Recent Progress and Challenges for Relay Logic Switch Technology

Tsu-Jae King Liu
Louis Hutin, I-Ru Chen, Rhesa Nathanael, Yenhao Chen, Matthew Spencer and Elad Alon

Electrical Engineering and Computer Sciences Department
University of California, Berkeley, CA USA

June 12, 2012
Outline

• Introduction
 – Why relays?
 – Relay-based IC design

• Recent Progress

• Current Challenges

• Conclusion
• **Emergence of Ambient Intelligence**
 – Sense/monitor, communicate, and react to the environment
CMOS Voltage Scaling

- Scaling supply voltage (V_{DD}) reduces circuit speed
- Scaling threshold voltage (V_T) increases leakage

![Graph showing Drain Current (I_d) vs. Gate Voltage (V_g) and Normalized Energy/cycle vs. $V_{DD}(V)$]

- $S > 60\text{mV/dec}$

E_{tot}, E_{dyn}, E_{leak}

Slide 3
Why Relays?

- Zero OFF-state current (I_{OFF}); abrupt switching
 - Turns on by electrostatic actuation when $|V_{GS}| \geq V_{PI}$
 - Turns off by spring restoring force when $|V_{GS}| \leq V_{RL}$
Relay Endurance

- Endurance increases exponentially with decreasing V_{DD}, and linearly with decreasing C_L

- Endurance is projected to exceed 10^{15} cycles @ 1V
4-Terminal (4-T) Relay for Digital Logic

- Voltage applied between the gate and body brings the channel into contact with the source and drain.
 - Folded-flexure design relieves residual stress.
 - Gate oxide layer insulates the channel from the gate.

R. Nathanael et al., IEDM 2009
4-T Relay I_D-V_G Characteristics

- Zero I_{OFF} and abrupt switching behavior observed
- Hysteresis is due to pull-in mode operation ($t_{dimple} > t_{gap}/3$) and contact surface adhesion.

R. Nathanael et al., IEDM 2009; V. Pott et al., Proc. IEEE 2010
Digital IC Design with Relays

- **CMOS**: delay is set by electrical time constant
 - Quadratic delay penalty for stacking devices
 - \(\Rightarrow \) Buffer & distribute logical/electrical effort over many stages

- **Relays**: delay is dominated by mechanical movement
 - Can stack \(\sim 100 \) devices before \(t_{elec} \approx t_{mech} \)
 - \(\Rightarrow \) Implement relay logic as a single complex gate
Relay-Based VLSI Building Blocks

In collaboration with V. Stojanović (MIT) and D. Marković (UCLA)

F. Chen et al., ISSCC 2010
Relay Carry Generation Circuit

- Demonstrates propagate-generate-kill logic as a single complex gate
Energy-Delay Comparison with CMOS

- 90nm relay vs. CMOS adders and multipliers:
 >2-100× energy savings @ 3-100× higher delay

M. Spencer et al., JSSC 2011; H. Fariborzi et al., ESSCIRC 2011
Outline

• Introduction
• Recent Progress
 – Relay scaling
 – Multi-input/multi-output relay designs
• Current Challenges
• Conclusion
Structural Layer Requirements

• To reduce V_{pi}, the effective spring constant (k_{eff}) and actuation gap thickness (t_{gap}) must be reduced.

\[
V_{pi} \propto \sqrt{\frac{k_{eff} t_{gap}^3}{\varepsilon_0 A}} \text{ where } k_{eff} \propto \frac{E W h^3}{L^3}
\]

→ Need to reduce the structural layer thickness (h)

• Strain gradient causes out-of-plane bending

\[
\frac{1}{\rho} = \frac{2\Delta z}{L^2} \propto \frac{M}{E W h^3}
\]

Δz: tip deflection

ρ: radius of curvature

M: bending moment

→ Need very low strain gradient
Structural Film Development

- Thin TiN + poly-Si$_{0.4}$Ge$_{0.6}$ bi-layer stack:
 - Tensile TiN compensates strain gradient in Si$_{0.4}$Ge$_{0.6}$

- Interferometry topograph shows low strain gradient of $-7 \times 10^{-4}/\mu$m
 (~10x improvement)

I-R. Chen et al., ECS Spring Meeting 2012
Single-Gate, Dual-Source/Drain Relay

Circuit Symbol

Drain 1 || Drain 2
Gate || Body
Source 1 || Source 2

Temperature Dependence:

Measured I-V

Plan-View SEM

5 µm

(a)
Single-Gate Relay Inverter/Buffer

\[V_{\text{IN}} \] \[V_{\text{OUT}} \] (INV) \[V_{\text{OUT}} \] (BUF) \[V_{\text{B_HIGH}} = 13V \] \[V_{\text{B_LOW}} = -12V \] \[V_{\text{OUT}} \] \[V_{\text{DD}} = 1V \] \[V_{\text{GND}} = 0V \]

(a)

(b)

R. Nathanael et al., VLSI-TSA 2012
Dual-Gate, Dual Source/Drain Relay

- Gate electrodes are interdigitated to ensure that each gate has equal influence on the movable body.
Measured V_{PI} and V_{RL} of a Dual-Gate Relay

- "1" $\equiv V_G$
- Each gate has equal influence
- Depending on V_B, relay can be actuated using one or two gate electrodes

R. Nathanael et al., VLSI-TSA 2012
Dual-Gate Relay Circuit: AND/NAND

- $V_{DD} = 8V$
- $V_{B_{LOW}} = -4V$
- $V_{B_{HIGH}} = 15V$
- $V_{OUT}^{(AND)}$
- $V_{OUT}^{(NAND)}$

Input voltages:

- V_{IN1}
- V_{IN2}

Output voltages:

- V_{OUT}

Time-domain behaviour:

- AND
- NAND

Graphs show input and output waveforms over time.
Dual-Gate Relay Circuit: OR/NOR

- $V_{DD} = 8V$
- $V_{B_LOW} = -6V$
- $V_{B_HIGH} = 12V$
- $GND = 0V$

Truth tables:

- OR:
 0 0 1 1 0

- NOR:
 0 1 0 1 0

Output voltages:

- OR: 0 0.1 0.2 0.3
- NOR: 0 0.1 0.2 0.3

R. Nathanael et al., VLSI-TSA 2012
Outline

• Introduction
• Recent Progress
• Current Challenges
 – Contact resistance
 – Surface adhesion
• Conclusion
Tungsten Contact Resistance Evolution

- Joule heating occurs when the relay is on
- Contacting surfaces oxidize when the relay is turned off
- Surface oxide layers result in increased R_{ON}

Current

Y. Chen et al., IEEE/ASME J-MEMS 2012
Stiction: The Ultimate Relay Scaling Limiter

- Hysteresis voltage \((V_{PI} - V_{RL}) \) scales with \(V_{PI} \):

\[
V_{PI} - V_{RL} = V_{PI} \left[1 - 2.6 \sqrt{\frac{t_{dimple}}{t_{gap}}} \left(1 - \frac{t_{dimple}}{t_{gap}}\right)\right]
\]

ignoring surface adhesion force

- Adhesive force reduces with contacting region area:

XSEM of Contact Dimple

- J. Yaung et al., to be published
Outline

• Introduction
• Recent Progress
• Current Challenges
• Conclusion
Conclusion

• Relays have zero I_{OFF} and can incorporate multiple input/output electrodes
 → potentially can achieve lower energy per operation and greater functionality per device than CMOS for digital logic applications.

• Practical challenges remain to be solved:
 – Contact surface oxidation
 – Minimization of adhesion force within R_{ON} limits
 – Development of ultra-thin structural films with very low strain gradient
Acknowledgments

• Collaborators:
 – Fred Chen, Hossein Fariborzi, Prof. Vladimir Stojanović (MIT)
 – Chengcheng Wang, Kevin Dwan, Prof. Dejan Marković (UCLA)

• Funding sources:
 – DARPA/MTO NEMS Program
 – SRC/DARPA Focus Center Research Program
 – NSF Center for Energy Efficient Electronics Science (E3S)
 – NSF Center of Integrated Nanomechanical Systems (COINS)
 – Berkeley Wireless Research Center

• Device fabrication support:
 – UC Berkeley Marvell Nanofabrication Laboratory
 – SVTC Technologies & SPTS Technologies