Recent Progress and Challenges for Relay Logic Switch Technology

Tsu-Jae King Liu

Louis Hutin, I-Ru Chen, Rhesa Nathanael, Yenhao Chen, Matthew Spencer and Elad Alon

Electrical Engineering and Computer Sciences Department University of California, Berkeley, CA USA

June 12, 2012

Outline

- Introduction
 - Why relays?
 - Relay-based IC design
- Recent Progress
- Current Challenges
- Conclusion

Vision of the Future: Swarms of Electronics

Emergence of Ambient Intelligence

- Sense/monitor, communicate, and react to the environment

CMOS Voltage Scaling

- Scaling supply voltage (V_{DD}) reduces circuit speed
- Scaling threshold voltage (V_T) increases leakage

Why Relays?

- Zero OFF-state current (I_{OFF}); abrupt switching
 - Turns on by electrostatic actuation when |V_{GS}| ≥ V_{PI}
 - Turns off by spring restoring force when $|V_{GS}| \le V_{RL}$

Relay Endurance

- Endurance increases exponentially with decreasing $V_{\rm DD}$, and linearly with decreasing $C_{\rm L}$
- Endurance is projected to exceed 10¹⁵ cycles @ 1V

4-Terminal (4-T) Relay for Digital Logic

- Voltage applied between the gate and body brings the channel into contact with the source and drain.
 - Folded-flexure design relieves residual stress.
 - Gate oxide layer insulates the channel from the gate.

4-T Relay I_D - V_G Characteristics

Plan View SEM of 4-T Relay

- Zero I_{OFF} and abrupt switching behavior observed
- Hysteresis is due to pull-in mode operation (t_{dimple} > t_{qap}/3) and contact surface adhesion.

Digital IC Design with Relays

- CMOS: delay is set by electrical time constant
 - Quadratic delay penalty for stacking devices
 - → Buffer & distribute logical/electrical effort over many stages
- Relays: delay is dominated by mechanical movement
 - Can stack ~100 devices before t_{elec} ≈ t_{mech}
 - → Implement relay logic as a single complex gate

Relay-Based VLSI Building Blocks

Relay Carry Generation Circuit

 Demonstrates propagate-generate-kill logic as a single complex gate

Energy-Delay Comparison with CMOS

90nm relay vs. CMOS adders and multipliers:

>2-100× energy savings @ 3-100× higher delay

Outline

- Introduction
- Recent Progress
 - Relay scaling
 - Multi-input/multi-output relay designs
- Current Challenges
- Conclusion

Structural Layer Requirements

• To reduce V_{Pl} , the effective spring constant (k_{eff}) and actuation gap thickness (t_{gap}) must be reduced.

$$V_{PI} \propto \sqrt{\frac{k_{eff}t_{gap}^3}{\varepsilon_0 A}}$$
 where $k_{eff} \propto \frac{EWh^3}{L^3}$

- → Need to reduce the structural layer thickness (h)
- Strain gradient causes out-of-plane bending

$$\frac{1}{\rho} = \frac{2\Delta z}{L^2} \propto \frac{M}{EWh^3}$$
 Δz : tip deflection ρ : radius of curvature Δz : tip deflection Δz : tip deflection

→ Need very low strain gradient

Structural Film Development

1.5

-0.7 79.0

- Thin TiN + poly-Si_{0.4}Ge_{0.6}
 bi-layer stack:
 - Tensile TiN compensates
 strain gradient in Si_{0.4}Ge_{0.6}

(~10x improvement)

Single-Gate, Dual-Source/Drain Relay

Single-Gate Relay Inverter/Buffer

Dual-Gate, Dual Source/Drain Relay

Bottom (Gate) Electrode Layout

Circuit Symbol

Gate electrodes are interdigitated to ensure that each gate has equal influence on the movable body

Measured V_{Pl} and V_{RL} of a Dual-Gate Relay

- "1"≡V_G
- Each gate has equal influence
- Depending on V_B, relay can be actuated using one or two gate electrodes

Dual-Gate Relay Circuit: AND/NAND

Dual-Gate Relay Circuit: OR/NOR

Outline

- Introduction
- Recent Progress
- Current Challenges
 - Contact resistance
 - Surface adhesion
- Conclusion

Tungsten Contact Resistance Evolution

Stiction: The Ultimate Relay Scaling Limiter

Hysteresis voltage (V_{PI}-V_{RL}) scales with V_{PI}:

$$V_{PI} - V_{RL} = V_{PI} \left[1 - 2.6 \sqrt{\frac{t_{dimple}}{t_{gap}}} \left(1 - \frac{t_{dimple}}{t_{gap}} \right) \right]$$
 ignoring surface adhesion force

Adhesive force reduces with contacting region area:

Outline

- Introduction
- Recent Progress
- Current Challenges
- Conclusion

Conclusion

- Relays have zero l_{OFF} and can incorporate multiple input/output electrodes
- → potentially can achieve lower energy per operation and greater functionality per device than CMOS for digital logic applications.
- Practical challenges remain to be solved:
 - Contact surface oxidation
 - Minimization of adhesion force within R_{ON} limits
 - Development of ultra-thin structural films with very low strain gradient

Acknowledgments

Collaborators:

- Fred Chen, Hossein Fariborzi, Prof. Vladimir Stojanović (MIT)
- Chengcheng Wang, Kevin Dwan, Prof. Dejan Marković (UCLA)

Funding sources:

- DARPA/MTO NEMS Program
- SRC/DARPA Focus Center Research Program
- NSF Center for Energy Efficient Electronics Science (E3S)
- NSF Center of Integrated Nanomechanical Systems (COINS)
- Berkeley Wireless Research Center

Device fabrication support:

- UC Berkeley Marvell Nanofabrication Laboratory
- SVTC Technologies & SPTS Technologies