t) + Bcui(t), (7)

where Ac =

2
6664

0 0 1 0
0 0 0 1
0 0 λd 0
0 0 0 λd

3
7775, λd ≥ 0, and Bc =

2
64

0 0
0 0
1 0
0 1

3
75,

which assumes that the net force applied to each aircraft

can be directly controlled. The dynamics can be exactly
discretized:

xi(t + 1) = Axi(t) + Bui(t) (8)

where A = eAc and B =
∫ T

0 eAcτBc dτ . The local cost
functions are chosen as follows:

Ji = ||Cxi − ytargeti||
2
2 + ||ui||

2
2 (9)

where Cxi and ytargeti are respectively the position of
aircraft i and the position of the target. The global cost
function is chosen as before (cf. (P1)). Thus, the optimiza-
tion problem is to minimize a positive definite quadratic
form objective function over a linear set, and therefore it is
a convex problem.

A. Results

At each iteration of the decentralized algorithm, optimal
trajectories can be analytically derived by:j

u∗
i = (GT CT CG + I)−1GT CT (CHxi(0) − yt + C αi

2
)

x∗
i = Gu∗

i + Hxi(0)
(10)

where G =

2
666664

B 0 . . . 0

AB B
. . .

.

.

.
.
.
.

.

.

.
. . . 0

AT−1B AT−2B . . . B

3
777775

, H =

2
66664

A

A2

.

.

.
AT

3
77775

,

and αi =
P

j∈R(i)

(νT
ij − νT

ji)

The scenario is chosen as a target tracking problem
involving 5 followers required to fly in V-formation. The
trajectories generated by both the decentralized algorithm
and the centralized LQR are displayed in figure 2.
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Fig. 2. Optimal trajectories for the target tracking problem. The solid
curve corresponds to the trajectory of the target that the aircraft are
following. The decentralized algorithm has performed 10 iterations. The
centralized controller and the decentralized algorithm both give the same
trajectories (represented by circles and crosses). However, the decentralized
algorithm uses much less memory (25 times as less) and runs more quickly
(1.2 times as fast).
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B. Optimality

Since the initial problem (P1) is convex, (P2) is also
convex and satisfies Slater’s constraint qualification [4].
Therefore strong duality holds and the algorithm returns
a primal optimal solution.

C. Convergence Analysis

The dual function is actually quadratic in ν and is
therefore twice differentiable. Indeed, the dependence of x∗

in ν is:

x∗
i = Kαi = K(

∑
j∈R(i)

(νij − νji)) (11)

where K = 2G(GT CT CG + I)−1GT CT C. Therefore, the
gradient of g is affine in ν:

∂g

∂νij

= K(
X

k∈R(i)

νik −
X

k∈S(i)

νki −
X

k∈R(j)

νjk +
X

k∈S(j)

νkj)−
νij

2

(12)

And the Hessian is constant:

∂2g

∂νij∂νpl

= (δip − δil − δjp + δjl)K −
δipδjl

2
I (13)

where δkm is 1 when k = m and 0 otherwise.
We can then derive a convergence analysis based on the
condition number of this second derivative. For the gradient
descent method, a bound on the number of iterations
required for convergence can be considered as proportional
to the condition number. Taking the example of the previous
scenario, the Hessian is tridiagonal with diagonal terms
equal to −2K − I

2 and tridiagonal terms equal to K .
We can easily show that its condition number does not
grow as fast as n2, where n is the size of the matrix.
This provides a bound on the complexity of the algorithm.
As a function of the number of aircraft, the complexity of
the algorithm cannot grow faster than N2. It actually turns
out that this bound is rather crude. When simulated with
realistic numerical values for the system, the complexity is
found to grow like log(N) (Figure 3), which demonstrates
the efficacity of the decentralized algorithm in performance
improvement.

D. Comparison with a centralized approach

The decentralized algorithm presents two major advan-
tages in comparison with a centralized approach. It is com-
putationally less expensive, and it is easier to implement in
practice. The advantages and disavantages are summarized
in the table below for the V-formation example, in which
vehicles may communicate with no more than 2 other
vehicles.

V. NONCONVEX CASE

We now show how to solve the nonlinear, nonconvex
problem. The only difference with the convex case is that
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Fig. 3. Number of iterations of the decentralized algorithm required to
obtain a duality gap of less than 10−6 as a function of the number of
aircraft of the problem.

Centralized Decentralized

Algorithm Solve primal (LQR) Apply dual decomposition

Solution Optimal solution Optimal solution

Memory O(T 2N3) N times O(T 2)

Flop count O(TN)3 N times O(log(N)T 3)

Practice Communication with
all agents, once

Communication with
few agents, iteratively

TABLE I

COMPARISON OF THE DECENTRALIZED ALGORITHM WITH A

CENTRALIZED LQR FOR THE V-FORMATION FLIGHT EXAMPLE.

each agent i, i = 1, . . . , N has to solve the following
problem in order to generate its optimal trajectory.

Minimize Ji(xi) + µT
i xi

Subject to xi ∈ Di
(P5)

where µi is a dual variable, parameter of the problem; Di

represents a nonlinear dynamics and Ji might not be convex.
In order to solve (P5), we use optimal control techniques.
Note that it is possible to solve the problem exactly using
a Hamilton-Jacobi formulation (H-J). This approach is
reasonable due to the low dimension of the problem (3
degrees of freedom for an aircraft modelled using a planar
nonlinear kinematic model [13]). This is a major advantage
over a direct centralized approach, on which this problem
would be prohibitively complex. Typically, (H-J) equations
can be solved up to 4 or 5 dimensions [13].
Note also that we can use another optimal control technique:
the adjoint method. This method is computationally less
expensive than solving (H-J) equations (because it only
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computes the optimal control instead of the cost-to-go).
Nevertheless, in theory, it only returns a local optimum and
hence might fail to return the optimal trajectory. This is a
crucial issue when we would like to provide a certificate
on the duality gap. Indeed, in order to guarantee a lower
bound on the primal global solution, a dual feasible point
has to be generated, which means that (P5) must be solved
exactly.
Solving (P5) exactly at each iteration of the decentralized
algorithm would be quite expensive, therefore, in practice,
the procedure is implemented as follows:

1) The subgradient method is performed using the adjoint
method.

2) Once the algorithm has converged, the dual variables,
to which the algorithm converged: µi are selected.

3) The exact solution of (P5) is computed at point µi, and
hence, a certificate for the value of the dual is provided.
We now briefly explain how the nonlinear optimal trajecto-
ries are generated via the adjoint method.
Given a cost function J =

∫ T

0 h(x(t), u(t)) dt and the
dynamics ẋ(t) = f(x(t), u(t)), the gradient of the cost
function with respect to the control input u is:

∇uJ(x, u) = ∇uf(x, u)p + ∇uh(x, u) (14)

in which p is called the costate and satisfies the following
backward equation:

ṗ = −∇xH(x, u) , p(T ) = 0 (15)

where H(x, u) = h(x, u) + pT f(x, u) is the Hamiltonian
of the system.

Adjoint-based Algorithm

1. Guess a control input (For example, start with the solution
of the linearized problem.)
2. Repeat

i) Compute the trajectory ẋ(t) = f(x(t), u(t)).
ii) Solve the adjoint equation (15).
iii) Construct the gradient ∇uJ of the cost function.
iv) Update the control input: u(k+1) = u(k) − αk∇uJ

Terminate when the gradient is small.

A. Results

We choose the traditional non-linear kinematic model for
the dynamics of each aircraft i.⎧⎨

⎩
ẋi(t) = vi(t) cos(φi(t))
ẏi(t) = vi(t) sin(φi(t))

φ̇i(t) = ωi(t)
(16)

(xi(t), yi(t)) is the 2-D position of aircraft i at time t. φi(t)
represents the heading angle. The velocity vi(t) and the
turning rate ωi(t) are the control variables. The scenario
is similar to the one introduced in the previous section. A
group of aircraft follows an aircraft leader while required
to fly in V-formation. Figure 4 displays the trajectory of the
aircraft given by our decentralized algorithm.
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Fig. 4. An aircraft leader crosses the 2-D plane in straight line. 5 aircraft
followers are required to fly in V-formation. The initial distribution of the
followers has been chosen, on purpose, in contradiction to the relative
positions required of the aircraft in formation.

B. Optimality

The primal problem (P1) is non convex and therefore
strong duality may not hold. Nevertheless, the algorithm
returns the duality gap at the end of the procedure, which
gives an upper bound on the distance between our solution
and the global optimum value.

Figure 5 shows the duality gap as a function of the
number of iterations performed by the algorithm. The
duality gap converges to zero. This gives the certificate that
the trajectories generated are actually optimal.
Finally, note that the convergence rate of the algorithm is
approximately the same as in the convex case (for 5 aircraft,
100 iterations are required to obtain a duality gap less than
10−5).

VI. CONCLUSION

The problem of generating optimal trajectories for a set of
cooperative aircraft is a high dimensional, non-linear prob-
lem. The aim of the paper is to derive a fast algorithm which
would, first, return a good solution to the problem, and
second, generate a decentralized procedure in agreement
with the physical constraints on the information flow. Using
the method of dual decomposition, we have demonstrated
that a decentralized algorithm can be synthesized on board
each aircraft which solve the problem exactly.

APPENDIX
Proof of Rule 1: For all (x, x̃) such that sp(x, x̃) = 0,

f(x) + h(x̃) +
p−1P
i=1

µT
i si(x, x̃) = f(x) + h(x̃) +

pP
i=1

µT
i si(x, x̃)

≥ inf
x∈D, x̃

{f(x) + h(x̃) +
pP

i=1

µT
i si(x, x̃)} = g1(µ1, . . . , µp)

(1)
Therefore, for all (µ1, . . . , µp),

g2(µ1, . . . , µp−1) = inf
x ∈ D, x̃

gp(x, x̃)=0

{f(x) + h(x̃) +
p−1P
i=1

µT
i si(x, x̃)}

≥ g1(µ1, . . . , µp)
(2)
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Fig. 5. Duality gap as a function of the number of iterations performed
by the decentralized algorithm.

which proves that sup
µ1,...,µp

{g1} ≤ sup
µ1,...,µp−1

{g2}.

Proof of Rule 2: For all (µ, ν),

g4(µ, ν) = inf
x∈D

{f(x)−µ
T
x}+inf

x̃,˜̃x
{h2(x̃, ˜̃x)+µ

T
x̃+ν

T (˜̃x−Ax̃)}

(3)
Therefore,

sup
ν
{g4(µ, ν)} = inf

x∈D
{f(x) − µT x}+

sup
ν

{ inf
x̃,˜̃x

{h2(x̃, ˜̃x) + µT x̃ + νT (˜̃x − Ax̃)} }
(4)

Let us now consider the problem:

Minimize h(x̃) + µT x̃ (P1)

It is equivalent to the following problem:

Minimize h2(x̃, ˜̃x) + µT x̃

Subject to ˜̃x = Ax̃
(P2)

Since h2 is convex, strong duality holds for (P2), hence:

sup
ν

{ inf
x̃,˜̃x

{h2(x̃, ˜̃x) + µ
T
x̃ + ν

T (˜̃x−Ax̃)}} = inf
x̃
{h(x̃) + µ

T
x̃}

(5)
We conclude that for all µ,

sup
ν
{g4(µ, ν)} = g1(µ) (6)

which gives the result.
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