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• Emergence of Ambient Intelligence
– Sense/monitor, communicate, and react to the environment

Smart 
Grid

Traffic 
management

Smart 
Buildings Infrastructure

maintenance

Jan Rabaey, ASPDAC 2008

Vision of the Future: Swarms of Electronics 
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CMOS Voltage Scaling

• Scaling supply voltage (VDD) reduces circuit speed
• Scaling threshold voltage (VT) increases leakage
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Why Relays?

• Zero OFF-state current (IOFF); abrupt switching
– Turns on by electrostatic actuation when |VGS| ≥ VPI

– Turns off by spring restoring force when |VGS| ≤ VRL
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Relay Endurance

• Endurance increases 
exponentially with 
decreasing VDD, and 
linearly with 
decreasing CL

• Endurance is 
projected to exceed 
1015 cycles @ 1V

H. Kam et al., IEDM 2010 Slide 5



4-Terminal (4-T) Relay for Digital Logic

• Voltage applied between the gate and body brings 
the channel into contact with the source and drain.
‒ Folded-flexure design relieves residual stress.
‒ Gate oxide layer insulates the channel from the gate.
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R. Nathanael et al., IEDM 2009; V. Pott et al., Proc. IEEE 2010

4-T Relay ID-VG Characteristics

• Zero IOFF and abrupt switching behavior observed
• Hysteresis is due to pull-in mode operation 

(tdimple > tgap/3) and contact surface adhesion.

Plan View SEM of 4-T Relay
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4 gate delays 1 mechanical delay

Digital IC Design with Relays

F. Chen et al., ICCAD 2008

• CMOS: delay is set by electrical time constant
‒ Quadratic delay penalty for stacking devices
 Buffer & distribute logical/electrical effort over many stages

• Relays: delay is dominated by mechanical movement
‒ Can stack ~100 devices before telec ≈ tmech

 Implement relay logic as a single complex gate
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Relay-Based VLSI Building Blocks

In collaboration with 
V. Stojanović (MIT) and
D. Marković (UCLA)

F. Chen et al., ISSCC 2010 Slide 9



Relay Carry Generation Circuit

• Demonstrates propagate-generate-kill logic as a 
single complex gate

Slide 10F. Chen et al., ISSCC 2010



Energy-Delay Comparison with CMOS

M. Spencer et al., JSSC 2011; H. Fariborzi et al., ESSCIRC 2011
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• 90nm relay vs. CMOS adders and multipliers:
>2-100× energy savings @ 3-100× higher delay



Outline
• Introduction
• Recent Progress

– Relay scaling
– Multi-input/multi-output relay designs

• Current Challenges
• Conclusion

Slide 12



Structural Layer Requirements
• To reduce VPI, the effective spring constant (keff) 

and actuation gap thickness (tgap) must be reduced.

where

 Need to reduce the structural layer thickness (h)
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z: tip deflection
: radius of curvature
M: bending moment
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• Strain gradient causes out-of-plane bending

 Need very low strain gradient



Structural Film Development

• Thin TiN + poly-Si0.4Ge0.6
bi-layer stack:
– Tensile TiN compensates 

strain gradient in Si0.4Ge0.6

• Interferometry topograph
shows low strain gradient 
of -7×10-4/µm
(~10x improvement)

Movable Plate
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Source Drain
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Single-Gate, Dual-Source/Drain Relay

I-R. Chen et al., ECS Spring Meeting 2012

Circuit Symbol

Measured I-VPlan-View SEM

Temperature 
Dependence:



VB_HIGH

VB_LOW

VOUTVIN
VOUT

VDD

GND

=1V

=13V

=‐12V

=0V

(INV) (BUF)

Slide 16

Single-Gate Relay Inverter/Buffer

R. Nathanael et al., VLSI-TSA 2012
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Dual-Gate, Dual Source/Drain Relay

• Gate electrodes are interdigitated
to ensure that each gate has equal 
influence on the movable body

Bottom (Gate) Electrode Layout

Gate 1
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Drain 1 Drain 2

Body

Source 1 Source 2
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Circuit Symbol
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Dual-Gate Relay Circuit: AND/NAND

R. Nathanael et al., VLSI-TSA 2012
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Dual-Gate Relay Circuit: OR/NOR

R. Nathanael et al., VLSI-TSA 2012



Outline
• Introduction
• Recent Progress
• Current Challenges

– Contact resistance
– Surface adhesion

• Conclusion
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Tungsten Contact Resistance Evolution
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Stiction: The Ultimate Relay Scaling Limiter 
• Hysteresis voltage (VPI-VRL) scales with VPI:

• Adhesive force reduces with contacting region area:

ignoring surface 
adhesion force

Extracted from measured VPI,VRL

0.04 um2

(W)

(W)

Slide 23J. Yaung et al., to be published

XSEM of Contact Dimple
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Conclusion
• Relays have zero IOFF and can incorporate multiple 

input/output electrodes
 potentially can achieve lower energy per operation 

and greater functionality per device than CMOS for 
digital logic applications.  

• Practical challenges remain to be solved: 
– Contact surface oxidation
– Minimization of adhesion force within RON limits
– Development of ultra-thin structural films with very 

low strain gradient
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