NEM Relay Design for Compact, Ultra-Low-Power Digital Logic Circuits

T.-J. K. Liu¹, N. Xu¹, I.-R. Chen¹, C. Qian¹, J. Fujiki²

¹Dept. of Electrical Engineering and Computer Sciences University of California, Berkeley, CA USA ²Toshiba Corporation, Tokyo, Japan

December 16, 2014

Acknowledgement

Center for Energy Efficient Electronics Science (NSF Award 0939514)

A Vision of the Future Internet of Things \rightarrow ultra-low-power required!

CMOS Energy-Efficiency Limit

CMOS Energy-Efficiency Limit

Why Nano-Electro-Mechanical Relays?

- Zero off-state leakage → Zero static power
- Abrupt switching \rightarrow Low V_{DD} (low dynamic power)

Basic Electro-Mechanical Switch

 Relay endurance > 10¹⁵ cycles for hot-switching below 1 Volt

H. Kam et al., 2010 IEDM

Outline of Presentation

- Overcoming Surface Adhesion Energy Limit
- Compact BEOL Relay Design
- Zero Crowbar Current Relay-Based Circuits
- Conclusion

Normally-OFF Switch Design

OFF State (as fabricated)

ON State

• Turn OFF by spring force $\rightarrow F_{spring} > F_{adh}$

- Turn ON by electrostatic force $\rightarrow F_{elec} > F_{spring} > F_{adh}$
- Minimum operating energy is limited by adhesion

 Limits actuation area and/or voltage scaling

Normally-ON Switch Design

ON State (as fabricated)

OFF State

• Spring force counteracts adhesive force

• Turn OFF by electrostatic force $\rightarrow F_{elec} < F_{adh}$

Operating energy can be smaller than E_{adhesion}
 <u>Challenge</u>: Ultra-small (~1 nm) contact gap required

I-R. Chen et al. (UC Berkeley), to be published

- Electrostatic force is applied to switch between states
- Contacting state is non-volatile if F_{adh} > F_{spring}

Outline of Presentation

- Overcoming Surface Adhesion Energy Limit
- Compact BEOL Relay Design
- Zero Crowbar Current Relay-Based Circuits
- Conclusion

3-D Integration with CMOS

 Advanced back-end-of-line (BEOL) processes have multiple metal layers and air gaps

 -> can be adapted for fabrication of NEM relays!

Scanning Electron Micrographs

D. C. Edelstein (IBM), 214th ECS Meeting, Abstract #2073, 2008

S. Natarajan *et al.* (Intel), Paper 3.7, *2014 IEDM*

BEOL SPDT NEM Switch

courtesy of Dr. Kimihiko Kato (UC Berkeley)

- 5-terminal SPDT switch implemented using 4 interconnect layers
 - Vias are used for electrical connection and as torsional elements for lower k_{eff}
- Fixed actuation electrodes on opposite sides of movable structure
 → 2 stable states (contacting D₀ or D₁)

BEOL NEM Switch Operating Voltage

N. Xu et al., (UC Berkeley), Paper 28.8, IEDM 2014

 Low-voltage (<1 V) operation can be achieved with a small device footprint (< 0.1 μm²).

BEOL Design Parameters

Material	Al
Pitch	42 nm
Width	21 nm
Aspect Ratio	1.9

NVM Technology Comparison

• A bi-stable NEM switch operates with much lower energy and delay than other NVM devices.

Outline of Presentation

- Overcoming Surface Adhesion Energy Limit
- Compact BEOL Relay Design
- Zero Crowbar Current Relay-Based Circuits
- Conclusion

6-Terminal (6-T) SPDT NEM Relay

If a common output electrode is used insulated from the input then the relay functions as a 2:1 multiplexer (MUX) $OUT = \overline{IN} \cdot D_0 + IN \cdot D_1$

Basic 6-T Relay Logic Gates

- OUT terminals each are connected to a D terminal
 - → one mechanical delay, i.e. single-stage operation

Measured Voltage Waveforms

Multiple-Input AND and OR Gates

- Any combinational logic function can be implemented with 2:1 MUX relays using binary decision diagram techniques
 - D. Lee et al. (Stanford), IEEE T-CADICS, Vol. 32, pp. 653-666, 2013

J. Fujiki et al. (UC Berkeley), IEEE T-ED, Vol. 61, pp. 3296-3302, 2014

4:1 Multiplexer ...

A 2N:1 multiplexer is implemented with N(N+1)/2 switches

• An N-bit decoder is implemented using 2^{N+1}-2 switches

Full Adder

for carry-lookahead adder

Device Count Comparison

• Relay-based implementation results in lower device count:

FUNCTION	CMOS	6-T NEM RELAY
BUF	4	1
NOT	2	1
NAND	4	2
XOR	6	2
2:1 MUX	8	1
Full adder	24	8

• Note that each of the relay-based circuits are single-stage (1 mechanical delay).

Outline of Presentation

- Overcoming Surface Adhesion Energy Limit
- Compact BEOL Relay Design
- Zero Crowbar Current Relay-Based Circuits
- Conclusion

Conclusion

- Surface adhesion does not set a fundamental limit for NEM relay operating energy if adhesion force is used to switch ON a relay
- An advanced CMOS BEOL technology can be leveraged to fabricate vertical NEM relays
 Footprint < 0.1 μm²; switching voltage < 1 V See Paper 28.8 (12 noon tomorrow!)
- A complementary (SPDT) relay design ensures zero crowbar current (as well as zero leakage) and provides for substantial reduction in device count