Electronics Proliferation through Diversification of Solid-State Devices and Materials

Prof. Tsu-Jae King Liu

Department of Electrical Engineering and Computer Sciences University of California, Berkeley, CA 94720

September 28, 2011

2011 International Conference on Solid State Devices and Materials

The Information Age

*Source: IC Insights – Market Drivers 2008

Data center electricity use increased from 0.5% of world total in 2000 to 1% of world total in 2005

Source: J. Koomey (LBNL), 2008

Better processing power + Smaller form factor + Lower prices → more units

Source: ITU, Mark Lipacis, Morgan Stanley Research

http://www.morganstanley.com/institutional/techresearch/pdfs/2SETUP_12142009_RI.pdf 4

Shift to Mobile Usage

Mixi's (Japan's Leading Social Network) Monthly Page Views, Mobile vs. PC, CQ2:06-CQ4:10

Note: Mixi is one of Japan's leading social networking sites on PC and mobile with 20MM registered users as of 12/31/10. It monetizes mobile usage via sales of avatars, customized homepages and other premium services. Source: Company reports, Naoshi Nema, Morgan Stanley Research

http://www.slideshare.net/kleinerperkins/kpcb-top-10-mobile-trends-feb-2011

Vision for 2020: Swarms of Electronics

Technology Drivers

J. Rabaey, ASPDAC 2008

Diversification for More of Moore's Law

- MOSFET structures
- MOSFET gate-stack materials
- Alternative switch designs
 - Tunnel FET
 - Mechanical switch
- III-V MOSFETs

Improving MOSFET Scalability

Channel-Length Scaling Limit

 Quantum mechanical tunneling sets a fundamental scaling limit for the channel length (L_c).

Ultimately Scaled MOSFET

K. Cantley et al., IEDM Technical Digest, pp. 113-116, 2007

Reducing Parasitic Resistance

- Advanced anneal techniques
- Low Schottky barrier height contacts
 - alloy and implant approaches, dual silicide...

K. Kuhn, IEDM Short Course 2008

Reducing Parasitic Capacitance

K. Kuhn, IEDM Short Course 2008

CMOS Energy-Efficiency Limit

 α : Activity Factor L_d: Logic Depth f: Fanout C: Capacitance per Stage

B. Calhoun et al., IEEE J. Solid State Circuits, Vol. 50, pp. 1778-1786, 2005

MOSFET-Replacement Devices

 Higher I_{ON}/I_{OFF} ratio → lower minimum Energy/op
 → New device with steeper switching behavior needed (S < 60mV/dec)

Diversification for More of Moore's Law

- MOSFET structures
- MOSFET gate-stack materials
- Alternative switch designs
 - Tunnel FET
 - Mechanical switch
- III-V MOSFETs

Advanced Gate Stack Materials for Giant Capacitance

Sub-60 mV/dec MOSFET

There is no limit to the amount of charge for very little energy.

Depends only on the energy slopes

There is no minimum gate voltage for the required current.

"Negative Capacitance" FET

A. Rusu et al., IEDM 2010

MOSFET vs. Tunnel FET

Ge-Source Tunnel FET

 Tunneling occurs in the source (Ge) region small bandgap: E_G = 0.66eV; small effective mass: m* = 0.06m_o

Ge-Source Structure Optimization

S. H. Kim et al., IEEE Electron Device Letters, Vol. 31, No. 10, pp. 1107-1109, 2010 22

Energy-Performance Comparison

S. H. Kim et al., IEEE Electron Device Letters, Vol. 31, No. 10, pp. 1107-1109, 2010 23

Advanced Devices & Materials for TFETs

Why Mechanical Switches?

- <u>3-Terminal Switch</u> Air gap Source ↓ t_{gap}↓ t_{dimple} Gate Drain
- Abrupt switching behavior
 Allows for aggressive V_{DD} scaling (ultra-low dynamic energy)
 I.E-04
 I.E-04
 I.E-06
 I.E-08
 I.E-10
 I.E-12
 I.E-14

Gate Voltage

→ zero leakage energy

Zero off-state leakage

Relay Reliability

- MCTF increases exponentially with decreasing V_{DD}
- MCTF increases linearly with decreasing C_L
- Endurance is projected to exceed 10¹⁵ cycles at V_{DD} = 1 V

Digital IC Design with Relays

- <u>CMOS</u>: delay is set by electrical time constant
 - Quadratic delay penalty for stacking devices
 - → Buffer & distribute logical/electrical effort over many stages
- <u>Relays</u>: delay is dominated by mechanical movement
 - Can stack ~100 devices before t_{elec} ≈ t_{mech}
 - → Implement relay logic as a single complex gate

Micro-Relay-Based VLSI Building Blocks

F. Chen et al., ISSCC 2010

Energy-Delay Comparison

 Scaled relay technology is projected to provide for >10x energy savings, at clock rates up to ~100MHz

V. Pott et al., Proc. IEEE, Vol. 98, pp. 2076-2094, 2010

Diversification for More of Moore's Law

- MOSFET structures
- MOSFET gate-stack materials
- Alternative switch designs
 - Tunnel FET
 - Mechanical switch
- III-V MOSFETs

Power Distribution in Microprocessors

<u>Today</u>: Power distribution at low voltages, high currents → conductive losses

<u>Future</u>: Power distribution at high voltages, low currents \rightarrow Local conversion to low voltages, high currents

Why GaN?

Outstanding properties of AlGaN/GaN:

- High E_{br}: 3.3 MV/cm
- High electron density: > 1x10¹³ /cm²
- High mobility: > 1500 cm²/Vs
- Low C_{in} , $C_{out} \rightarrow$ high switching speed
- High thermal stability
 - n_i < 1x10⁷/cm³ at 400°C

- Simplified circuit designs
- Reduced cooling requirements

Diversification for More than Moore's Law

Functional Diversification

 Both <u>energy efficiency</u> and <u>functional capabilities</u> beyond the limits of ultimately scaled CMOS will be needed for electronics to expand into new applications.

Adapted from T. Skotnicki, IEDM Short Course 2010

MEMS for Wireless Communications

courtesy Clark Nguyen (UC-Berkeley)

The Resonant Body Transistor

- Drive gate is biased in accumulation (V_{acc}). Capacitive force due to input signal (v_{in}) drives resonant motion.
- Sense gate biased to strong inversion (V_G). As the body v_s vibrates, the drain current I_D is modulated piezoresistively.
- RBT demonstrated at 11.7 GHz with quality factor Q of 1831 Fabricated side-by-side with FinFETs
- To avoid the need for release, CMOS layers can be used to form acoustic Bragg reflectors to localize vibrations

D. Weinstein and S. A. Bhave, *Nano Letters* 10(4) 1234-37 (2010)

Nanowire Sensor Arrays

CMOS-integrated sensors for detection of chemical and biomolecular species with high sensitivity and specificity.

Heterogeneous Nanowire FET Array Fabrication:

Pd/Si Nanowire H₂ Sensors

- Without H₂: ohmic contact
- With H₂:Schottky contact

E

Ev

With H₂

(c)

Summary

Diversification is the Key

Courtesy Dan Armbrust, SEMATECH

A Vision of the Future

Acknowledgements

Faculty colleagues:

Jan Rabaey, Eli Yablonovitch, Elad Alon, Chenming Hu, Sayeef Salahuddin, Ali Javey, Clark Nguyen (UCB) Tomás Palacios, Vladimir Stojanović, Dana Weinstein (MIT) Dejan Marković (UCLA), Mark Lundstrom (Purdue)

Graduate students:

Sung Hwan Kim, Zachery Jacobson, Hei Kam, Rhesa Nathanael, Jaeseok Jeon, Matt Spencer; Fred Chen & Hossein Fariborzi (MIT), Chengcheng Wang and Kevin Dwan (UCLA)

- Funding:
 - » DARPA/MARCO Focus Center Research Program:
 - Center for Circuits and Systems Solutions (C2S2)
 - Center for Materials, Structures, and Devices (MSD)
 - » NSF Center of Integrated Nanomechanical Systems (COINS)
 - » DARPA/MTO STEEP Program and NEMS Program
 - » NSF Center for Energy Efficient Electronics Science (E3S)