14 nm chip X-SEM from www.intel.com/content/dam/www/public/us/en/documents/pdf/foundry/mark-bohr-2014-idf-presentation.pdf

There's Plenty of Room at the Bottom - and at the Top

Tsu-Jae King Liu

Department of Electrical Engineering and Computer Sciences University of California, Berkeley

August 16, 2016

SFBA Nano Seminar

Outline

- Introduction
 - Transistor scaling limit
- Extending the Era of Moore's Law
- Beyond Moore: Mechanical Computing Redux
- Summary

MOSFET Operation: Gate Control

CMOS Circuits

Improving I_{ON}/I_{OFF}

• The greater the capacitive coupling between Gate and channel, the better control the Gate has over the channel potential.

 \rightarrow higher I_{ON}/I_{OFF} for fixed V_{DD} , or lower V_{DD} to achieve target I_{ON}/I_{OFF}

→reduced short-channel effect and <u>d</u>rain-<u>i</u>nduced <u>b</u>arrier <u>l</u>owering:

FinFET/Tri-Gate Transistor

 Superior gate control
 → higher I_{ON}/I_{OFF} or lower V_{DD}

 Multiple fins can be connected in parallel to achieve higher drive current.

3-D Transistor Technology Roadmap

Year:	2012	2014	2017
Intel Technology Node	22 nm	14 nm	10 nm
Year:	2015		
Foundry Technology Node:	14 nm	10 nm	7 nm
Gate length, L _G	25 nm	20 nm	15 nm
Fin width, W _{fin}	~10 nm	~8 nm	~6 nm
Equivalent oxide thickness	0.9 nm	0.85 nm	0.8 nm

X-SEM Images

C. Auth *et al.* (Intel Corp.) S. Natarajan *et al.* (Intel Corp.) *VLSI Symp.* 2012 *IEDM* 2014

MOSFET Evolution

Channel-Length Scaling Limit

 Quantum mechanical tunneling sets a fundamental scaling limit for the channel length (L_c).

J. Wang et al., IEDM Technical Digest, pp. 707-710, 2002

Ultimately Scaled MOSFETs

M. Luisier et al., IEDM 2011

Outline

- Introduction
- Extending the Era of Moore's Law
- Beyond Moore: Mechanical Computing Redux
- Summary

Multiple-patterning techniques have extended Moore's Law beyond the lithographic resolution limit – at increasing cost

Samsung, EUVL Symposium 2009 ASML, SPIE Advanced Lithography 2012

"The sheer cost and complexity of this lithographic solution could dissuade chipmakers from jumping to future nodes, thereby stunting the growth rates of the IC industry."

- Semiconductor Engineering, April 17th, 2014

Tilted ion implantation (TII) Approach

 A sub-lithographic damage region can be achieved by tilted ion implantation (TII) + photoresist/hard mask

 self-aligned to pre-existing mask features on surface

Impact of TII on SiO₂ Etch Rate

S. W. Kim et al. (UC Berkeley), SPIE Advanced Lithography 2016

Ar⁺ implant conditions: 15° tilt; 1.5 keV; dose = 0, 2 or 3 x 10^{14} /cm²

Double-Patterning by TII

- Thermal SiO₂: masking layer
- Formation of linear a-Si hard-mask features by spacer patterning
- First implant: positive tilt angle $x \cong W_{trench} y(tan(\theta) cot(\alpha))$

Double-Patterning by TII

- Thermal SiO₂: masking layer
- Formation of linear a-Si hard-mask features by spacer patterning
- First implant: positive tilt angle $x \cong W_{trench} y(tan(\theta) cot(\alpha))$
- Second implant: negative tilt angle $x \cong W_{trench} y(tan(\theta) cot(\alpha))$

Double-Patterning by TII

- Thermal SiO₂: masking layer
- Formation of linear a-Si hard-mask features by spacer patterning
- First implant: positive tilt angle $x \cong W_{trench} y(tan(\theta) cot(\alpha))$
- Second implant: negative tilt angle $x \cong W_{trench} y(tan(\theta) cot(\alpha))$
- Selective removal of damaged SiO₂
- Si substrate dry etch $W_{fin} \cong 2y(tan(\theta) cot(\alpha)) W_{trench}$

Proof of Concept: Single Implant

S. W. Kim et al. (UC Berkeley), SPIE Advanced Lithography 2016

15° (3) = 225.2 nm = 44.66 nm (2)= 107.9 nm 1 = 67.92 nm Si substrate Si substrate 200 nm 100 nm Mag = 135.00 K X Mag = 400.00 K X EHT = 5.00 kV WD = 4.9 mm EHT = 5.00 kV WD = 4.9 mm

Cross-sectional Scanning Electron Micrographs

- Sub-lithographic features (~45 nm) achieved by 15° tilt, 3.0 ۲ keV Ar⁺ implant into 10 nm-thick SiO₂ hard mask
 - \rightarrow dilute HF etch
 - \rightarrow Si dry etch

Self-Aligned Nature of TII Patterning

P. Zheng et al. (UC Berkeley), to be published

The TII-defined edge closely tracks the HM edge

Line-Edge Roughess Comparison

P. Zheng *et al.* (UC Berkeley), to be published

• TII improves low- and mid-frequency line-edge roughness

Double Tilted Implant Results

S. W. Kim et al. (UC Berkeley), SPIE Advanced Lithography 2016

Plan-view SEM

Cross-sectional SEM

- Local pitch-halving achieved with ±15° tilt, 3.0 keV Ar⁺ implants
- ~21 nm half-pitch of the etched Si features

Double-Patterning Approaches

Cost Comparison

P. Zheng et al. (UC Berkeley), to be published

Self-aligned Double Patterning		TII Double Patterning			
Process Steps		Cost	Process Steps		Cost
Process	Description	(a.u./wafer)	Process	Description	(a.u./wafer)
PECVD	Etch stop layer	1.5	LPCVD	Mask layer	2
CVD	Mandrel layer	2	CVD	Mandrel layer	2
Photolithography	Patterning	30	Photolithography	Patterning	30
Dry etch	Mandrel etch	10	Dry etch	Mandrel etch	10
ALD	Spacer deposition	3	Ion implantation	Double implants	1.7
Dry etch	Spacer etch	16	Wet etch	Selective mask etch	1
	Mandrel pull	10	Dury at al	Mandrel removal	16
Wet clean	Clean	1	Dry etch	Pattern transfer	10
Dry etch	Pattern transfer	16	Wet etch	Mask removal	1
	Pattern transfer	10			
Wet etch	Spacer removal	1			
Wet etch	Etch stopper strip	1			
	_				
Total: 81.5			Total:		63.7

• If photoresist is used as the mandrel layer, the cost of TII double-patterning can be only ~50% of the cost of SADP.

Outline

- Introduction
- Extending the Era of Moore's Law
- Beyond Moore: Mechanical Computing Redux
- Summary

Impact of Moore's Law

Source: Morgan Stanley Research

A Vision of the Future

Micro-Electro-Mechanical Switch

- Zero off-state leakage \rightarrow Zero passive energy consumption
- Abrupt switching behavior \rightarrow Low V_{DD} (low active energy)

Three-Terminal Switch

OFF State: Measured I-V **Characteristic** 1.E-04 **Drain Current** /_{min} 1.E-06 Gate Drain Source 1.E-08 **ON State: F**_{spring} 1.E-10 1.E-12 A 141 1.E-14 V_{RL} V_{PI} Felec **F**adhesion Gate Voltage

Surface Micromachining Process

Cross-sectional View

- Mechanical structures can be made using conventional microfabrication techniques
- Structures are freed by selective removal of sacrificial layer(s)

IC Technology Advancement

- Advanced back-end-of-line (BEOL) processes have air-gapped interconnects
- \rightarrow can be adapted for fabrication of compact NEMS!

D. C. Edelstein, 214th ECS Meeting, Abstract #2073, 2008

29

BEOL NEM Switch

N. Xu et al. (UC Berkeley), 2014 IEEE International Electron Devices Meeting

courtesy of Dr. Kimihiko Kato (UC Berkeley)

• A relay can be implemented using multiple metal layers

Vias can be used for electrical connection and as torsional elements for lower *k*_{eff}

- Actuation electrodes on opposite sides of movable electrode structure
 - → 2 stable states (contacting D0 or D1)
- Low-voltage (<1 V) operation can be achieved with small footprint (< 0.1 μm²).

Non-Volatile Device Comparison

N. Xu et al. (UC Berkeley), 2014 IEEE International Electron Devices Meeting

- A bi-stable NEM switch is projected to operate with much less energy and delay than other non-volatile switching devices
- →can be used to continually shadow the information stored in an SRAM cell

In-Memory Computing

K. Kato et al., IEEE Electron Device Letters, Vol. 37, pp. 31-34, 2016

• NV-NEMory cell array for memory-based super-parallel data searching

Non-Volatile NEMory Cell Structure

K. Kato et al., IEEE Electron Device Letters, Vol. 37, pp. 31-34, 2016

Data Search Step 1: Match "0"

K. Kato et al., IEEE Electron Device Letters, Vol. 37, pp. 31-34, 2016

Reference Data: 1100

Data Search Step 2: Match "1"

K. Kato et al., IEEE Electron Device Letters, Vol. 37, pp. 31-34, 2016

Reference Data: 1100

Energy and Delay for Data Search

K. Kato et al., IEEE Electron Device Letters, Vol. 37, pp. 31-34, 2016

Energy Delay 1 column 1 column 256 columns **Cells involved:** \times 256 rows \times 256 rows × 1 row Program ($V_{\rm prog}$ = 2.5 V) < 10 ns 15 fJ N/A 2.0 pJ Match "0" or Match "1" N/A 1.2 pJ < 0.2 ns

N/A

256 × 256 NV-NEMory Array

- The location of a data string can be found in <0.5 ns with less than 2.5 pJ. ۲
- \rightarrow For a die size of 42 mm² (same as DDR4 DRAM) at F = 20 nm and cell density of 65% (similar to DRAM), a NV-NEMory chip would have the capacity 8 Gb and would consume only 300 nJ to find a match on the whole chip.
- \rightarrow In comparison, it would take CPU+DRAM ~90 mJ, 80 ms for the same task.

Relatively fast read speed & low power consumption make NV-NEMory technology well-suited for real-time data searching applications!

Outline

- Introduction
- Extending the Era of Moore's Law
- Beyond Moore: Mechanical Computing Redux
- Summary

Summary

- Tilted ion implantation (TII) is an effective sublithographic patterning and pitch-halving technique
 - features are self-aligned to pre-existing mask
 - process flow is much simpler (lower cost) than SADP
 - \rightarrow shows promise for extending Moore's Law!
- Electronic devices which enable more energyefficient computation and data storage, at ever lower cost per function, will be required for ubiquitous computing.
 - **BEOL NEM devices show promise in this regard**

Acknowledgements

- TII-Enhanced Lithography:
 - Dr. Sang Wan Kim (UC Berkeley)
 - Dr. Peng Zheng (now with Intel Corporation)
 - Dr. Leonard Rubin (Axcelis Technologies)
 - UC Berkeley Marvell Nanofabrication Laboratory
 - Funding from Applied Materials, Lam Research
- **BEOL NEM Relays Technology:**
 - Dr. Nuo Xu (now with Samsung Semiconductor, Inc.)
 - Dr. Kimihiko Kato (now at University of Tokyo)
 - Prof. Vladimir Stojanović (UC Berkeley)
 - Funding from National Science Foundation
 - Center for Energy Efficient Electronics Science