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Abstract— Hybrid automata theory is an ideal mathematical
framework for modeling biological protein signaling mecha-
nisms. Reachability analysis of these models is essential, be-
cause the set of points backward reachable from a biologically
feasible equilibrium contains all initial protein concentrations
from which that steady state can be attained. This is useful
for determining experimentally verifiable properties of the
system under study. This paper proposes an algorithm for
computing discrete abstractions of a class of hybrid automata
with piecewise affine continuous dynamics, defined completely
in terms of symbolic variables and parameters. These discrete
abstractions are utilized to compute symbolic parametric
backward reachable sets from the equilibria of the hybrid
automata. The algorithm has been implemented and used to
compute reachable sets for the biologically observed equilibria
of multiple cell Delta-Notch protein signaling networks.

I. INTRODUCTION

Protein signaling is an essential biological process that
controls phenomena throughout the life cycle of a cell, from
cell differentiation and growth, to apoptosis, or programmed
cell death. Signaling involves interactions between proteins
in both extracellular and cytoplasmic domains. These in-
teractions affect the activation and concentration of the
proteins involved. When one protein regulates another, it
may promote, i.e. increase the activation or concentration
of the target, or repress, i.e. decrease the activation or con-
centration of the regulated protein. Mathematically, this can
be modeled using a piecewise affine hybrid automaton with
different linear ordinary differential equations governing the
continuous dynamics of the proteins in different modes
of operation, i.e. when protein activity or production is
switched on or off. The hybrid automaton can be analyzed to
determine the equilibrium points of the system, and regions
of state space can be computed that are backward reachable
from the equilibria. This allows prediction of initial protein
concentrations that lead to a biologically feasible steady
state, which may be experimentally verifiable.

This paper presents a novel algorithm that iteratively
partitions the state space of a piecewise affine hybrid
automaton with symbolic parameters and rate constants,
to produce an abstracted discrete transition system. The
proposed abstraction algorithm uses a systematic way of
computing transitions and exact symbolic solutions of the
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continuous differential equations to iteratively refine the
partitions. An under-approximate backward reachable set
from the equilibria of the automaton is then computed on
the discrete abstraction. The most important characteristic
of the analysis is that it is completely symbolic, i.e. none of
the parameters such as protein production, activation, and
decay coefficients or switching thresholds are numerically
instantiated. Reachable sets and constraints that involve
ratios of symbolic kinetic parameters are generated; for
example, constraints on the relative rates of production of
two different proteins so that a biologically feasible equi-
librium is reached. The first section contains a summary of
the properties of the Delta-Notch protein signaling network,
followed by a section that gives the formal definitions of
mathematical concepts used in the paper. The next section
describes and explains the abstraction algorithm, and its
implementation is discussed in the following section. Lastly,
the paper concludes with a summary of the reachability
computation results and an outline of current and future
research. A more detailed presentation of the algorithm and
results is given in [1].

II. DELTA-NOTCH PROTEIN SIGNALING NETWORK

The motivating example for this research is the Delta-
Notch protein signaling mechanism, which has been iden-
tified as a key player in several different development
processes, including pattern formation due to lateral in-
hibition [2], and is conserved across a broad spectrum
of organisms. The authors have previously developed and
analyzed hybrid automata models of the lateral inhibitory
function of Delta-Notch protein networks, which have been
described in detail in [3]. Each biological cell is modeled
as a four state piecewise affine hybrid automaton. The four
states capture the property that Notch and Delta protein
production can be individually switched on or off at any
given time.

The important properties of the hybrid automaton model
of Delta-Notch protein signaling are: (a) The continuous
dynamics in each discrete mode is given by a diagonal
state transition matrix (corresponding to the protein con-
stitutive decay), and a constant input vector (corresponding
to the constant protein productions). The modal invariants
are simple polynomial functions of the continuous state
variables, and the automaton is deterministic. (b) Discrete
state transitions are only triggered by the continuous flow
crossing a switching hyperplane, i.e. there are no discrete
transitions accompanied by a continuous state reset, and
no discrete jumps out from the interior of a mode. Hence
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the trajectories of the system are continuous, though not
necessarily smooth. (c) The number of discrete states that
contain equilibria are finite and enumerable, and the equi-
libria are in the interior of each state. Moreover, previous
analysis done by the author [3], have shown that additional
constraints on the system parameters (rate constants and
switching thresholds) can restrict the existence of equilibria
to biologically feasible modes. (d) The system is live, i.e.
forced transitions exist for all states that do not contain
equilibria.

III. DEFINITIONS

Definition 1: A piecewise affine hybrid automaton,
H = (Q,X,%,Init, f,Inv, R), is defined such that

) Q={q,q2,...,qm} is the set of discrete states;

2) X C R™ is the set of continuous state variables;

3) ¥ ={o1,09,...,0,} is the set of discrete inputs;

4) Init = Qo x Xj is the set of initial conditions;

5) flg,x) = Aqw + by is the continuous vector field
associated with each discrete state, where A, € R"*"
is a diagonal matrix, and b, € R";

6) Inv(g) = (Au(pi < 0)) A (A, (5 = 0) A (Ao >
0) A (NP1 < 0)) A (Au(Pm > 0)), where p; €

IDlt(q)7pj € Peq(Q)vpk S Pgt(Q)upl € ]Dle(Q)apm €
Pyc(q), is the invariant defining each discrete state,
where p() : X x ¥ — R is a polynomial;

7 R:Q x X x ¥ — 29%X is the transition map.

For this class of hybrid automata, the state transition
matrix A, is restricted to be diagonal with real eigen-
values. However, the elements of A, and b, are free to
be symbolic. Constraints may be imposed on these sym-
bolic constants to restrict the behavior of the model. The
polynomials defining the invariant of each hybrid state,
can be separated into five classes: Pj;(q), Peq(q), Pyi(q),
P,.(g), and P,.(q), according to their signs in the state. For
example, all polynomials p; € P;(q) are negative in state
q, and similar definitions hold for the other classes Peq(q),
etc. Pii(q), Peq(q), ..., Pye(q) are mutually disjoint, and
Vq, Pit(q) U Peg(q) U Pyi(q) U Pre(q) U Pye(q) is invariant.

This implies that the polynomials defining each state are
identical, their sign alone varies from state to state. These
classes are used to determine adjacency, i.e. whether two
states are geometrical neighbors in state space, in several
different steps of the abstraction algorithm presented in
Section IV. In the transition map, transitions caused by
the continuous flow of the automata crossing switching
boundaries defined by the state invariant are called forced
transitions.

Definition 2: A discrete transition system,

T = (Q,%,—,Qo,Qr), is defined such that
D Q={q,q2,---,qn} is a set of states;
2) ¥ ={01,09,...,0n} is a set of events;

3) —=C @ x X x @ is a transition relation;
4) Qo C @ is the set of initial states;
5) Qr C Q is the set of final states.

The transition system is finite if the cardinality of @) is
finite, and it is deadlock free if for every state ¢ € @, there
exists a state ¢’ € @ and an event sigma € X such that
q = ¢. Additionally, the transition system is live if for each
state ¢ € Q, transition ¢ = ¢ is eventually taken. A dual
representation of a finite transition system is an adjacency
matrix A € {0,1}"*", where ¢ € 1,2,...,n represents a
discrete state. In the adjacency matrix, a;; € A :a =1
means that a transition ¢; — ¢; exists, and a; ; = 0 means
no transition exists from ¢; to ¢;. The final states, ¢ € QF,
of the transition system are states that have no transitions
out of them.

The hybrid automaton H can be abstracted to the discrete
transition system 7' by removing the temporal evolution
of continuous state variables within each discrete state,
but preserving the transitions from one discrete state to
another. The set of events X of the transition system 7" then
correspond to transitions relations encoded in the transition
map R of the hybrid automaton H.

Definition 3: A state ¢ € @, of a transition system (that
may be a hybrid automaton H or a discrete transition system
T), is said to be reachable from another state ¢ if there exists
a finite sequence of transitions ¢ Do B, from
initial state ¢ to state . The state ¢ is said to be backward
reachable from the state g.

Extending this definition to sets of states, a region P C @)
of the hybrid automaton H or discrete transition system 7',
is backward reachable from a state ¢ € (@, if there exist
sequences of transitions leading from P to gq. When the
hybrid automaton H is abstracted to the discrete transition
system 7', its equilibria are abstracted to the states in the set
of final states Q. For a final state ¢ € QQ, the region P is
uniquely backward reachable from state ¢ if all sequences of
transitions from P terminate only in the state q. The regions
of attraction of the steady states of the hybrid automaton
therefore correspond to the uniquely backward reachable
sets for the final states of the abstracted discrete transition
system. Hence, the problem of computing the regions of
attraction of the hybrid automaton is transformed to the
problem of computing uniquely backward reachable sets
for the abstracted transition system.

The accuracy of the computed backward reachable set de-
pends critically on the expressiveness of the abstraction. If
the abstraction algorithm results in a completely determin-
istic discrete transition system then the computed uniquely
backward reachable set is exactly equal to the region of
attraction for a particular steady state. Even when such a
fine partition cannot be computed, it is possible, using the
proposed algorithm in this paper, to construct a best possible
abstraction that is partially deterministic and partially non-
deterministic, from which an under-approximation of the
backward reachable sets can be determined.

IV. ALGORITHM

This section describes, in detail, the partitioning algo-
rithm developed to iteratively refine an initial coarse parti-
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tion of the state space of a hybrid automaton. This algorithm
is applicable to the restricted class of hybrid automata
defined in Section III. The novelty of this algorithm lies in
that it uses the concept of Lie derivatives to systematically
compute transitions between the refined partitions and then
iteratively computes subdividing partitions that are solutions
of the governing differential equations in a discrete state of
the hybrid automaton.

Algorithm 1: Partitioning Algorithm
Input: A hybrid automaton:
H = (Q,X,%, Init, f,Inv, R), with restrictions
Output: A discrete transition system:

T = (QTvZTaHaQT,OaQT,F)

Step 1

foreach ¢ € @, such that P,.(q) # 0 or P,(q) # 0
define ¢y, g2, such that f(q1,2) = f(q2,7) = f(q,7),
and
Inv(q1) @ Pulqr) = Pu(q) U Pe(q), Peg(q1) =
é)eq( ), Pgt(q1) = Pyt (q)UPge(q), Pre(q1) = Pye(q1) =
Inv(q2) : Pi(q2) = Pit(q), Peq(q2) = Peg(q)UPe(q)U

Rqe(q)a Pgt(Q2) = Pgt(Q), P)le(qQ) = Pqe(q2) =0
refine @ = (Q\{q}) U {q1, g2}

Step 1: The initial partition of the hybrid automaton is
the partition induced by the switching surfaces and modal
invariants of the system. The first step of the algorithm
is to separate the interiors of the partitioned states from
the boundaries, thus dividing the states into two classes,
those that are defined by strict inequalities (i.e., interiors)
and those that are defined by at least one equality (i.e.,
boundaries).

The initial separation of boundary and interior states is
useful because it immediately returns a list of all the states
adjacent to a particular state. In terms of implementation,
this is useful because it allows transition checking only
between adjacent states. This is possible because, for the
type of automata under study, all transitions occur through
the boundaries as a result of the continuous vector flow.
Therefore, ensuring that transitions occur only between
adjacent states is crucial.

Step 2
foreach ¢, q; € Q, such that P.,(q) =0, P.y(q1) # 0, and
(Pre(q) N Pye(q1)) = (Pye(q) N Pie(q1)) =0
if vpz c (]Dlt(Q) N Peq(Q1))7Lq(pi)|1nv(q1) > 0
and Vp; € (Pyi(q) N Peg(q1))s Lg(Pj)|rnv(g) < 0s
where Ly (p())|rnv(q,) is the Lie derivative of p(y, w.r.t.
f(g,z), evaluated on Inv(q;) then R(q) — ¢1
foreach ¢,q1 € Q : ¢ # qi, such that P.,(q) # 0,
(Peq(q) C Pegl(a1)) V (Peg(qr) C Peq(q)), and (Pr(q) N
Pou(ar)) = (Py(a) 0 Pu(a)) =
if vpi € (Peq( ) n Peq(q ))’Lq(Pi”hw(q)
and Vp; € (Peq(q) N Pye(q1)), Lq(ps)l1nu(q)
and Vp,, € (Peq(q) N Pilar)); Lg(pr)lrno(q)
and Vp; € (Pu(q) N Peg(a1)), Lq(p) | rno(a)

v oAV
o O O O

and me S (Pgt(Q) N Peq(Ql))aLq(pnz,)|1nv(q1) <0
then R(q) — ¢

Step 2: The next step is to compute transitions be-
tween the partitioned states, based on the vector field of
the continuous dynamics in each partition. Adjacency is
checked strictly, since the automaton is restricted to have
only forced transitions. The procedure for finding transitions
is different for interior and boundary states. For interior
states, the Lie derivatives, under the vector field in the
partition, of each boundary polynomial is computed. Next,
the sign of each Lie derivative is evaluated on the boundary
itself. Depending on the sign of the boundary polynomial
inside the partition and the sign of its Lie derivative, the
direction of the flow from the interior to the boundary can
be determined. For boundary states, the sign of the Lie
derivatives of the polynomial equalities defining it have to
be evaluated first; if these Lie derivatives are non-zero (i.e.
positive or negative), then the trajectories have to exit the
state through those surfaces. If the Lie derivatives are zero
then the other boundary polynomials are checked for exit
transitions, as in the case of interior states. A boundary,
given by a polynomial p = 0, of a state appears as an
invariant for that state, as p < 0 or p > 0. For an exit
transition to exist through that boundary p = 0, the Lie
derivative L(p) has to be of the appropriate sign, i.e. if
p < 0 in the state, then L(p) > 0, and if p > 0 then
L(p) < 0 will ensure that a transition exists between the
state and the adjacent boundary with p = 0.

An interesting property of the Delta-Notch automaton,
and the class of automata it belongs to, is that sign changes
of the Lie derivative along a particular boundary do not
occur, which makes it easier to partition. If the boundary and
the dynamics are linear, then the sign of the Lie derivative
is always computable. In general, if finite-connectedness
between the partitions can be assumed, then the transition
generation step also always terminates.

Steps 3,4
while 3¢ € Q, such that |R(q)| > 1
if 3¢1 € @, such that R(q) — ¢1 and |P.,(q1)| —
|P.q(q)] = 2, if several possible ¢; exist, choose one
at random
compute partitioning surface g(z), such that g(x)
satisfies & = f(q,«) and Inv(q;)
define g2, g3, g1, such that f(g2) = f(q3) = f(q1) =
f(q). and
Inv(gz) = Inv(q) A g(z) < 0 and R(q2) =
(q)\{—> @i}, where ¢, g; are not adjacent
Inv(gs) = Inv(q) A g(xz) = 0 and R(qs) =
R(q)\{— ¢;}, where g3, ¢; are not adjacent
Inv(qs) = Inv(g) A g(z) > 0 and R(qs) =
R(¢)\{— ¢i}, where g4, ¢; are not adjacent
if 3¢; + R(q;) — q then R(q;) = (R(g;)\{—
q}) U;{— «}, where ¢;,q; are adjacent
refine Q = (Q\{q}) U {q2, g3, 4}
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else if dg; € @, such that R(q) — ¢ and Jp; €
Peq(Ql) % ¢ (Plt(Q) U Peq(Q) U Pgt(‘]))
define ¢, g3, q4, such that f(q2) = f(q3) = f(q4) =
f(g), and
Inv(qz2) = Inv(q) Ap; <0 and R(q2) = R(q)\{—
qi}, where ¢a2, ¢; are not adjacent
Inv(gs) = Inv(q) A p; = 0 and R(g3) = R(q)\{—
i}, where g3, ¢; are not adjacent
Inv(qs) = Inv(q) Ap; > 0 and R(qs) = R(q)\{—
gi}, where qq, ¢; are not adjacent
if 3¢; : R(q;) — ¢ then R(q;) = (R(g;)\{—
q}) U;{— a4}, where ¢;,q; are adjacent
refine Q = (Q\{q}) U {q2, g3, 44}
set Qr = Q, X7 =0,—=R,Qro = Qo
return 7' = (QT) ZT? ) QT,O)

Step 3: Once a coarse partition with an associated
transition map is computed for the hybrid automaton, a sub-
partitioning step is applied to the states in the abstraction
that have more than one exit transition. The sub-partitioning
step divides the state into several subsets, each of which
have exactly one exit transition, i.e. exactly one successor
state. This step is non-trivial, as each new partitioning
surface is a fully symbolic analytical solution to the continu-
ous differential equations for the state. The sub-partitioning
procedure is the most complex and is, in general, computa-
tionally intractable. Multiple transitions out of a state occur
when the vector flow encounters the intersection of two or
more boundaries of the state. The sub-partitioning surface is
a set of trajectories that are exact solutions of the differential
equations associated with that state, and that begins at the
intersection of the boundaries. Computing analytic time-
independent solutions to these sub-partitioning surfaces is
not always possible because of the symbolic coefficients
and indices. If the computation fails then this step will not
yield a finer partition. However, for a large number of states,
at least for hybrid automata with diagonal state transition
matrices, this sub-partitioning is achievable.

Step 4 When a state is sub-partitioned as above, into
several new states, its original predecessor state will now
have multiple transitions and thus the partitioning algorithm
will have to be iteratively applied to the predecessor states.
The iteration has to be continued until all states in the
partition have exactly one successor state, or none, in the
case of partitions containing equilibria. This final partition,
if computable, results in a discrete abstraction that is
completely deterministic.

To understand the nature of the partition produced by the
algorithm, its important properties are summarized here; the
coarsest partition that will be produced is the one induced
by the invariants of the hybrid automaton itself, without
further refinement, and whose states won’t have unique
successor states, in general. When the refinement procedure
is computable for a state, each subdivision will have an
unique successor. If the iteration reaches a fixed point where
all states have unique successors, then the abstraction is

) Réach Set for 1

/// ::”F.i.;ach Set for2

Fig. 1. Schematic state transition diagram showing approximate backward
reachable sets from final states.

complete. Using the adjacency matrix of the deterministic
transition system thus produced, an exact and uniquely
backward reachable set of states can be computed from the
equilibria of the automata.

Unfortunately, not all sub-partitions are computable. In
that case, determinism for those states or their predecessor
states up the sequence of transitions cannot be guaranteed.
The predecessor states of the final states, if they transition
only into the final state, will not have to be sub-partitioned,
and so on iteratively for their predecessors. If chains of such
states terminating in a final state emerge from the algorithm,
a local fixed-point of the partition, i.e. a partially determin-
istic abstraction, will have been computed. Since the system
is live, i.e. for all non-final states, a forced transition exists,
the union of these states will give an under-approximation of
the unique backwards reachable set from that equilibrium,
because all points in those states are guaranteed to reach
that final state and only that final state. It is an under-
approximation because there might be other regions of state-
space which converge to the final state of interest, however
the refinement step fails to delineate them exactly, because
of computability or decidability issues. Hence, in that case,
the best possible partition, under the circumstances, will
have been achieved (Fig. 1). Of course, in the worst case,
there might not exist even a single predecessor state of the
final state that can be sub-partitioned, and the approximate
reachable set reduces to the final state itself. However, in
the class of Delta-Notch automata that have been studied
by the authors, large portions of the state space have been
identified that are uniquely and exactly reachable from one
equilibrium or the other.

V. IMPLEMENTATION

The model abstraction algorithm has been implemented
using MATLAB, and the symbolic and string manipulations
are also done in MATLAB. Each state of the current
partition iteration is stored in a data structure that stores
the signs of the invariant polynomials defining the state, the
continuous vector flow associated with the state, and a list
of the predecessor and the successor states. However, since
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MATLAB does not have a decision procedure subroutine,
the decision procedure on the polynomials while checking
transitions is done using QEPCAD [4]. To reduce com-
putational load, MATLAB and QEPCAD run on different
computers and MATLAB communicates with QEPCAD
through a TCP/IP socket every time a decision procedure
run is required. The MATLAB program takes a canonical
description of a hybrid system and parses it into states,
invariants and associated continuous dynamics. For the first
iteration, the program automatically computes the transition
graph for the coarse initial partition. However, the iterative
refinement procedure requires some manual analysis, as
the MATLAB symbolic solver cannot always solve the
differential equations for the new partitioning surface, which
has to be done by hand. Then, the new states are added to
the state vector and transitions are checked, if computable.
Given below is an example of the input to the program, a
portion of the definition of the hybrid automaton describing
a two cell Delta-Notch system:

o°

o o

o

Delta-Notch Signaling Hybrid Automaton

Number of cells: 1x2
Number of state variables:
Number of discrete states:

4
16

Inv: -x2-hD < 0 /\ x3-hN < 0 /\ -x4-hD < 0 /\ x1-hN < 0

xldot = -1D*x1
x2dot = -1N*x2
x3dot = -1D*x3
x4dot = -1N*x4,

Inv: -x2-hD < 0 /\ x3-hN < 0 /\ -x4-hD < 0 /\ x1-hN >= 0

xldot = -1D*x1
x2dot = -1IN*x2
x3dot = -1D*x3
x4dot = RN-1N*x4,

Each mode of the hybrid automaton is defined using invari-
ant inequalities and the associated differential equations. For
the two cell automaton abstraction, the algorithm starts with
a coarse partition with 14 out 81 states that have more than
one exit transition, and at the final iteration has 18 out 169
states that are unpartitionable. As shown in the histograms
of Fig. 2, the number of states with multiple transitions
rises slightly, however, as a percentage of the total number
of states, it drops from around 18 per cent to around 10 per
cent.

First Iteration Last Iteration

Number of states
Number of states

0 o 50 O o 5 0
Number of transitions Number of transitions

(a) (b)

Fig. 2. Histograms displaying the number of states which have a particular
number of exit transitions.

The reachability computation is also done using MAT-
LAB, on the adjacency matrix of the final abstraction
using a post processing tool. The post processing tool can
plot the connectivity graph of the discrete abstraction, as
shown in Fig. 3(a), at any iteration stage. The adjacency
matrix, displayed in Fig. 3(b), is utilized to compute the
backward reachable states from an equilibrium state. Notice
the sparsity of the adjacency matrix, this implies that the
partition is at a stage where most states are finely refined,
and have only a single exit transition. The states with
multiple exit transitions are shown as rows with dots in
multiple columns in Fig. 3(b), and further refinement may
not be possible.

Connectivity Graph

Adjacency Matrix

~

State

Fig. 3. (a)The connectivity network graph of the discrete abstraction,
each circle on the perimeter represents a state. (b) The adjacency matrix
of the same discrete abstraction, each dot in position (%,7) represents a
transition from state g; to q;.

VI. RESULTS

The algorithm has been used to analyze the one cell,
two cell and four cell Delta-Notch automata. The discrete
abstraction of the one cell automaton is exact and the initial
conditions converging to the equilibrium can be determined
exactly. The computation for the two cell automaton is more
interesting, as behavioral complexities arise from putting
the two cells together in a simple network. The two cell
hybrid automaton, Hyyo cet;, has four continuous states
Tr1,Ts, T3, x4, representing the Delta and Notch protein
levels in cells 1 and 2 respectively and sixteen discrete
states in which each protein’s production is either turned
on or off. Even though the vector flow in each state
is relatively simple, being given by a piecewise affine
differential equation with a diagonal state transition matrix,
the switching between states makes the behavior of this
system quite complex. After the algorithm had converged
and no further partitions could be refined, the backward
reachable sets from the two biologically observed equilibria
were computed.

Since the state space is four dimensional, it is difficult
to visualize the reachable sets. One visualization technique
is to draw projections on to three dimensional space, as in
Fig. 4. In all the projection diagrams, the cyan and green
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sets are under-approximations of the backwards reachable
sets from equilibrium 1 and 2, respectively. The two pictures
in the top row of Fig. 4 are two different views of the
reachable sets projected onto the x5 — 1, x4 — 22, 3 Space,
to show their structure. The curved surface of the green
reach set is actually a projection of one of the partitioning
polynomials generated by the algorithm. The pictures on the
bottom row are views of the projection on the x1,x3, x4 —
29 plane and show the spatial complexities of the refined
partition.

o~

e
Eqlbm. 1 b

Eqlbm. 2
|
)

Eqlbm. 2

Eqlbm. 1
0

Fig. 4. Projections showing computed backward reachable set from the
equilibria for the two cell Delta-Notch automaton. The cyan set represents
the reachable set for equilibrium 1, and the green one for equilibrium 2.

Biological Significance

The two cell Delta-Notch system is a competitive net-
work, and it tends to amplify differences in initial protein
concentrations between the two cells. From the computed
reachable sets, the following patterns of behavior of the
system can be discerned: (a) If the initial protein concen-
trations are such that z3 — x7 > 0 A xgy — 29 < 0, the
system converges to equilibrium 1, i.e. x2, z3 have a high
steady state concentration, and x1,x4 have a low steady
state concentration. The network essentially amplifies the
difference between the initial Delta protein concentrations
of both cells and initial Notch concentrations between the
two cells. As expected, for the symmetric case, if the initial
concentrations are such that z3 — 1 < OAxgy — a9 > 0,
equilibrium 2 is attained, where x;,2x4 have high steady
state values and x5, x3 have low steady state values. (b) A
Zeno trajectory exists when x1 = x3 A 9 = x4 initially.
This is because, if there are no initial differences, the
network cannot converge to a steady state where there is a

clear winner. In a nonlinear model, this would correspond to
a saddle solution. (c) The third mode of behavior is very in-
triguing. The backward reachable sets indicate that there are
certain sets of initial conditions, for both equilibria, where
the system behaves non-intuitively: The initial difference
in protein concentration between cells is not amplified. For
example, with initial conditions 3 —x1 < 0A x4 — 22 < 0,
the network can still converge to equilibrium 2, where at
steady state x4 — x2 > 0. Therefore the difference in initial
Notch protein concentrations is reduced and reversed, if
the initial conditions satisfy some other conditions such as:
($3—hN S 0/\—I4—hD < 0/\( —%(I4—I2))AD S
(,%)AN ). The reason that such behavior is possible, is
because the kinetic parameters for protein production and
decay, and the switching thresholds, may be different for
different proteins. Sets of initial conditions exist, where the
initial concentration of some proteins are such that they can
suppress, or promote, the production of other proteins long
enough for the initial difference in concentrations between
the two cells to be reduced or even reversed. This prediction
of potential mutant behavior would be very interesting to
test in a biological experiment.

VII. CONCLUSION

This paper describes the development and implemen-
tation of a new partitioning algorithm, using Lie deriva-
tives and iterative refinement by exact solutions, to ob-
tain discrete abstractions of piecewise affine autonomous
hybrid automata with fully symbolic kinetic parameters.
The discrete abstraction provides a substrate for computing
under-approximations of backward reachable sets from the
equilibria of these automata. The approximate reach set
is then used, in a biological model, to determine initial
conditions from which specific biologically observed steady
states are reached. The authors’ current research is focused
on computing reachable sets for larger cell networks, and
techniques to query them for biologically significant prop-
erties. Work is also in progress to apply the reachability
analysis techniques developed here to the planar cell po-
larity (PCP) signaling network in Drosophila wings, which
has been previously modeled as a hybrid automaton [5].
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