14 nm chip X-SEM from www.intel.com/content/dam/www/public/us/en/documents/pdf/foundry/mark-bohr-2014-idf-presentation.pdf

Extending the Era of Moore's Law

Tsu-Jae King Liu

Department of Electrical Engineering and Computer Sciences University of California, Berkeley

September 11, 2017

SPIE Photomask Technology + EUV Lithography Conference

IC Technology Advancement

Gordon E. Moore, "Cramming more Components onto Integrated Circuits," Electronics, pp. 114-117, April 1965

Outline

- Transistor Scaling to the Limit
- Extending the Era of Moore's Law
- Summary

Transistor Basics

Complementary MOS Devices & Circuits

CMOS Technology Scaling

XTEM images with the same scale

courtesy V. Moroz (Synopsys, Inc.)

90 nm node65 nm node45 nm node32 nm nodeImage: Strained Si $\rightarrow \mu_{eff}$ Image: Strained Si $\rightarrow \mu_{eff}$

high-k/metal gate $\rightarrow C_{ox}$

Design for Manufacturing

courtesy Mike Rieger (Synopsys, Inc.)

SRAM bit-cell layouts

C. Webb, Intel Technology Journal, vol. 12, No. 2, pp. 121-130, 2008

90 nm

6-T SRAM Cell

6-T SRAM Cell **Double Patterning of Gate** PG PD **Desired layout** Actual layout after 1st gate patterning (6-T SRAM cell) BLB BL PD PU PG PG PU PD Actual layout after active patterning Actual layout after 2nd gate patterning (no gate length variation)

Impact of Variability on SRAM

• V_{TH} mismatch results in reduced static noise margin. \rightarrow lowers cell yield and/or limits V_{DD} scaling

→ Immunity to short-channel effects needed!

Short-Channel Effects

• V_{TH} decreases with decreasing L_g and with increasing V_{DS} :

• Increased capacitive coupling between Gate and channel provides for better Gate control, hence reduced SCE

FinFET/Tri-Gate Transistor

 Superior gate control

→ higher I_{ON}/I_{OFF}
or lower V_{DD}

 Multiple fins can be connected in parallel to achieve higher ON-state drive current.

Spacer Lithography

Y.-K. Choi, T.-J. King, and C. Hu, IEEE Trans. Electron Devices, Vol. 49, No. 3, pp. 436-441, 2002

a.k.a. Sidewall Image Transfer (SIT) and Self-Aligned Double Patterning (SADP)

1. Deposit & pattern sacrificial layer

2. Deposit mask layer (SiO₂ or Si₃N₄)

4. Remove sacrificial layer; etch SOI layer to form fins

Note that fin pitch is 1/2× that of patterned layer

MOSFET Evolution

P. Packan *et al*. (Intel), *IEDM* 2009

K. Cheng et al. (IBM), VLSI Symp. 2011

beyond 7 nm

Stacked nanosheets

N. Loubet *et al.* (IBM, Samsung, GLOBALFOUNDRIES) *Symp. VLSI Tech* 2017

Stacked gate-all-around (GAA) FETs achieve the highest layout efficiency.

Channel-Length Scaling Limit

 Quantum mechanical tunneling sets a fundamental scaling limit for the channel length (L_c).

J. Wang et al., IEDM Technical Digest, pp. 707-710, 2002

1-nm Gate Length MOSFET

S. B. Desai et al., Science, Vol. 354, No. 6308, pp. 99-102, 2016

Future Logic Switches

- Higher I_{ON}/I_{OFF} ratio \rightarrow lower minimum Energy/op
- → Steeper switching behavior needed (S < 60mV/dec)

Outline

- Transistor Scaling to the Limit
- Extending the Era of Moore's Law
- Summary

Self-Aligned Double Patterning

Multiple-patterning techniques have extended Moore's Law beyond the lithographic resolution limit – at increasing cost

Samsung, EUVL Symposium 2009 ASML, SPIE Advanced Lithography 2012

"The sheer cost and complexity of this lithographic solution could dissuade chipmakers from jumping to future nodes, thereby stunting the growth rates of the IC industry."

- Semiconductor Engineering, April 17th, 2014

Tilted ion implantation (TII) Approach

 A sub-lithographic damage region can be achieved by tilted ion implantation (TII) + photoresist/hard mask

 self-aligned to pre-existing mask features on surface

Impact of TII on SiO₂ Etch Rate

S. W. Kim *et al.*, SPIE Advanced Lithography 2016

Ar⁺ implant conditions: 15° tilt; 1.5 keV; dose = 0, 2 or 3 x 10^{14} /cm²

- Thermal SiO₂: masking layer
- Formation of linear a-Si hard-mask features by spacer patterning

- Thermal SiO₂: masking layer
- Formation of linear a-Si hard-mask features by spacer patterning
- First implant: positive tilt angle $x \cong W_{trench} y(tan(\theta) cot(\alpha))$

- Thermal SiO₂: masking layer
- Formation of linear a-Si hard-mask features by spacer patterning
- First implant: positive tilt angle $x \cong W_{trench} y(tan(\theta) cot(\alpha))$
- Second implant: negative tilt angle $x \cong W_{trench} y(tan(\theta) cot(\alpha))$

- Thermal SiO₂: masking layer
- Formation of linear a-Si hard-mask features by spacer patterning
- First implant: positive tilt angle $x \cong W_{trench} y(tan(\theta) cot(\alpha))$
- Second implant: negative tilt angle $x \cong W_{trench} y(tan(\theta) cot(\alpha))$
- Selective removal of damaged SiO₂
- Si substrate dry etch $W_{fin} \cong 2y(tan(\theta) cot(\alpha)) W_{trench}$

Proof of Concept: Single Implant

S. W. Kim et al. (UC Berkeley), SPIE Advanced Lithography 2016

Cross-sectional Scanning Electron Micrographs

- Sub-lithographic features (~45 nm) achieved by 15° tilt, 3.0 ۲ keV Ar⁺ implant into 10 nm-thick SiO₂ hard mask
 - \rightarrow dilute HF etch
 - \rightarrow Si dry etch

Self-Aligned Nature of TII Patterning

P. Zheng et al. (UC Berkeley), IEEE Transactions on Electron Devices, vol. 64, no. 1, pp. 231-236, 2017

Line-Edge Roughess Comparison

P. Zheng et al. (UC Berkeley), IEEE Transactions on Electron Devices, vol. 64, no. 1, pp. 231-236, 2017

• TII improves low- and mid-frequency line-edge roughness

TII Patterning Resolution Limit

P. Zheng et al. (UC Berkeley), IEEE Transactions on Electron Devices, vol. 64, no. 1, pp. 231-236, 2017

• TII can be used to pattern features as small as 10 nm.

Double Tilted Implant Results

S. W. Kim et al. (UC Berkeley), SPIE Advanced Lithography 2016

Plan-view SEM

Cross-sectional SEM

- Local pitch-halving achieved with ±15° tilt, 3.0 keV Ar⁺ implants
- ~21 nm half-pitch of the etched Si features

Double-Patterning Approaches

Spacer lithography (SADP) ALD hard mask SiO₂ (Oxidation) SiO₂ (Oxidation) Silicon Silicon Hard mask (CVD) SiO₂ (Oxidation) SiO₂ (Oxidation) Silicon Silicon Hard mask (CVD) SiO₂ (Oxidation) Silicon Silicon SiO₂ (Oxidation) Silicon Silicon

Double-Patterning Approaches

Tilted Ion Implantation (TII)

Double-Patterning Approaches

The cost of TII double-patterning can be only ~60% of the cost of SADP.

Sub-Lithographic Hole Formation

S. W. Kim et al. (UC Berkeley), Journal of Vacuum Science & Technology B, vol. 34, 040608, 2016

Future Work: 2D Patterning by TII

 $\geq P_{\min}$

- **1.** Coat IC layer with HM layer;
- 2. Perform multiple litho+TII processes in sequence, such that each litho+TII process forms a latent 1D pattern in the HM layer;

B

- 3. Selectively etch the HM layer to form the composite 2D pattern;
- 4. Transfer the 2D pattern to the IC layer by a selective etch process.

Outline

- Transistor Scaling to the Limit
- Extending the Era of Moore's Law
- Summary

Summary

- There's still plenty of room for CMOS technology scaling!
 - Advancements in transistor structures and materials will enable continued miniaturization and voltage scaling.
- Innovations to mitigate the challenge of growing cost of patterning are needed to extend the era of Moore's Law

Acknowledgements

• TII-Enhanced Lithography:

- Dr. Sang Wan Kim (now with Ajou University)
- Dr. Peng Zheng (now with Intel Corporation)
- Dr. Leonard Rubin (Axcelis Technologies)
- UC Berkeley Marvell Nanofabrication Laboratory
- Funding from Applied Materials, Lam Research, National Science Foundation

3-D NAND Flash Technology

Vertical FETs (vFETs):

- Poly-Si is used as the semiconductor material.
- Lithography steps for multiple memory layers are shared.
- Density scaling is not driven by lithography.
- Aspect ratios of etched and filled features are large (>40:1).

http://www.monolithic3d.com/uploads/6/0/5/5/6055488/695394.jpg?388

Heterogeneous Integration

J. J.-Q. Lu et al., Future Fab Int'l, Issue 23, 2007

Enhanced performance & functionality in a compact form factor

• Separate layer fabrication processes

Integrated fabrication process

V. Pott *et al., Proc. IEEE*, Vol. 98, 2010

IC Technology Advancement

• Advanced back-end-of-line (BEOL) processes have air-gapped interconnects

Reconfigurable Interconnect

K. Kato et al., IEEE Electron Device Letters, vol. 37, no. 12, pp. 1563-1565, 2016.

A bi-stable switch is implemented using multiple metal layers

Vias are for electrical connection and flexural elements for a more compliant electrode, for lower programming voltage.

- Small footprint due to vertically oriented movable electrode, and shared actuation and contacting electrodes across the array
- A non-linear device can be integrated to prevent sneak leakage current in a cross-point array

LUT Performance Comparison

K. Kato et al., IEEE Electron Device Letters, vol. 37, no. 12, pp. 1563-1565, 2016

✓ More compact, faster, and energy-efficient than CMOS!