Sustaining the Si Revolution: From 3D Transistors to 3D Integration

Tsu-Jae King Liu

Department of Electrical Engineering and Computer Sciences University of California, Berkeley, CA USA

February 23, 2015

2015 SPIE Advanced Lithography Symposium

Impact of Moore's Law

Source: Morgan Stanley Research

Source: J. Rabaey, ASPDAC 2008

Data Center Electricity Usage

Data centers accounted for ~1.4% of electricity use worldwide in 2010*

Source for country data in 2005: International Energy Agency, World Energy Balances (2007 edition)

Google's Finland data center
 uses frigid water from the
 Baltic Sea for cooling.

http://www.wired.com/2012/01/google-finland/

*J. Koomey, Growth in Data center electricity use 2005 to 2010 (Analytics Press, Oakland, CA), 2011

Outline

The path to 3D Transistors
The CMOS Power Crisis
Improving Energy Efficiency
Pathways to 3D Integration
Summary

MOSFET Basics

Metal-Oxide-Semiconductor (MOS) Field-Effect Transistor (FET)

1

The CMOS Power Crisis

Voltage scaling has not kept pace with transistor scaling!

Technology Node	45 nm	32 nm	22 nm	16/14 nm
Supply voltage, V _{DD}	1.0 V	0.9 V	0.8 V	0.7 V

Power density limits now constrain IC design

The Advent of Multi-Core Systems

• Parallelism is the main technique used to improve system performance under a power density constraint.

CMOS Energy Efficiency Limit

• A lower limit for E/op exists due to transistor OFF-state leakage.

B. Calhoun et al., IEEE J. Solid State Circuits, Vol. 50, pp. 1778-1786, 2005

$E_{total} = \alpha L_d f C V_{DD}^2 \left[1 + (L_d f / 2\alpha) / (I_{ON} / I_{OFF}) \right]$

3-Dimensional (3D) Transistor

Y.-K. Choi *et al.,* (UC Berkeley) *IEDM* 2001

- Superior gate control \rightarrow higher I_{ON}/I_{OFF}
- Multiple fins can be connected in parallel to achieve higher current

22 nm 3-D Tri-Gate Transistor

3-D Tri-Gate transistors form conducting channels on three sides of a vertical fin structure, providing "fully depleted" operation Transistors have now entered the third dimension!

Intel Corp., May 2011

3D Transistor Technology Roadmap

	Year:	2012	2014	2016?		
Intel Technology Node		22 nm	14 nm	10 nm		
	Year:	2015				
Foundry Technology Node	•	14 nm	10 nm	7 nm		
Gate length, L _G		25 nm	20 nm	15 nm		
Fin width, W _{fin}		~10 nm	~8 nm	~6 nm		
Equivalent oxide thickness	5	0.9 nm	0.85 nm	0.8 nm		
	X-SEM Images					
	Gate		Gate			
	SiO	Si SiO ₂	Si SiO ₂	Si		
	C. Auth e VLSI Sym	<i>t al</i> . (Intel Corp.) <i>p.</i> 2012	S. Natarajan <i>et i</i> IEDM 2014	al. (Intel Corp.)		

MOSFET Evolution

Si:C

C. Dupré et al. (CEA-LETI) **IEDM 2008 Gate-all-around FETs must** comprise stacked NWs for good area efficiency.

Electro-Mechanical Switch

- Abrupt switching behavior \rightarrow Low V_{DD} (low active energy)

Three-Terminal Switch

I-V Characteristic

Surface Micromachining Process

Cross-sectional View

- Mechanical structures can be made using conventional microfabrication techniques
- Structures are freed by selective removal of sacrificial layer(s)

4-Terminal Logic Relay

R. Nathanael et al. (UC Berkeley), IEDM 2009

3D Integration with CMOS

 Advanced back-end-of-line (BEOL) processes have multiple metal layers and air gaps

 -> can be adapted for fabrication of compact relays!

Scanning Electron Micrographs

D. C. Edelstein (IBM), 214th ECS Meeting, Abstract #2073, 2008

S. Natarajan et al. (Intel), IEDM 2014

BEOL NEM Relay

courtesy of Dr. Kimihiko Kato (UC Berkeley)

 A 5-terminal switch can be implemented using 4 interconnect layers

Vias are used for electrical connection and as torsional elements for lower k_{eff}

 Fixed actuation electrodes on opposite sides of movable structure

→ 2 stable states (contacting D_0 or D_1)

Outline

The path to 3D Transistors
The CMOS Power Crisis
Improving Energy Efficiency
Pathways to 3D Integration
Summary

3D Packaging

System in Package (SiP), Package on Package (PoP), etc.

Enabled by wire bonding and/or flip-chip bonding

Packaging-based Chip Stack

Die-to-Wafer Bonding

✓ Smaller form factor
 ✓ Reduced packaging cost
 ✓ Reduced power consumption
 ✓ Limited interconnection density

J. J.-Q. Lu et al., Future Fab International, Issue 23, 2007

3D Transistor Stacking

• Transistor layers can be embedded between interconnect layers

Laser-crystallized Si Polycrystalline Si Bonded Si (on oxide)

✓ Higher transistor density
 × Heat dissipation
 × Thermal process limitations
 × EDA tool adaptation

J. J.-Q. Lu et al., Future Fab International, Issue 23, 2007

Moore's 1965 Paper Revisited

• The minimum cost point moves to a larger number of components per IC over time, as manufacturing technology advances (*i.e.* yield improves).

The primary reason for increasing the number of components per IC was (and still is) lower cost.

3D NAND Flash Technology

- Poly-Si is used as the semiconductor material.
- Lithography steps for multiple memory layers are shared.

- Density scaling is not driven by lithography.
- Aspect ratios of etched and filled features are very large (>40:1).

Heterogeneous Integration

25

DMD[™] Projection Display Chip

- Electrostatically actuated mirrors built over CMOS circuitry
 - Structural layers comprise Al alloys; sacrificial material is photoresist

20 μm

SEM image of pixel array

Schematic of 2 pixels

Each mirror corresponds to a single pixel, programmed by an underlying memory cell to deflect light either into a projection lens or light absorber.

Polymeric Relay

Plan-View SEM

Measured *I-V* Characteristics

- Transparent relay fabricated with a CMOS-compatible process:
 - SU-8 photoresist as structural material
 - Fluorinated photoresist (OSCoR 4000) as dielectric material
 - SiO₂ as sacrificial material
- Can be used as a humidity sensor

Outline

The path to 3D Transistors
The CMOS Power Crisis
Improving Energy Efficiency
Pathways to 3D Integration

Summary

Summary

• 3D transistors and 3D integration provide for improvements in IC energy efficiency and functionality, to sustain the Si revolution.

