Nano-Electro-Mechanical Memory Technology for Future Compact and Ultra-Low-Power Integrated Systems

<u>Tsu-Jae King Liu</u>, Wookhyun Kwon and Louis Hutin Electrical Engineering and Computer Sciences Department University of California at Berkeley

April 20, 2012

IEEE Workshop on Microelectronics and Electron Devices

A Vision of the Future

More than Moore's Law

 <u>Energy efficiency</u> and functional capabilities beyond the limits of CMOS devices will be needed for electronics to expand into new applications.

Outline

Introduction

- MEMS technology
- Non-volatile memory (NVM) technology
- MEMs-based NVM technologies
- Conclusion

MEMS Technology

Surface Micromachining

(cross-sectional view)

structural film	
Si wafer substrate	
Si wafer substrate	

- Mechanical structures can be made using conventional microfabrication techniques
- Structures are freed by selective removal of sacrificial layer(s)

Electrostatic Gap-Closing Actuator

- F_{spring} increases linearly with displacement Δg , whereas F_{elec} increases super-linearly with Δg .
- → As the applied voltage difference (V) is increased beyond a critical "pull-in voltage" (V_{PI}), the beam snaps down.

Hysteretic Switching Behavior

- When the beam is pulled in, F_{elec} is larger than F_{spring}.
- \rightarrow V must be reduced below the "release voltage" (V_{RL} < V_{PI}) to release the beam.

DMD[™] Projection Display Chip

Texas Instruments Inc.

- Electrostatically actuated mirrors are made using metal structural layers (Al alloys)
 - sacrificial material is photoresist

SEM image of pixel array

Each mirror corresponds to a single pixel, programmed by an underlying memory cell to deflect light either into a projection lens or a light absorber.

Non-Volatile Memory Technologies

ITRS (Table ERD3), 2011 Edition

		Baseline Te	aseline Technologies Prototypi		totypical techn	ologies
		Fla NOR Embedded	nsh NAND Stand-alone	FeRAM	STT-MRAM	PCM
Storage Mechanism		Charge trapped in floating gate or in gate insulator		Remnant polarization on a ferroelectric capacitor	Magnetization of ferromagnetic layer	Reversibly changing amorphous and crystalline phases
Cell Elements		1	Т	1T1C	1(2)T1R	1T(D)1R
Feature size F, nm	2011	90	22	180	65	45
reature size r, nm	2024	25	8	65	16	8
Cell Area	2011	10 F ²	4 F ²	22F ²	20F ²	4F ²
Cell Area	2024	10 F ²	4 F ²	12F ²	8F ²	4F ²
Read Time	2011	15 ns	0.1ms	40 ns	35 ns	12 ns
Keau Ilme	2024	8 ns	0.1ms	<20 ns	<10 ns	< 10 ns
W/E Time	2011	1µs/10ms	1/0.1 ms	65 ns	35 ns	100 ns
W/L 1Ime	2024	1μs/10ms	1/0.1 ms	<10 ns	<1 ns	<50 ns
Detertion Time	2011	10 y	10 y	10 y	>10 y	>10 y
Retention Time	2024	10 y	10 y	10 y	>10 y	>10 y
Wite Cooler	2011	1E5	1E4	1E14	>1E12	1E9
Write Cycles	2024	1E5	5E3	>1E15	>1E15	1E9
	2011	10	15	1.3-3.3	1.8	3
Write Operating Voltage (V)	2024	9	15	0.7–1.5	<1	<3
Pand Oneverting Valence (D)	2011	1.8	1.8	1.3–3.3	1.8	1.2
Read Operating Voltage (V)	2024	1	1	0.7–1.5	<1	<1
	2011	1E-10	>2E-16	3E-14	2.5E-12	6E-12
Write Energy (J/bit)	2024	1E-11	>2E-17	7E-15	1.5E-13	~1E-15

In contrast to logic switches, NVM devices can have:

- Long write/erase times (>1 us)
- Modest endurance (< 10⁶ cycles)
- Large operating voltages (>1 V)

Cross-Point Array Architecture

- Most compact architecture (4F² cell size)
- Requires selector device at each cross-point to reduce "sneak" leakage current during a read operation

20 nm Phase Change Memory

Fig. 12 Cross sectional SEM images along (a) BL direction and (b) WL direction, respectively. (c) TEM image of cell module along BL direction.

M. J. Kang et al. (Samsung Electronics), IEDM 2011

Outline

• Introduction

• MEMs-based memory technologies

- Early designs
- Recent design for cross-point array architecture
- Conclusion

First MEMS NVM Cell

B. Halg, IEEE Trans. Electron Devices, Vol. 37, pp. 2230-2236, 1990

Fig. 1. Schematic drawing of a micro-electro-mechanical nonvolatile memory cell based on a bistable bridge (B) on a spacer (S) on the substrate (SUB) with lateral electrodes (L). The materials used are indicated, and the symbols for the dimensions are defined.

Fig. 6. Experimentally observed and calculated switching voltages V as a function of the length l_0 of a 300-Å-thick bridge.

- Bistable buckled beam
 - Switched with electrostatic force
 - Immune to radiation, shock
- Too large (>100um²) for reasonable storage capacities...

Nanomech[™] NVM Technology

M. A. Beunder et al. (Cavendish Kinetics Ltd.), Non-Volatile Memory Technology Symposium, 2005

Fig. 2. Nanomech cantilever programming event

Characteristics	Value	Value – Example: 0.18µm CMOS
Bit Cell Size (inc.		
programming transistor)	$18F^{2}$	2.2 μm
Programming Voltage	native	1.8 V
Write time	1-5 µs	3 µs
Write current	1-5 mA	2 mA
Read Voltage	100mV	100 mV
Leakage current	0 mA	0 mA
Endurance	8	80

- Cantilever beam
 - Programmed with electrostatic force
 - Surface forces hold beam down
 - Immune to radiation, extreme temperatures
- MTP operation is a challenge...

Table 1. Nanomech eFuse Device Characteristics (nominal process values)

Improved NanomechTM Technology

R. Gaddi et al. (Cavendish Kinetics), Microelectronics Reliability Vol. 50, pp. 1593-1598, 2010

TEM cross-section

Endurance test results

- The beam can be pulled out of contact by biasing the cap.
- A select device (*e.g.* a transistor) is needed for each MEM switch in the memory array.

Electro-Mechanical Diode NVM Cell

W. Kwon et al. (UC Berkeley), IEEE Electron Device Letters, Vol. 33, pp. 131-133, 2012

• Achieve bi-stable operation of an electrostatic gap-closing actuator by leveraging the built-in electric field of a diode:

Memory Cell/Array Operation

	SET	RESET	READ
Selected WL P-type	0 Volts	$V_{Reset} > V_{RL}$	$V_{Read} > 0 V$
Selected BL N-type	$V_{Set} > V_{PI}$	0 Volts	sense amp.
Unselected WL P-type	V_{Set}/2 < V _{PI}	0 Volts	0 Volts
Unselected BL N-type	V_{Set}/2 < V _{PI}	0 Volts	(floating)

<u>SET Operation</u>: Cells along the same WL can be written together.

<u>RESET Operation</u>: Cells along the same WL are Reset together.

<u>READ Operation</u>: Reverse diode leakage of all other cells along the same BL should be less than Forward diode current of Set cell.

First Prototype Devices

W. Kwon et al. (UC Berkeley), IEEE Electron Device Letters, Vol. 33, pp. 131-133, 2012

- Cross-point arrays of MEM diodes were fabricated using conventional planar processing techniques.
 - The WL (100-nm p-type poly-Si_{0.4}Ge_{0.6}) is supported by SiN_x spacers formed along the sidewalls of the BL (100 nm n-type poly-Si).
 - The air-gap (~13 nm thick) between the WL and BL is formed by selectively removing a sacrificial layer of LTO using HF vapor.

Bird's-eye view of memory array

Cross-sectional view of a bit-cell

MEM Diode Set Operation

W. Kwon et al. (UC Berkeley), IEEE Electron Device Letters, Vol. 33, pp. 131-133, 2012

 A sudden increase in current is seen at the voltage when the WL is pulled in to the BL.

− $V_{\text{Set}} \cong 6$ V, $t_{\text{Set}} \cong 2$ us

 Since it is an applied voltage (not current) that is required to actuate the WL, the Set current can be lowered by inserting a currentlimiting resistor.

Measured *I-V* Characteristics

W. Kwon et al. (UC Berkeley), IEEE Electron Device Letters, Vol. 33, pp. 131-133, 2012

MEM Diode Reset Operation

W. Kwon et al. (UC Berkeley), IEEE Electron Device Letters, Vol. 33, pp. 131-133, 2012

 To Reset a memory cell, a voltage pulse is applied to counteract the built-in field of the p-n diode.

– forward bias \rightarrow current flow

 A sudden decrease in current is seen at the voltage when the WL comes out of contact with the BL.

- $V_{\text{Reset}} \cong$ -6 V, $t_{\text{Reset}} \cong$ 100 ms

Measured Retention Behavior

W. Kwon et al. (UC Berkeley), IEEE Electron Device Letters, Vol. 33, pp. 131-133, 2012

Measured Endurance Characteristics

W. Kwon et al. (UC Berkeley), IEEE Electron Device Letters, Vol. 33, pp. 131-133, 2012

1E-04 1E-05 $0 - \alpha$ 1E-06 1E-07 Set: V_{BL}=6V, V_{WL}=0V, 1msec Current| [A] 1E-08 Reset: V_{BL}=-15V, V_{WL}=0V, 100msec Read : V_{BL}=-1.2V 1E-09 1E-10 1E-11 1E-12 1E-13 1E-14 10 100 1000 10000 1

P = 1 atm; T = 25°C

of cycle

Cell Scaling Methodology

• In the Set state, the built-in electrostatic force must be larger than the spring restoring force. The ratio of these forces is given by the equation

$$\frac{F_{spring}}{F_{elec}} \propto \left(\frac{t}{l}\right)^3 \frac{g}{l} \frac{E}{E_{max}}$$

- *t* = beam thickness
 - *I* = beam length
- g = gap thickness
- *E* = Young's modulus
- **E**_{max} = peak electric field at the junction

\rightarrow t and g should be scaled down together with the beam length

Beam Scaling Theory

		EWt^3		
k _{eff}	X	$\frac{l^3}{l^3}$		

W = beam width A = actuation area

Scaling
Factor
1/κ
1 / κ ³
1/κ
1/κ
1 / κ ³
κ²
1

Beam Length Scaling Limitations

D. T. Lee et al., IEEE Trans. Electron Devices, Vol. 56, p. 688-691, 2009

• Structural materials with high yield strain will be needed to scale beam lengths to below 100 nm, for 5 nm actuation gap

Projected Performance

W. Kwon et al. (UC Berkeley), to be presented at the 2012 International Memory Workshop

Technology	4um	90 nm	20 nm	10 nm
Cell size	64 μm²	0.0324 µm²	0.002 µm²	0.0008 µm²
F ²	4 F ²	4 F ²	6 F ²	8 F ²
Structural material	Poly-SiGe	AI	TiNi	CNT
Young's Modulus	140GPa	77 GPa	14 GPa	5 GPa
Beam thickness	100nm	5 nm	4 nm	3 nm
Actual Gap thickness	36nm	3 nm	2 nm	2 nm
Set Voltage	7.0 V	2.8 V	2.4 V	2.1 V
Set Time	21 ns	0.3 ns	0.27 ns	0.12 ns

NVM Technology Comparison

W. Kwon et al. (UC Berkeley), to be presented at the 2012 International Memory Workshop

Technology	NAND Flash	РСМ	STT-MRAM	Redox RRAM	Electro-mechanical diode
Cell Size	2.5 F ²	6 F ²	20-40 F ²	5-8 F ²	4-6 F ²
Scaling Limit	16 nm	5-10 nm	7-10 nm	5-10 nm	5 nm W x 20 nm L
Storage Mechanism	F-N Tunneling	Phase change by Joule heating	Electron spin torque transfer	lon transport and redox reaction	Mechanical gap closing actuation
Write/Erase Voltage	18-20 V	< 3 V	< 1.8 V	< 0.5 V	< 3 V
Write time	>10 us	50-120 ns	< 100 ns	< 5 ns	< 1 ns
Endurance	10 ⁴ - 10 ⁵	10 ¹⁵	10 ¹²	10 ¹⁶	>10 ¹⁰
Retention	10 yrs	10 yrs	10 yrs	10 yrs	> 10 yrs @ 200 ℃
Ease of Integration	10 Masks	2-3 Masks to BEOL	3-4 Masks to BEOL	2-3 Masks to BEOL	2 Masks
Write Energy per Bit	> 1 fJ	< 2 pJ	< 4 pJ	1 fJ	< 0.1 fJ

http://www.itrs.net/Links/2010ITRS/2010Update/ToPost/ERD_ERM_2010FINALReportMemoryAssessment_ITRS.pdf

• NEMory technology potentially offers the best performance and lowest energy consumption.

3-Dimensional Integration

Unity Semiconductor Corp.

 Conventional cross-point memory array technologies require 2 lithography steps per memory layer

- NEMory technology requires only 2 lithography steps to define the 3-D memory array
 - built-in redundancy (2 WL/cell)
 - allows for longer beam length

Outline

- Introduction
- MEMs-based memory technologies
- Conclusion

Conclusion

- Mechanical devices are attractive for NVM applications.
 - Performance is adequate.
 - Operating voltage and energy can be low.
 - Immune to radiation, heat, and mechanical shock.
 - Potentially very low manufacturing cost.
- The electro-mechanical diode cell design is well suited to a cross-point array architecture. The first prototypes show

✓ excellent retention behavior

✓ good endurance

indicating promise for embedded NVM applications.

• Optimization of thin-film materials and processes is needed to maximize cell performance and scalability.