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Summary. This paper presents applications of polytopic approxiomthethods for reach-
able set computation using dynamic optimization. The mabbf computing exact reachable
sets can be formulated in terms of a Hamilton-Jacobi pattiffdrential equation (PDE). Nu-
merical solutions which provide convergent approximagiohthis PDE have computational
complexity which is exponential in the continuous variatiimension. Using dynamic opti-
mization and polytopic approximation, computationallfi@ént algorithms for overapprox-
imative reachability analysis have been developed forlirdynamical systems [1]. In this
paper, we extend these to feedback linearizable nonliystégras, linear dynamic games, and
norm-bounded nonlinear systems. Three illustrative exesmare presented.

1.1 Introduction

Reachability analysis for continuous and hybrid systenmmprtant for the au-
tomatic verification of safety properties and for the systb®f safe controllers for
these systems [2, 3]. Convergent approximations of redetsais for such systems
can be computed by solving a particular Hamilton-Jacohligladifferential equa-
tion (PDE) [3, 4]. Numerical methods have been devised tomdathese convergent
overapproximations [5], which work well in up to four to fivertinuous variable di-
mensions, yet these methods are not practical for solvigfigdiimensional problems.
Therefore, approximate methods for reachable set conipntaéve been proposed.

Tiwari and Khanna [6] and Alur et al. [7] proposed predicabsteaction for
reachable set computation: this method can be used to egfaivalent finite state
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models from complex, infinite state models, which are usefintd approximate
reachable sets of the original systems. In [8], Hwang etalelused an augmented
form of predicate abstraction to compute reachable seta §imple biological cell
network. However, since the accuracy of reachability asialysing predicate ab-
straction greatly depends on the choice of polynomialslistraction, it is important
to have information about a given systenpriori (from analysis and simulations)
to get good results in the reachability analysis. Chutinash lirogh [9, 10] present
a method to approximate the flows of autonomous systems withex polyhedra.
An experimental system calletldt [7,11, 12] has been developed to approximate
reachable sets for linear dynamical systems using griditpgonal polyhedra. Ideas
based on projecting the initial or target set into a lower ehisional subset of the
state space, performing the reach set computation in therldimensional space,
and then back projecting to form an overapproximation ofitieal reachable set in
the full state space, are presented in [13, 14]. In all oféhmsthods, however, it is
difficult to compute the control input which is guaranteedéeep the system on the
boundary or inside the set, from the boundary of the ove@pprative set.

Varaiya [1] has designed, using techniques from optimatrobtheory, a poly-
topic approximation for linear systems. Kostousova [15 Haveloped two-sided
approximations of reachable sets for linear dynamic systasing parallelotopes.
Kurzhanski and Varaiya [16, 17] proposed an ellipsoidalrapimation for forward
and backward reachable sets (a computational tool VeriSIHlB] has been devel-
oped based on their ideas) and in [19, 20], they define vatiypes of reachable
sets for linear time-varying systems with bounded pertiiwha using both open
and closed-loop input laws. In [20], they propose ellipabmlverapproximations of
reachable sets for linear systems under uncertainty vidisnok of a particular type
of differential equation. In [21, 22], the authors have exied reachable set compu-
tations to general nonlinear systems with state consgraimii obstacles, using non-
standard Hamilton-Jacobi equations and variational iaktigs. Overall, this semi-
nal work in exact and approximate reachable set calculatiggests new research
directions in computational methods for such problemss Wurk was indeed moti-
vation for the current paper.

In this paper, we review the method proposed by Varaiya [Tjotmpute reach-
able sets for linear time invariant systems. Inspired byzKanski and Varaiya
[16,17, 19, 20] and by the work of Khrustalev [23], we compayp@roximate reach-
able sets for feedback linearizable nonlinear systemsalinlynamic games, and
norm-bounded nonlinear systems. We present three exaopkesf which is a two-
aircraft three-dimensional collision avoidance examphéclv we have used in other
work [5].

This paper is organized as follows. Motivation for this stigldescribed in Sec-
tion 1.2. Computations of polytopic reachable sets fordmdynamical systems,
feedback linearizable nonlinear systems, linear dynammesg, and norm-bounded
nonlinear systems are presented in Section 1.3. Exampgsrasented in Section
1.4. Conclusions are presented in Section 1.5.
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1.2 Background and Motivation

Consider a dynamical system,

o(t) = f(x(t),u(t),d(t)),
2(0) € Xo (0r 2(ts) € Vo), 1 € [0,4] (1.1)

where0 < t; < oo,z € R",uw € U C R™ is the control inputd € D C R?

is the disturbance inpufy = {z : I(z) < 0} is an initial set of states, arth =
{z : y(x) < 0} is a target set of states. We assufn be Lipschitz. The spaces of
admissible control input trajectories and disturbancein@jectories are denoted as
the spaces of piecewise continuous functiins {u(:) € PC%u(t) € U,0 <t <
tryandD = {d(-) € PC°|d(t) € D,0 <t <t} respectively. The forward and the
backward reachable sets of the system (1.1) are definedawsol

Definition 1. The forward reachable set () at timer (0 < 7 < ), of the system
(1.1) from the initial setX, is the set of all states(r), such that there exists a
control inputu(t) € U (0 <t < 7), for all disturbance inputd(t) € D (0 <t < 7),
for whichz(7) is reachable from some(0) € X (0), along a trajectory satisfying
(1.1).

Definition 2. The backward reachable s¥(r) attimer (0 < 7 < ty), of the system
(1.1) from the target se¥y, is the set of all states(7), such that there exists a control
inputu(t) € U (1 <t < ty), for all disturbance inputgl(t) € D (1 <t < ty), for

which somex(t;) € ), are reachable from:(7), along a trajectory satisfying (1.1).

It has been shown that a forward reachable set computatiobedormulated as a
dynamic optimization problem [17, 23]. The forward readbadet of the dynamical
system (1.1) attime (0 < 7 < t¢) is shown to be [17]:

X(r)={z:v(z,7) <0} (1.2)

wherev(x, 1) is a (viscosity) solution of the Hamilton-Jacobi-IsaacdljHpartial
differential equation,

Dyv(z,t) + I&&L{}({irélg{< Dyv(z,t), f(z,u,d) >} =0 (1.3)
with v(z,0) = I(z), < p,q >= p’ ¢ the inner product ifR™, and whereD, repre-
sents the partial derivative with respect to the subsatipé&giable. Thus, the forward
reachable set of the dynamical system (1.1) is the zerowitset of the solution to
the HJI equation in (1.3).

Similarly, the backward reachable set of the dynamicalesysfl.1) at timer
(0 < 7 < ty) is the zero sublevel set of the solution to the HJI equatiaf, [

Dyv(z,t) —|—m1nmax{< Dyv(z,t), f(z,u,d) >} =0 (1.4)

uweU de

with v(z, t5) = y(x).



4 I. Hwang, D.M. Stipanovi¢ and C.J. Tomlin

In [4,5], a numerical tool for computing convergent approations for back-
wards reachable sets is designed and presented. This misthaded on the level
set method for computing solutions to PDEs [24]. The contprial complexity of
this tool is exponential in the number of continuous vagabllimensions: it has
been shown to work well in up to four or five continuous vargsbtimensions,
yet for larger problems computation time is currently phitive. Numerical con-
vergence has been demonstrated on several examples; weswill “benchmark”
three-dimensional example from [5] in this paper.

Consider planar kinematic models of two aircraft, labdlesd2. Let the relative
position and orientation of aircraft with respect to aircrafi be represented by
(2, yr, ) € R? x [—7, 7). Given the absolute positions and orientations of the
two aircraft, denoted as;, y;, 1; fori = 1, 2, the relative coordinates are defined as:
z, = costhi(z2 — 1) +sin1(ya — y1),yr = —siny1(v2 — 1) + cos Y1 (y2 —
y1),¥r = 12 — 1. The relative kinematics are thus given by:

ir = —01 + 0208 7/)7“ + w1y

yr = 02 sin 1/%« — W1Ty (15)

Yr = w2 — w1
whereg; is the linear velocity of aircraft andw; is its angular velocity. Safety is
encoded as & nautical mile radius cylinder “protected zone” centerethatorigin
of the relative frame. In this paper, following the notatiarDefinition 2 (which is
different from that in [5]), we define the angular velocity aifcraft 2 () as the
control input that steers the system (1.5) into the targedise the angular velocity
of aircraft 1 (v;) as the disturbance input that keeps the system (1.5) eut$ithe
target set. Posing this problem as a game, we label aifceaftevader” and aircragt
as “pursuer”, and we compute the set of stdtesy.., ¢,-) for which for all possible
disturbance inputsy; action of the evader, there is a control inpu,action of the
pursuer, such that the system state enters the protectedwbith we consider the
target set of the game. For values = o, = 5 andw; € [-1,1] (i € {1,2}),
the problem has been solved numerically, and the resullisl @arface) are shown
in Figure 1.4 (Courtesy of I. Mitchell [5]). This computatidook approximately 4
minutes to run on a Sun UltraSparc I, in whigh grid nodes in each dimension
were used.

A version of this example may also be solved analytically],[2Bd it may be
verified using this that the average error in computatiomss fthan one tenth of a
grid cell, with maximum error always less than one grid cell.

In the following section, we extend Varaiya’s method [1] teat this kind of
system and in Section 1.4, we compare the above computattbrtive resulting
approximation.

1.3 Computation of polytopic reachable sets

We first define the overapproximate reachable set [17] (herspecialize to the
case of (1.1) in which there are no disturbances). Assunteati@) € X, and
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u«(t) € U for all te0 such thatz,. (1) € X(7) (0 < ¢ < 7). Then, an overapprox-
imate solution to the solution of the HJI equation in (1.3Yé&fined as a function
v (z,t) satisfying [17, 23]:

dvt (x,t)
T|m:z*(t),u:u*(t),i:f(m,u)
= Dt'UJr(x*at)_" < DIUJF(I*,t), f(I*,’UJ*) >
< Dyt (24, t) + maxyev {< Dyvt (24, t), f(zi,u) >}

< p(?)

(1.6)

wherev™ (z,,t) is a piecewise continuous function, an¢¥) is a positive-definite,
integrable function. By integrating (1.6) from Otpwe obtain an overapproximative
reachable set of the dynamical system (1.1) at tinas:

VH(r) = {zjv(x,7) g/ wu(t)dt + max vt (2(0),0)} (1.7)
0 z(0)eXo
Next, we review the polytopic overapproximation of readkadets for linear
dynamical systems and derive computational methods fgtquk overapproximate
reachable sets for feedback linearizable nonlinear systénear dynamic games,
and norm-bounded nonlinear systems.

1.3.1 Linear dynamical systems

In this section, we review the polytopic overapproximatidmeachable sets for
linear systems from [1]. Consider a time-varying linear ayrcal system

z(t) = A(t)x(t) + B(t)u(t), =(0) € Xo, u(t) eU (1.8)

where the initial setX, and the admissible control input sS€tare assumed to be
convex polytopes which hawg andN,, faces respectively. In this paper, we assume
the initial setX is a polytope, but in general the number of faces of the irstéa
is a design parameter siné& may be a convex compact set and thus the more the
number of faces oK, the better the overapproximate reachable set.

A convex polytopeP with K faces can be represented in two ways; it can be
represented as the bounded intersectioR dfalf spaces,

K
P =(zlhlz <} (1.9)
=1

whereh; is a normal vector to thé” face of the polytopé. A convex polytope can
also be represented as the convex hull of its vertices: ifrmexopolytopeP hasm
vertices{v!,--- v™}, then

P ={z|z = Zaivi, a;€0, Zai =1} (1.10)
i=1 i=1
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Define a set of linear functions as

These linear functions are used to represent a convex paye shown in (1.9).
In order to find a polytopic overapproximate reachable setsolve forv;" (z,t) in
(1.11) that satisfies (1.6). Then, (1.6) becomes

( 1) + maxyep {< Do) (z,t), f(z,u) >}
h) i(t), z(t) > + < A()Thi(t), x(t) > + maxuer{< hi(t), B(t)u(t) >}

I/\IIN
7;/\@

¢ (1.12)
From optimal control theory [26], the adjoint equation fimelar systems when the
input set does not depend aris A(t) = —A(t)TA(t). If we chooseh;(t) = A(t)
(i€ {1,2,--- ,N}), then

< hi(t),z(t) > + < A@t)Th(t), z(t) >=0 (1.13)

This represents the evolution of the normal vector of ifieface. Leth;(0), i €
{1,2,---, N} be the normal vectors of the faces of the initial 38t Then, the
solution to (1.13) is

hi(t) = B(t,0)h;(0), i€ {1,2,--- N} (1.14)

whered(t,0) is the state transition matrix satisfyig= —A(t)7®, $(0,0) = I.
If the system dynamics in (1.8) is time invariant, theft,0) = e=A"t and (1.14)
becomes

hi(t) =e A th;(0), i€{1,2,--- N} (1.15)

Thus, for a linear time invariant system, the evolution ofmal vectors can be de-
termined analytically. We denote:!,--- ,u™} as the vertices of the input set
SinceU is a convex polytope, the following must hold: (foe {1,--- ,m,})

max < hi(t), B(t)u(t) >= max < hi(t), B(t)u! >< u(t) (1.16)

that is, the maximum is achieved at a vertextb{1]. Furthermore, if the system
dynamicsin (1.8) is time invariant, (1.16) is simplified to

max < h;(t), Bu/ >= max < e_ATch-(O), Bu? >< pu(t) (1.17)
J J
forj € {1,---,my}. We chooseu(t) = max; < h;(t), B(t)u’ > and note that
u(t) is always positive for a properly chosen input $&t(e.g., chosen such that
0 € U). Then, the linear function;" (z, ) in (1.11) is a supporting hyperplane of the
exact reachable set [1]. A polytopic overapproximate fodv@achable set’ ™ (¢)
for the dynamical system (1.8) is the intersection of hatfcgs as follows:

Vi) =N { o) (2,t) < fot max; < h;(s), B(s)u’ > ds

1.18
+ maxgex, v ((0), 0)} (1.18)
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V¥ (t) is a convex polytope which contains the exact reachabletd#hat since
eachv; (z,t) in (1.18) is a supporting hyperplane of the exact reachaildfsthe
system dynamics is linear time invariabt; (t) becomes

r .
VEE) = Ny {2 of (2,0) < fqtrmaxj < e *h;(0), Bu! > ds (1.19)
+max,()ex, v; (2(0),0)}

1.3.2 Feedback linearizable nonlinear systems

In this section, we consider a class of nonlinear systenis {2 Wwhich u(t) is a
feedback control:

&(t) = f(z) + g(x)u(t) (1.20)
where
u(t) = a(z(t)) + b(z(t))v(t) (1.21)

We assume that there exists a diffeomorphBnsuch that: = T'(x), which trans-
forms, with a control input:(¢), a nonlinear system (1.20) into an equivalent linear
system [27]. Then, we can compute an overapproximate farweachable set for
the nonlinear system (1.20) as follows:

e Step 1: Transform the nonlinear system (1.20) to an equitdileear system,
2(t) = A(t)z(t) + B(t)v(t) with appropriates(t) andT.

e Step 2: Compute a polytopic overapproximate forward rellensetV * (¢) of
the linear system following the procedure in Section 1.3.1.

e Step 3: Using the inverse state transformatios 7-!(z), we obtain the over-
approximate forward reachable set for the original nomlireystem (1.20) from
VE(t).

Since there is no approximation during the transformatiahtae transformationis a
diffeomorphism on a given domain of interest, the forwa@tteble set obtained in
Step 3 is guaranteed to be an overapproximate forward rbbcet of the nonlinear
system (1.20).

1.3.3 Linear dynamic games
Now, we consider the linear dynamic game:

#(t) = A(t)z(t) + B(t)u(t) + C(t)d(t),

z(0) € Xo, u(t) € U, d(t) € D (1.22)

where the initial setX,, the admissible control input séf, and the disturbance
input setD are assumed to be convex polytopes which h&ayeV,,, and N, faces
respectively. Then, the HJI equation in (1.3) for a forwardahable set computation
becomes[19, 20],

Dyv(zx,t) +max,ey minge p{< Dyv(z, 1),

A(t)a(t) + B(t)u(t) + C(t)d(t) >} =0 (1.23)
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To find an overapproximate solution to (1.23), we look for aafdinear functions
v (z,t) in (1.11) satisfying (1.13), and compute

Do (2,t) + max,ey minge p{< Dy} (z,1),
A)z(t) + B(t)u(t) + C(t)d(t) >}
= maxyev {< hi(t), B(t)u(t) >}
+minge p{< hi(t), C(t)d(t) >}
< u(t)

We denote{u?, -+ ,u™«} and{d!, - ,d™} as the vertices of/ and D respec-
tively. Since (1.24) is linear with respectttandd, the maximum and the minimum
in (1.24) are achieved at verticesldfand D as follows:

(1.24)

max < h;(t), B(t)u’ > +min < hi(t), O(t)d" >< u(t) (1.25)
J
forj € {17 : 7mu}7 ke {11 e 7md}'

By choice ofu(t) = max; < h;(t), B(t)u/ > +miny < h;(t),C(t)d* >, the
polytopic overapproximate reachable &t (¢) for the linear dynamic game (1.22)
is

N

V() = ﬂ{x;vj(x,t)g/o u(s)ds + max ;' (2(0),0)} (1.26)

0)eX
i=1 2(0)€Xo

1.3.4 Norm-bounded nonlinear systems

In this section, we consider a norm-bounded nonlinear syste

() = A(t)x(t) + B(t)u(t) + ¢(z, ),
2(0) € Xo, u(t) € U, ||¢(x,t)| < B(t) (1.27)

where the initial seX and the admissible control input $étare assumed to be con-

vex polytopes which havd” andN,, faces respectivelyl.- || represents the Euclidean
norm;3(-) is a positive-definite function. Then, the HJI equation irB{becomes

Dyv(z,t) + max{< Dyv(x,t), A(t)z(t) + B(t)u(t) + ¢(z,t) >} =0 (1.28)

uelU

To compute an overapproximate solution to the HIB equati¢t.28), we find the
linear functionsy” (z, t) in (1.11) satisfying (1.13), and compute

i (2,1), A(t)x(t) + Bt)u(t) + ¢, 1) >}

Dy (z,t) + maxyep{< Dyv

= maxyer {< hi(t), é(t)u(t) > 1< D). ol 1) >
< maxyer{< hi(t), B(t)u(t) >} + 51RO + [lo(z, 0)]?)
< max;{< hi(t), B(t)u >} + 3 (Ilh I +6(t)%)

< u(t)
(1.29)
If we chooseu(t) such that
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p(t) = max < hi(t), B(t)u’ > +5 (Hh 12 +8(t)%) (1.30)

J

then, a polytopic overapproximate reachableée&t(t) for the norm-bounded dy-
namical system (1.27) is
V*H(t) = ﬂl REEER fo max; < h;(s), B(s)u/ >
+3([lhi(s )II2 +ﬁ( )’ ]d5+maxz(0)exo v (2(0),0)}

If ¢(x,t) belongs to a polytope with verticeg®, --- , ¢™¢}, a polytopic overap-
proximate reachable sét* (¢) becomes

V() = ﬂfil{x cvf (1) < fg[maxj < hi(s), B(s)u? >
+ maxy{< hi(s), o* >}ds + max,(g)ex, v; (z(0),0)}

(1.31)

(1.32)

1.4 Examples

We consider three examples: a linear system, a norm-bouratditiear system,
and we conclude with the example which motivated this stagwgnlinear, feedback
linearizable, dynamic game. Note that equation (1.7) plesbverapproximations of
the sets of reachable states over a range of times (the flowhelimplementation,
we compute overapproximations of the reachable sets affispiestants of time
without interpolation between the sets.

1.4.1 Linear dynamical systems

In this section, we consider a linear dynamical system Ax + Bu, 2(0) € X,
where the control input(¢) can vary inside a convex polytoéand the initial set
X is also a convex polytope. The system parametér®( X,, andU) givenin [11]
are used. Figure 1.1 shows the evolution of the projectiomsoandx, over time.
This result is similar to that in [11], yet computation timéthwthe method shown
in Section 1.3.1is 1.17 seconds (which includes plottirggrésult shown in Figure
1.1) using MATLAB on a 700MHz Pentium Il PC. For compariséime algorithm
proposed in [11] takes 18 seconds using the same parameters.

1.4.2 Norm-bounded nonlinear systems
We consider a norm-bounded nonlinear system
& = A(t)x + B(t)u(t) + ¢(z,t), x(0) € Xo, u(t) €U (1.33)
where the initial sefXy and the control input séf are convex polytopes. The non-

linear functiong(z, t) is assumed to be norm-bounded ilgs(z, t)|| < 3t where
t > 0. The system parameters are defined as follows:
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4D example: projected onto X and X,

3.5

25

time

15

0.5

10 . B L
0
10 10 15

-10 -5 0 5

Xy Xy

Fig. 1.1.The forward reachable set of a four dimensional linear dyocalsystem (projection
ontoxrs andxy).

—0.5 4.0 -1
A= {—3.0 —0.5}’ b= { 0 }

Xo = [4,5] x [4,5], U = [~0.1,0.1]

The evolution of the forward reachable set over time is shiowFigure 1.2 and its
computation time i$.87 seconds (including plotting the result) using MATLAB on
the same PC.

1.4.3 Conflict resolution between two aircraft

Last, we consider the two aircraft collision avoidance peoh as an example of
feedback linearizable nonlinear systems and linear dyngarnes. This is the same
problem (the motivation for this research) described irti8ad..2. Figure 1.3 shows
the relative configuration between two aircraft showingphetected zone.

Aircraft 1 tries to avoid a conflict with aircraft 2 within tHienits of its capability.
Thus, we want to compute a backward reachable set (unsafieaatthe target set
(protected zone). The target set represents the statesviloah the two aircraft
would eventually have a conflict no matter how aircraft 1sttie avoid it [5].

Using dynamic extension [27] with; as a new state variable (comparedto (1.5)),
we obtain a new nonlinear model which is feedback lineatezf8],
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Reach set for norm-bounded nonlinear system: x‘ = Ax + Bu + @(x,t)

Fig. 1.2.The forward reachable set of a norm-bounded nonlinearsyste

& 0; coSP;

Ui o; sin; .

i = ) (7’ € {17 2})
i wj
op a;

r
Polytopic approximation of Y, 2
the protected zone ( Y,) 2
ac, X

protected zone

Fig. 1.3.Relative configuration of two aircraft showing the protectene.

(1.34)
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whereaq; is the acceleration of aircraftand is a new control input. Thus, the new
state and input variables agg:= [z; y; 1; 0;]7 andn; := [a; w;|T respectively. We
introduce a change in state variables= T'(¢;), and a change of the input variables,
n; = M(&;)u;, as in [28]. We denote thdt andM are diffeomorphisms everywhere
except ats; = 0. Then, the feedback linearized model of the nonlinear kimtgnm
aircraft model in (1.34) obtained through the transforovail” and M is [28]:

orT

K2

with A and B defined in [28].

View Azimuth 80°, Elevation 10°

Xr yr

Fig. 1.4. Comparison between overapproximate (grid) and exactd)sbickward reachable
sets (unsafe sets) of conflict resolution between two dircra

The relative kinematic aircraft model between two airceafh be obtained by
introducing new state§. := & — &; in the original nonlinear state space and=
z9 — z1 in the linearized state space. Thus, a linearized relaiivenkatic aircraft
model is

%2p = Azy + Bus — Buy, wus € U, u; € D, (1.36)

where the admissible control input détand the disturbance input sBtare poly-
topes. This is a linear dynamic game since aircraft;) {ries to keep aircraft 2 from
entering into its protected zone (target set) to preventrdlico but aircraft 2 {-)
tries to enter the protected zone of aircraft 1. A targetmettécted zone) is assumed
to be)y = [-5,5] x [-5,5] x [—m,x]. Using dynamic extension, we have per-
formed the computation in four dimensions (1.36) and prejgthe result onto the
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relative coordinate in three-dimensional space. A politoperapproximate back-
ward reachable set is first computed in the linearized spawe then the overap-
proximate backward reachable set in the original stateesjgagbtained through the
transformation§” and M. The overapproximate backward reachable set for conflict
resolution with heading changes only, using the targefsemnormalized aircraft
speedsr; = o2 = 5, angular velocitie$w,| < 1 and|w»| < 1 is compared with the
exact solution in [4] in Figure 1.4.

T (0 " ac
2
h()
h,t)
ac, \
unsafe
l h,®) zone

Fig. 1.5. Conflict scenario: Aircraft 2 reaches the boundary of theat;zone of aircraft 1
with a given initial relative angle...

The backward reachable set obtained by using the polytggcoaimation is
overapproximate of the exact reachable set and its conmputate is aboutl.0
seconds (including plotting the result as shown in Figud) ising MATLAB on
the same PC, where the numerical solution to the exact PDiakb$ approximately
4 minutes on a Sun UltraSparc Il with 50 grid nodes in each dsion. Figure 1.5
shows a conflict scenario in which aircraft 2 tries to enter tinsafe zone. When
aircraft 2 reaches the boundary of the unsafe zone, the abtiomtrol input for
aircraft 1 can be easily obtained as follows:

ui(t) = argmaxy, ep{< Dyv(z,t), —B(t)ui(t)) >}
B S ATy j (1.37)
= argmax; < e h1(0), —Buj >

Figure 1.6 shows a simulation for conflict resolution betwé®e two aircraft
with the initial condition(z, = 10, y, = —20,4, = 115°). Since both aircraft
behave optimally, the relative position of aircraft 2 mowdsng the boundary of
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conflict resolution with the optimal strategies v = 115°
15 T T T T T T

10r unsafe zone

/

acl

-20 -15 -10 -5 0 5 10 15 20 25

Fig. 1.6.Conflict resolution simulation with relative initial statér, = 10, y» = —20, ¢, =
115°). Aircraft 1 tries to avoid a conflict with aircraft 2 with thegttmal strategy.

the unsafe set. As expected, chattering occurs along thedaoy To avoid such a
phenomenon, one would introduce a buffer zone around thedaoy so that the
control inputs change smoothly as aircraft 2 approachelsagbhadary.

Using similar analysis to the above, we many obtain the wam@oximate back-
ward reachable set. This is obtained for the collision aangd example, using the
same parameters, and compared in Figure 1.7 with the overdpate set.

1.5 Conclusions

The polytopic approximation gives an overapproximatiothef exact reachable
set and is computationally efficient: it requires solvingtrxaexponentials instead
of a Hamilton-Jacobi partial differential equation. Thetadatructure of the poly-
topic approximation method becomes more complicated thainaf the ellipsoidal
approximation method [17] as the number of faces of the pplgtincreases, yet
the computation of the matrix exponential is easier thawisglthe (usually Riccati
type) differential equation required for the ellipsoidadtimods. The optimal control
input can be easily computed from the Hamiltonian since theitonian is linear
with respect to the control, and the control input set is aremmolytope. The poly-
topic approximation method can be applied to high dimeraieypstems which may
not be solved exactly without substantially increasingdbmputational time. This
may be done by decomposing the computation of an approxaméiver or under)



1 Applications of Polytopic Approximations of ReachablésSe 15

Comparison between over- and under—approximations

-2

T -10 -5 0

Fig. 1.7. Comparison between the under and overapproximate backwadhable sets for
conflict resolution between two aircraft.

of the reachable set into a number of computations of apprations of subsystem
reachable sets [29].
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