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A Mixed Integer Linear Program (MILP) formulation of an arrival traffic scheduling
problem is used as the starting point in order to evaluate the respective capabilities of
two real-time scheduling algorithms. Three main issues are addressed: computational
time, suboptimality and statistical performance. The first algorithm is an approximation
algorithm, which is polynomial time and has a guaranteed bound on the suboptimality
ratio. The second algorithm is a heuristic algorithm, which is polynomial time. Both
algorithms are compared to the exact solution (computed with CPLEX) under realistic
air-traffic scenarios generated from American Airlines timetable data for arrival traffic into
Saint Louis, Missouri. Results show that the heuristic algorithm has the fastest run-time
and is nearly optimal in most scenarios. However, the approximation algorithm generates
schedules well within theoretical bounds, providing a guarantee on performance that the
heuristic cannot provide. The approximation algorithm is also more robust to adverse
weather scenarios than the heuristic algorithm.

I. Introduction

The return of air traffic density to very high values in the United States has again motivated the need for
efficiency in the Air Traffic Control (ATC) system. Optimization of arrival traffic is important in reducing
delays in an airspace stretched to current capacity limits. For example, weather events such as thunderstorms
can disrupt arrival airflow at a handful of airports, leading to large delays throughout the national airspace,
reducing efficiency dramatically. A great deal of previous work has concentrated on routing and scheduling
of arrival flows under weather restrictions (see for example, Krozel and Penny [7] and Prete and Mitchell
[9]).

Currently, a semi-automated ATC system exists to help controllers manage air traffic flow near airports.
Information tools such as CTAS,8 and position estimation technologies such as GPS and WAAS have made it
possible for the air traffic controller to obtain better information about aircraft position and intent. However,
the management and coordination of multiple aircraft in arrival airspace is still generally performed manually.
Specifically, conflict avoidance and some scheduling maneuvers are generated through experience-based rules
(called playbooks) by air traffic controllers. Heuristics based on priority and some ideas of fairness are used
to sequence aircraft arriving in the direct vicinity of an airport.3

The problem currently solved by air traffic controllers is based on the idea that each aircraft has an earliest
possible arrival time and a delayed arrival time which can be achieved by deviations from the nominal speed
or path. The air traffic controller can have aircraft land anytime during this interval by prescribing the
proper control maneuvers. An assignment of landing times to aircraft requires that each landing time is
within this feasible interval for the given aircraft and that the landing times are spaced apart. That is, only
one aircraft can land in any ∆ time units, where ∆ is sometimes called the metering time. When such an
assignment is not possible, aircraft may be put on holding patterns, according to controller discretion, to
generate a landing schedule which is feasible in terms of the airport spacing requirements and the individual
aircraft landing intervals. The assignment of landing times for aircraft depends both on a continuous landing
interval and discrete decisions on whether to hold a specific aircraft.
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Algorithms which generate real-time schedules for arrival aircraft can augment the intuition and experi-
ence of air traffic controllers. To obtain such algorithms, the problem of routing and scheduling of arrival air
traffic flow may be abstracted into a problem of optimization of a Mixed Integer Linear Program (MILP).
For example, previous work2 proposes a polynomial time reduction of a hybrid systems control synthesis
problem modeling maneuver assignment in arrival airspace into a MILP. Various criteria are available for
determining an optimal schedule: this paper focuses on minimizing the sum of arrival times. Because the
sequencing, routing, and holding of arrival aircraft is inherently combinatorial, an exact solution of the MILP
is necessarily of exponential complexity.

The reason for using suboptimal algorithms is that they run in polynomial time and can be used in a
real-time setting (i.e. deployed to aid air traffic controllers). This paper first summarizes an approximation
algorithm developed earlier,5 and then presents a newly developed heuristic algorithm. The approximation
algorithm combines dynamic programming and linear program optimization techniques to generate feasible
schedules for arrival air flows with guarantees on optimality and runtime. The heuristic is a greedy scheme,
through an iterative scheme it attempts to land aircraft as soon as possible. The algorithms presented
here generalize very well for other objective functions such as weighted sum of arrival times or arbitrary
functions linear in the arrival times. Another possibility is to minimize the makespan, which is the maximum
landing time of the aircraft to be scheduled. These algorithms are then simulated under realistic air traffic
scenarios and their performances are evaluated. Air traffic scenarios are generated by using timetable data
for American Airlines flights landing at Saint Louis, Missouri, as a model for expected arrival air flows.

The organization of the paper is as follows. In the next section, the air traffic problem and the related
MILP are formally defined. Sections III and IV discuss the previously proposed approximation algorithm
and the new heuristic algorithm, respectively. In Section V, a realistic air traffic scenario is discussed and
results of Monte Carlo simulation are provided. The two algorithms are compared to the optimal solution in
both optimality and run time. Finally, conclusions and future work directions are presented in Section VI.

II. Formulation of arrival scheduling problem and Mixed-Integer Linear
Program (MILP)

As discussed in previous work,3 each of N aircraft landing at an airport are presumed to have an earliest
possible landing time and a delayed landing time. For the ith aircraft, let these times be denoted ai and
bi, respectively. Holding patterns take T time units for all aircraft. The feasible set of arrival times for
aircraft i is thus ∪∞

k=0[ai + kT, bi + kT ], which will be denoted by [ai, bi]+TN, where N = {0, 1, 2, ...} are the
natural numbers. The holding pattern time T and the required spacing between landings ∆ are parameters
set by the environment of a given scenario, while the sets ai and bi are decided by the configuration of the
aircraft arriving at an airport. The problem of minimizing the sum of arrival times can then be posed as an
optimization problem as follows:

min:
∑

i∈{1,...,N} τi

s.t.: τi ∈ [ai, bi] + TN ∀i ∈ {1, ..., N}

|τi − τj | ≥ ∆ ∀i, j ∈ {1, ..., N}, i 6= j.

(1)

Note that τi refers to the landing time for aircraft i in the optimal schedule.
This formulation can be encoded as a MILP by choosing variables in a different way. The formulation

that results is
min.:

∑

i∈{1,··· ,N} τi

s.t.: ti ≥ ai + kT ∀i ∈ {1, · · · , N}

ti ≤ bi + kT ∀i ∈ {1, · · · , N}

k ∈ N

ti − tj ≥ ∆ − Ccij ∀(i, j) ∈ {1, · · · , N}2, s.t. i > j

ti − tj ≤ −∆ + C(1 − cij) ∀(i, j) ∈ {1, · · · , N}2, s.t. i > j

cij ∈ {0, 1} ∀(i, j) ∈ {1, · · · , N}2, s.t. i > j

(2)

where C is a “large” constant, whose size depends on the actual numerical range of k (since in practice, it
will be finite for the implementation). The integer k is the number of holding patterns and cij is a decision
variable which determines the order of arrival of the aircraft.
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Figure 1. Illustration of STEP 4. This procedure transforms the feasible fractional solution x = xij of (3) into
another feasible fractional solution x = xij with idle time. Half of the fractional xij in the interval [qT, (q + 1)T )
is shifted to [(3q− 2)T, (3q− 1)T ) (shift by (2q− 2)T ), and the other half to [(3q− 1)T, 3qT ) (shift by (2q− 1)T ). The
interval [3qT, (3q + 1)T ) is empty for now; this is a waste of space, but this enables us to satisfy the constraints
of (3) for the part of the fractional solution between i∆Q (i9 on the figure) and iTq+1.

The optimal schedule (that is, the τi) can be obtained by CPLEX, a mathematical optimization software
package developed by ILOG10 and coded in the AMPL modeling language.6 CPLEX almost always finds
the optimal scheduling of aircraft; thus, the optimal solution will also be denoted the CPLEX solution.

III. Approximation algorithm

The algorithm used by CPLEX to obtain the exact solution is highly efficient but still has exponential
complexity. Because a real-time application requires guarantees on algorithmic runtime, we present two
suboptimal algorithms which run in polynomial time. In Section V, we evaluate the tradeoff between
optimality and run-time.

The approximation algorithm has been proposed previously5 and is summarized in this paper. Dynamic
programming is used to optimally schedule aircraft during the first T time units. The remaining aircraft are
then input to the MILP in Equation (1). Relaxing the integer constraints yields a solution where fractions
of aircraft can land at different times. However, the spacing constraint remains; that is, only one whole
aircraft can land in any interval of length ∆. Next, the relaxed solution is expanded in time to ensure that
later steps do not violate the ∆ spacing requirement. This step of the algorithm is where optimality may be
lost. After spacing the fractional aircraft schedules, whole aircraft are matched to their possible fractional
landing times. This step is a matching problem which can be solved optimally in polynomial time. The
algorithm is guaranteed to run in O(N9) time and the resultant solution is guaranteed to be at most 5 times
optimal (referred to as a 5-approximation algorithm). More precisely:

STEP 1: Data preprocessing. The first step of the algorithm consists in preprocessing the data. The
constraint set in equation (1) can in fact be reduced to a fully discrete set of polynomial size, as follows:

(i) Sort the aircraft by earliest possible time of arrival: without loss of generality, we thus assume
a1 ≤ a2 ≤ · · · ≤ aN−1 ≤ aN .

(ii) Divide the N aircraft into K + 1 subsets: S0 = {N0, · · · , N1 − 1}, S1 = {N1, · · · , N2 − 1}, S2 =
{N2, · · · , N3 − 1}, · · · SK = {NK , · · · , N}, where N1 = 1, and Nk is given by Nk = min{p|aNk−1

+ (p −
Nk−1)(∆ + T ) < ap}.
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Figure 2. Illustration of STEP 5. This procedure transforms the feasible fractional solution xij into a weighted
matching problem. In the fractional LP solution, only the nonzero xij are represented (solid if they are in the
range of the figure, dashed if they connect aircraft with arrival times outside the figure). On the right plot,
the weights are the arrival times from the fractional LP solution: for example, Θrj−1 = t27.

(iii) Let σk =
{
⋃

l∈Sk
{al + ∆N + TN}

}

∩ [aNk
, aNk

+(Nk−Nk−1)(∆+T )] for each k. Index the elements

ti of Σ =
⋃K

k=1 σk by i∈ {1, · · · , |Σ|} in increasing order.

STEP 2: Extension of dynamic programming for the earliest aircraft. We apply an extension of dynamic
programming previously published,5 which is a modification of Baptiste’s algorithm1 to the aircraft capable
of arriving before T .

If a1 > T , skip this step. If a1 < T , call F the set of i such that [ai, bi] ∩ {t|t ≤ T} is not empty. Call
[ai, b

′
i] = [ai, bi] ∩ {t|t ≤ T}. Schedule the maximum number of aircraft of F according to the extended

dynamic programming algorithm from previous work.5 If this number is equal to N , stop.

STEP 3: LP relaxation of a constrained matching problem. Solve the relaxed LP (3) for the remaining
aircraft. If a1 ≥ T , solve the relaxed LP (3) directly.

Minimize:
∑

j

∑

i∈G(j) tixij

Subject to:
∑

i∈G(j) xij = 1 ∀j∈ {1, · · · , N}

xij ≥ 0 ∀j∈ {1, · · · , N}, ∀i ∈ G(j)
∑

i′∈I(i)

∑

j xi′j ≤ 1 ∀i∈ {1, · · · , |Σ|}

(3)

where the ti denote the elements of Σ, and where ∀i∈ {1, · · · , |Σ|}, I(i) = {i′ ≤ |Σ| | ti′ ≥ ti ∧ ti′ − ti < ∆},
and ∀j∈ {1, · · · , N}, G(j) = Σ ∩ {[aj , bj ] + TN}.

STEP 4: Transformation of the LP using a “LP rounding like technique”. The mathematical description of
this technique is too technical to be part of this paper; details available in previous work.5 In summary, this
step takes every ti for which there exists a nonzero fractional matching xij in the solution of (3), and shifts
it by a prescribed amount (either (2q − 1)T or (2q − 2)T where q is integer). The result is a new fractional
matching, satisfying the constraints of (3), but suboptimal. This transformation is illustrated in Figure 1.

STEP 5: Construction and solution of an unconstrained weighted matching problem. The fractional matching
obtained in Step 4 is used to construct a weighted unconstrained matching problem. For this, arrival times
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within ∆ are assembled into a single node, such that consecutive nodes are separated by more than ∆. The
result is a bipartite graph (see Figure 2). The corresponding matching problem can be solved in polynomial
time with the following objective function:

∑

i,j

tixij .

In summary:

5 approximation algorithm

1. Preprocess the data to make the set of feasible arrival times fully discrete.

2. If the earliest arrival time of all aircraft is smaller than T , skip this step.

Use extended dynamic programming to schedule as many aircraft as possible among

those which can arrive before T . If all aircraft have been scheduled, stop.

3. Form a constrained matching problem, solve the LP corresponding to its relaxation.

4. Transform the relaxed solution using a “LP rounding like” method.

5. Construct and solve a new weighted unconstrained matching problem.

IV. Heuristic Algorithm

This paper proposes another polynomial time algorithm based on a heuristic for comparison with the
CPLEX solution and the approximation algorithm. This heuristic is a “nearsighted”, yet practical solution.
Essentially, the algorithm is a priority queue where the next aircraft to land is the one whose latest arrival
time bi is the minimum out of all aircraft to land. At any point in time, this most urgent aircraft is landed
at the earliest possible next time. The algorithm steps through time, scheduling aircraft one at a time. In
this manner, the heuristic algorithm captures much of the basic behavior of an air traffic controller. Unlike
a controller, the heuristic has no notion of fairness or extenuating circumstances for landing any specific
flight. Such changes could be added to the algorithm by adjusting the priorities of the aircraft. A detailed
description of the heuristic algorithm follows.

The current time currtime is a variable used to traverse time as the schedule is generated. The most

urgent aircraft in a set is the one with the smallest bi (i.e. - the aircraft whose landing interval ends first).
The aircraft next in line, given a current time, is determined as follows. Find the most urgent aircraft
amongst the set of aircraft which can land at the current time (i.e. - those with ai ≤ current time ≤ bi). If
no such aircraft exist, find the aircraft with minimum ai ≥ current time. Ties are broken by urgency. The
landing time of the next-in-line aircraft is either the current time, if aircraft exist which can land at the
current time, or ai for the aircraft with minimum ai if none can land at the current time.

The algorithm first initializes the current time to −∞. An iteration consists of first scheduling the aircraft
that is next in line. The current time is then set to the landing time of the next-in-line aircraft plus ∆,
to ensure spacing requirements are met. Any aircraft which are unable to land by this new current time
are put on holding pattern until they can land at or after the current time. That is, ai := ai + T and
bi := bi + T until bi ≥ current time. Each iteration of the algorithm schedules one aircraft; N iterations
creates a feasible schedule. The heuristic algorithm is most useful for its fast running time, O(N2). Its
performance in comparison to other algorithms is evaluated in the next section. These steps are summarized
in the table below.

An example of scheduling three aircraft is presented to show the procedure of the heuristic algorithm.
The arrival intervals for the aircraft are [a1, b1] = [1, 7], [a2, b2] = [2, 3], and [a3, b3] = [2, 4]. The minimum
required spacing ∆ = 2 and the time for a holding pattern T = 10. The optimal solution is to land aircraft
2 at time 2, aircraft 3 at time 4, and aircraft 4 at time 6, as shown in Figure 3(a). The heuristic lands
the first aircraft possible: aircraft 1 at time 1, updating the current time to 3 = 1 + ∆. See Figure 3(b)
for a representation of the scheduling of the first aircraft. At time 3, both remaining aircraft can land, but
aircraft 2 is landed because it is more urgent (i.e. has smaller bi). The current time is set to 5, as shown
in Figure 3(c). Because aircraft 3 cannot land at time 5, it is put on a holding pattern and landed at 12,
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Heuristic algorithm solving (1)

1) Initialize currtime = −∞.

2) Find next-in-line aircraft. If any aircraft can land at currtime, find the most urgent

aircraft from this set, where urgency is defined as the aircraft with minimum latest arrival

time bi. Schedule this aircraft at τi = currtime. If none can land at currtime, find the

aircraft with minimum earliest arrival time ai, and schedule this aircraft to land at time

τi = ai.

3) Update currtime to τi + ∆. If any aircraft are no longer able to land in the current interval

(if bi < currtime), then shift landing interval by T (ai := ai + T and bi := bi + T ).

4) Repeat steps (2) and (3) until all aircraft are scheduled.

0 5 10 15
0

0.5

1

1.5

2

2.5

3

3.5

4

Time (min)

A
irc

ra
ft

Optimal Schedule

0 5 10 15
0

0.5

1

1.5

2

2.5

3

3.5

4

Time (min)

A
irc

ra
ft

Heuristic (currtime=3)

(a) (b)

0 5 10 15
0

0.5

1

1.5

2

2.5

3

3.5

4

Time (min)

A
irc

ra
ft

Heuristic (currtime=5)

0 5 10 15
0

0.5

1

1.5

2

2.5

3

3.5

4

Time (min)

A
irc

ra
ft

Heuristic (completed)

(c) (d)

Figure 3. (a) Optimal scheduling of three aircraft with landing intervals marked as horizontal line segments
and landing times marked by x’s. (b) Heuristic algorithm after landing first aircraft. (c) Heuristic algorithm
after landing second aircraft. (c) Heuristic algorithm at completion, having placed third aircraft on holding
pattern.
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the new minimum time of arrival. The final schedule is shown in Figure 3(d). Comparing Figure 3(a) and
(d), we note that the heuristic schedule is suboptimal because it schedules aircraft greedily. In Section V,
simulations are used to show that the heuristic generally performs more optimally.

V. Simulations and Results

The solution of the approximation algorithm is guaranteed to be within 5 times the optimal objective,
though in practice this ratio can be much smaller. The solution of the heuristic algorithm, on the other hand,
is not guaranteed to be within any ratio of the optimal objective; however, by construction, the heuristic
solution is in general very close to optimal. Monte Carlo simulations are used to evaluate the practical
factor of suboptimality of these polynomial time algorithms. Monte Carlo techniques are used to generate
parameter sets which represent typical air traffic scenarios; these parameter sets are then simulated with
both polynomial-time algorithms and CPLEX to obtain results. This section first presents the methodology
used in generating parameter sets and in simulation. Next, three topics are discussed and relevant results are
presented: (1) performance of approximation and heuristic algorithms as compared to CPLEX solution in
terms of optimal objective, (2) differences in performance between nominal and weather-affected scenarios,
and (3) run-time and scalability issues.

A. Simulation methodology

For all simulations, the time for a holding pattern is set at T = 10 (minutes). The required spacing ∆
is either 2 or 4 minutes, representing nominal and weather-affected operations, respectively. The number
of aircraft N is varied amongst powers of 2 between 2 and 16 to highlight the need for polynomial time
algorithms whose run times scale better with more aircraft.
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Figure 4. Time-of-day histogram of arrival aircraft for American Airlines into STL according to timetable
data.11

The landing interval times ai and bi are chosen from probability distribution functions which represent a
plausible air traffic scenario. Timetable data from American Airlines (AA) for flights arriving into Lambert-
Saint Louis International Airport (STL) were analyzed to determine congested arrival times during the day.11

These flights were chosen because AA has a hub at STL, and a large percentage of commercial flights into
STL are therefore AA flights. In Figure 4, a histogram of the timetable arrival times of AA flights into
STL is shown. Scheduling of arrival aircraft is hardest during periods of congestion; automated scheduling
algorithms are therefore most useful during these periods. We define congestion as having at least 4 aircraft
able to land in the next 5 minutes and at least 10 aircraft able to land within a half hour. Overlaying the
congested periods throughout the day and normalizing yields the frequency plot in Figure 5. This frequency
plot is the probability distribution function from which the earliest arrival times of aircraft ai are chosen.

The latest arrival times, bi, are calculated according to the formula, bi = ai + li, where li is an interval
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Figure 5. Frequency distribution for arrivals during congested periods. Horizontal axis plots time after start
of congested period, while vertical axis represents average number of aircraft at that time. Initial peak of
aircraft occurs within 5 minutes of start of congestion period; secondary peak follows at 15-20 minutes into
congestion period.

length parameter. The li are drawn from the probability distribution function shown in Figure 6; this
distribution was chosen by comparing Standard Terminal Approach Routes (STARs) for STL and other
airports. Specifically, for a STAR on the order of 100 nautical miles, and an aircraft traveling at 300 knots,
changes of plus or minus 10 percent in speed yield an interval of 4 minutes between earliest and latest arrival
times. Accounting for other spacing maneuvers, we let li be uniform on {2, 3, 4, 5, 6}. The timetable and
STARs data is static but yields a plausible distribution for the dynamic configuration of arrival aircraft,
which would then be translated into ai and bi parameters. Thus, the ai and bi parameters chosen by Monte
Carlo methods represent a plausible air traffic scenario. For each (N,∆, T ) triple, 500 sets of ai and bi are
chosen from the given probability distributions; results shown are averaged over these 500 runs.

B. Comparison of optimality of algorithms

The optimal solution of (1) can almost always be found by CPLEX; thus optimal solution and CPLEX
solution are used interchangeably. Arrival schedules generated by the approximation and heuristic algorithm
are at best equal to and often suboptimal to the CPLEX solution. In Figure 7(a), the objective values for
500 runs with 2 aircraft are shown. The runs are sorted by ascending CPLEX objective value (hence the
monotonically increasing lower envelope). Any given run (a specific x-coordinate) consists of three points
plotted vertically: the CPLEX objective value, the heuristic objective value, and the approximation objective
value. Figure 7(b)-(d) show results for 4, 8, and 16 aircraft. The plots show that the heuristic algorithm finds
solutions which are optimal or nearly optimal. The approximation algorithm finds some schedules optimally,
but it also exhibits larger suboptimality on a substantial portion of runs.

We observe that for scenarios with more aircraft, both absolute objective values and subobtimality
relative to CPLEX increase for the polynomial-time algorithms. More aircraft trying to land during the
same interval necessarily increases the objective, sum of arrival times. Because more aircraft have to be
landed, the approximation algorithm is more likely to land fractions of aircraft. Step 4 in the approximation
algorithm, discussed in Section III, separates these fractional solutions at a higher cost to optimality. For the
heuristic algorithm, more aircraft to be landed implies the nearsighted landing of the most urgent aircraft is
more likely to make the wrong decision. This again leads to less optimality for larger numbers of aircraft.

To better evaluate the performance of the polynomial-time algorithms, we look at the ratio between
the objective values of either algorithms and the optimal solution. This ratio, which is always at least 1,
represents the suboptimality of the algorithm for the given run. In Figure 8(a)-(d), each x-value represents
one of 500 runs. The corresponding y-values are the ratio between the heuristic algorithm objective and the
CPLEX optimal objective (marked by ’x’) and the ratio between the approximation algorithm objective and
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Figure 6. Probability distribution function for length of arrival intervals. That is, lengths li are chosen from
this distribution, and bi = ai + li.

the CPLEX objective (marked by ’+’). The ratios are plotted for all 500 runs for N = 2, 4, 8, and 16 in
Figures 8(a)-(d), respectively. In Figure 7(a), we observe that the approximation algorithm is suboptimal
only for larger optimal objective values (i.e. when more aircraft are on holding patterns). These suboptimal
points are what are seen scattered in the right half of Figure 8(a). For more aircraft, the approximation
algorithm performs increasingly poorly, and the corresponding plots (Figure 8(b)-(d)) show more points with
ratios above 1.

Histograms are generated for these ratios and shown in Figure 9. In the top half of Figure 9(a), the first
column (labelled by (1)) shows the percentage of solutions which are optimal. That is, the approximation
algorithm generates the optimal schedule over 80 percent of the time for the 2 aircraft cases. The other
columns show that the rest of the runs yield solutions with suboptimality ratios between 1 and 1.4. The
bottom half of the plot shows that the heuristic always obtains the optimal schedule for the 2 aircraft
cases. Figure 9(b)-(d) show suboptimality ratio histograms for 4, 8, and 16 aircraft. We observe that both
polynomial-time algorithms have degraded performance with larger sets of aircraft.

Table 1. Table of ranges of average added delay per aircraft for various suboptimality ratios. Data for this
table shown in Figure 10.

Suboptimality Ratio Average added delay

per aircraft (minutes)

1.1 0.5-2.5

1.2 1.8-4.5

1.5 5.0-10.5

2.0 12.5-21.0

2.5 20.8-32.8

3.0 30.4-36.9

3.5 54.0-61.0

Figure 9(a)-(d) are generated from the data in Figure 8(a)-(d), respectively. These plots quantify the
observations of the previous paragraph: the approximation algorithm sometimes finds the optimal solution,
often performs within 2 times optimal, and rarely performs about 3 times optimal. On the other hand, the
heuristic finds the optimal solution from 50 to 100 percent of the time and performs within 1.2 times optimal
the rest of the time. Although the idea of a ratio between algorithm objective and optimal objective is useful
in terms of bounding suboptimality, a more practical measure is average added delay incurred per aircraft.
This metric is obtained by subtracting the optimal objective from the particular algorithm objective and
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dividing this added delay amongst the aircraft being scheduled. The result measures to some degree how
much delay is incurred due to the suboptimality of the polynomial-time algorithm. For example, a ratio
of 2.0 implies the added delay due to the suboptimal algorithm is equal to the optimal objective value.
Depending on the number of aircraft and the optimal objective, the average delay incurred per aircraft may
vary. In Figure 10, the ordered pairs (suboptimality ratio, average added delay per aircraft) are plotted for
all runs. From this data, the information in Table 1 is generated. This table shows ranges of average added
delay per aircraft for any given suboptimality ratio.

Overall, the heuristic outperforms the approximation algorithm for the data simulated; however, guaran-
tees on optimality are only available for the approximation algorithm. Also, performance degrades for both
algorithms as the number of aircraft is increased. In the next subsection, differences in performance between
nominal and weather-affected scenarios are explored.

C. Nominal versus weather-affected scenarios

Simulations were performed to evaluate the performance of the algorithms under weather-affected scenarios,
where required spacing ∆ is 4 minutes, double the nominal 2 minutes. Figure 11(a) plots the objective
values for 8 aircraft in nominal conditions while Figure 11(b) plots objective values for 8 aircraft in adverse
weather conditions. These plots are similar to those in Figure 7 where each run shows the objective value
for each algorithm, and the runs are sorted by increasing CPLEX objective. It is observed that objective
values are much higher for adverse weather conditions; the doubled spacing requirements force more aircraft
into holding patterns. From observation it is difficult to tell the relative performance of the polynomial
time algorithms in the two different conditions; Figure 12(a)-(b) shows the histogram of ratios for the two
algorithms under each weather condition. Again, this figure is similar to Figure 9. From this figure, we see
that the heuristic outperforms the approximation algorithm in both nominal and adverse weather conditions.
However, the performance of the heuristic is significantly degraded under adverse weather conditions, while
that of the approximation algorithm is relatively unchanged.

Similar plots are provided for N=16 in Figures 13 and 14. Again, while the heuristic outperforms the
approximation algorithm in both nominal and weather-affected scenarios, we see that the approximation
algorithm is more robust to poor weather.

D. Run-time issues

The optimal schedule for landing aircraft can be obtained by software such as CPLEX, but the approximation
and heuristic algorithms generate results in polynomial time. In this subsection, we present the run times
for the three algorithms, all of which were run on a Sun Blade 2000 workstation with 2 UltraSPARC III+
900 MHz CPUs and Solaris 8 operating system. Figure 15(a) shows the distribution of run times for the 500
runs for N=2, 4, 8, and 16 aircraft. The distributions are presented as box-and-whisker plots (also known
as 5-number summary). The top and bottom of each box-and-whisker plot are the maximum and minimum
values of run times for the given set of 500 runs. The top and bottom of the box are the first quartile and
third quartile values of the set of 500 run times. The middle of the box is the median value. Figure (b) and
(c) shows run times for the approximation and heuristic algorithms, respectively.

From this figure, it is clear that in terms of run time, the heuristic outperforms the other two algorithms
in all situations. On average, the approximation algorithm takes less time than the CPLEX algorithm for all
numbers of aircraft. Both CPLEX and the approximation algorithm scale poorly as the number of aircraft
increase, but the approximation algorithm is guaranteed polynomial. That is, for other scenarios that have
not been simulated, we can make guarantees on the run times for the approximation algorithm using data
from Figure 15. However, for the CPLEX solution, because complexity is exponential, the data in the figure
cannot be used to upper bound run times for any other scenarios. Therefore, in terms of run time, we rank
the algorithms from best to worst: heuristic, approximation, and CPLEX. In this section, the simulation
methodology, optimality results, weather-affected scenario results, and run-time results have been presented.
The heuristic algorithm has performed best empirically, but the approximation algorithm has performed
within proven theoretical bounds.
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VI. Conclusions

The problem of scheduling arrival aircraft has been formulated as a mixed-integer linear program and then
various solutions have been proposed. The solutions computed using a previously proposed approximation
algorithm and a new heuristic algorithm are compared with the exact solution computed by CPLEX. These
algorithms are evaluated using Monte Carlo simulation based on a plausible air traffic scenario generated
from airline timetable data and airport approach maps. Simulations show the reasonable efficacy of both
polynomial-time algorithms, though the heuristic algorithm outperforms the approximation algorithm in
optimality and run-time. However, the approximation algorithm provides guarantees on suboptimality and
performs more robustly under poor weather conditions than the heuristic algorithm. Because CPLEX
is a suite of techniques among which the algorithm chooses in order to optimize running time as well
as suboptimality, the exponential growth of the runtime of the CPLEX solution compares well with the
absolute times of the approximation algorithm. The CPLEX algorithm still is exponential in complexity;
even with branch-and-bound techniques, a problem may take exponential time to be solved. In fact, there
has been evidence that this is the case on specific Air Traffic Control problems.4 By construction, the
heuristic algorithm generates schedules many times faster than either of the other two algorithms. The
heuristic algorithm is suboptimal with ratio less than 1.5 (in practice), or an equivalent delay of less than
10 minutes per aircraft, while taking on the order of 100 times less time to complete than CPLEX. The
approximation algorithm is more suboptimal and takes longer to generate schedules but provides guarantees
on optimality which the heuristic cannot provide. Empirically, however, the heuristic outperforms the
approximation algorithm and rivals CPLEX due to its very fast run time. A plausible improvement would
be to combine the heuristic and the approximation algorithm, thus meeting the 5-times-suboptimal guarantee
while substantially improving performance (empirically less than 1.5-times-suboptimal).

One direction for future work is to add heuristics to the approximation algorithm to improve solutions
which have been generated. Large gaps in the schedule are created to help prove the 5 times optimal
guarantee, but heuristics can be used to reduce this suboptimality for little additional computational cost.
Other future work consists of identifying scenarios in which the approximation and heuristic algorithms can
be shown analytically to perform more optimally. That is, we would like to identify scenarios in which the
optimality bound can be made tighter.

Another topic toward which this topic can be extended is game theory and airline competition. These
optimization algorithms are innovative because they solve the scheduling problem globally, but the algorithms
fail to take into account other notions of fairness in competition. Experienced air traffic controllers often land
an aircraft to help make connections or to balance out unfairness to a specific airline; using these techniques
in a game theoretic setting would allow the exploration of these ideas of fairness in scheduling arrival aircraft.
79
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Figure 7. Objective values (i.e. sum of arrival times) for each of 500 runs for CPLEX, approximation, and
heuristic algorithms for required spacing ∆ = 2, holding pattern time T=10, and different numbers of aircraft
N . N = (a) 2; (b) 4; (c) 8; (d) 16. The runs are sorted by increasing CPLEX objective value, but a given
x-value shows results of each algorithm on the same parameter values.
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Figure 8. Ratios between polynomial-time algorithms and CPLEX solution for each of 500 runs for ∆ = 2,
T=10, and varying N . N = (a) 2; (b) 4; (c) 8; (d) 16.
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Figure 9. Histogram of distribution of ratios between polynomial-time algorithms and CPLEX solution for
∆ = 2, T=10, and varying N . N = (a) 2; (b) 4; (c) 8; (d) 16.
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Figure 10. Average added delay per aircraft versus suboptimality ratio for all simulated runs.
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Figure 11. Objective values for CPLEX, approximation, and heuristic algorithms for N = 8, T=10, and ∆ =
(a) 2 or (b) 4.
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Figure 12. Histogram of distribution of ratios between polynomial-time algorithms and CPLEX solution for
N = 8, T=10, and ∆ = (a) 2 or (b) 4.
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Figure 13. Objective values for CPLEX, approximation, and heuristic algorithms for N = 16, T=10, and ∆ =
(a) 2 or (b) 4.
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Figure 14. Histogram of distribution of ratios between polynomial-time algorithms and CPLEX solution for
N = 16, T=10, and ∆ = (a) 2 or (b) 4.
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Figure 15. Run times for (a) CPLEX, (b) approximation, and (c) heuristic algorithms for N = 2, 4, 8, 16, T=10,
and ∆ = 2. Data summarized using box-and-whisker plots.
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