NEM Relay Design
 for Compact, Ultra-Low-Power Digital Logic Circuits

T.-J. K. Liu ${ }^{1}$, N. Xu ${ }^{1}$, I.-R. Chen ${ }^{1}$, C. Qian ${ }^{1}$, J. Fujki ${ }^{2}$
${ }^{1}$ Dept. of Electrical Engineering and Computer Sciences University of California, Berkeley, CA USA
${ }^{2}$ Toshiba Corporation, Tokyo, Japan
December 16, 2014

Acknowledgement

Center for Energy Efficient Electronics Science (NSF Award 0939514)

A Vision of the Future

Internet of Things \rightarrow ultra-low-power required!

CMOS Energy-Efficiency Limit

$$
\begin{aligned}
& \text { - A lower limit in E/op exists } \\
& \text { for any CMOS technology, } \\
& \text { due to transistor OFF-state } \\
& \text { leakage. } \\
& \mathrm{E}_{\text {total }}=\stackrel{\text { Active Energy }}{\alpha_{L_{d}} f C V_{D D}{ }^{2}}+\xlongequal[L_{d} f l_{O F F} V_{D D} t_{\text {delay }}]{\text { Passive Energy }} \\
& \mathrm{t}_{\text {delay }}=\mathrm{L}_{\mathrm{d}} \mathrm{fCV}_{\mathrm{DD}} /\left(\mathbf{2 1}_{\mathrm{ON}}\right)
\end{aligned}
$$

a: Activity Factor $\quad L_{d}$: Logic Depth f: Fanout C: Capacitance per Stage

CMOS Energy-Efficiency Limit

- A lower limit in E/op exists for any CMOS technology, due to transistor OFF-state leakage.

$$
\begin{aligned}
& \text { Active Energy Passive Energy } \\
& E_{\text {total }}=\alpha L_{d} f \mathrm{CV}_{D D}{ }^{2}+L_{\mathrm{d}} \mathrm{fl}_{\mathrm{FFF}} \mathrm{~V}_{\mathrm{DD}} \mathrm{t}_{\text {delay }} \\
& \mathrm{E}_{\text {total }}=\alpha \mathrm{L}_{\mathrm{d}} \mathrm{fCV}_{\text {DD }}{ }^{2}\left[1+\left(\mathrm{L}_{\mathrm{d}} \mathrm{f} / 2 \alpha\right) /\left(\mathrm{l}_{\text {oN }} / \mathrm{l}_{\mathrm{OFF}}\right)\right]
\end{aligned}
$$

a: Activity Factor $\quad L_{d}$: Logic Depth f: Fanout C: Capacitance per Stage

Why Nano-Electro-Mechanical Relays?

- Zero off-state leakage \rightarrow Zero static power
- Abrupt switching \rightarrow Low $V_{D D}$ (low dynamic power)

Basic Electro-Mechanical Switch
OFF State (as fabricated):

ON State:

I-V Characteristic

- Relay endurance > 10^{15} cycles for hot-switching below 1 Volt
H. Kam et al., 2010 IEDM

Outline of Presentation

- Overcoming Surface Adhesion Energy Limit
- Compact BEOL Relay Design
- Zero Crowbar Current Relay-Based Circuits
- Conclusion

Normally-OFF Switch Design

OFF State (as fabricated)

- Turn OFF by spring force $\rightarrow F_{\text {spring }}>F_{\text {adh }}$

ON State

- Turn ON by electrostatic force

$$
\rightarrow F_{\text {elec }}>F_{\text {spring }}>F_{\text {adh }}
$$

- Minimum operating energy is limited by adhesion
\rightarrow Limits actuation area and/or voltage scaling

Normally-ON Switch Design

ON State (as fabricated)

OFF State

- Spring force counteracts adhesive force
- Turn OFF by electrostatic force

$$
\rightarrow F_{\text {elec }}<F_{\mathrm{adh}}
$$

- Operating energy can be smaller than $E_{\text {adhesion }}$ Challenge: Ultra-small ($\sim 1 \mathrm{~nm}$) contact gap required

Bi-stable Switch Design Single-pole double-throw (SPDT)

State 0

State 1

- Electrostatic force is applied to switch between states
- Contacting state is non-volatile if $F_{\text {adh }}>F_{\text {spring }}$

Outline of Presentation

- Overcoming Surface Adhesion Energy Limit
- Compact BEOL Relay Design
- Zero Crowbar Current Relay-Based Circuits
- Conclusion

Basic NEM Switch Designs

PLANAR

LATERAL
VERTICAL

\checkmark Fewer fabrication process steps
\checkmark Smaller footprint

3-D Integration with CMOS

- Advanced back-end-of-line (BEOL) processes have multiple metal layers and air gaps
\rightarrow can be adapted for fabrication of NEM relays!

Scanning Electron Micrographs

D. C. Edelstein (IBM),

214th ECS Meeting, Abstract \#2073, 2008

BEOL SPDT NEM Switch

- 5-terminal SPDT switch implemented using 4 interconnect layers
- Vias are used for electrical connection and as torsional elements for lower $k_{\text {eff }}$
- Fixed actuation electrodes on opposite sides of movable structure
$\rightarrow 2$ stable states
(contacting D_{0} or D_{1})
courtesy of Dr. Kimihiko Kato (UC Berkeley)

BEOL NEM Switch Operating Voltage

N. Xu et al., (UC Berkeley), Paper 28.8, IEDM2014

- Low-voltage (<1 V) operation can be achieved with a small device footprint (< $0.1 \mu \mathrm{~m}^{2}$).

BEOL Design Parameters

Material	Al
Pitch	42 nm
Width	21 nm
Aspect Ratio	1.9

NVM Technology Comparison

- A bi-stable NEM switch operates with much lower energy and delay than other NVM devices.

\rightarrow 3-D integrated NEM switches are attractive for NVSRAM application
See Paper 28.8
(12 noon tomorrow!)

Outline of Presentation

- Overcoming Surface Adhesion Energy Limit
- Compact BEOL Relay Design
- Zero Crowbar Current Relay-Based Circuits
- Conclusion

6-Terminal (6-T) SPDT NEM Relay

Displacement

- If a common output electrode is used
insulated from the input
then the relay functions as
a 2:1 multiplexer (MUX)

$$
O U T=\overline{I N} \cdot D_{0}+I N \cdot D_{1}
$$

IN	OUT
$\mathbf{0}$	D_{0}
1	D_{1}

Symbol: in +1) out
D_{1}

Basic 6-T Relay Logic Gates

BUF	NOT
AND $\stackrel{\mathrm{A} \prod_{\mathrm{B}}^{++1}}{0}=A \cdot B$	
OR	NOR
	XNOR

- OUT terminals each are connected to a D terminal
\rightarrow one mechanical delay, i.e. single-stage operation

Measured Voltage Waveforms

J. Jeon et al. (UC Berkeley), IEFE/ASNE J.NEMS, Vol. 19, pp. 1012-1014, 2010

Multiple-Input AND and OR Gates

- Any combinational logic function can be implemented with 2:1 MUX relays using binary decision diagram techniques
D. Lee et al. (Stanford), IEEE T-CADICS, Vol. 32, pp. 653-666, 2013

3-input OR

4:1 Multiplexer ...

- A 2N:1 multiplexer is implemented with $\mathrm{N}(\mathrm{N}+1) / 2$ switches

- An N -bit decoder is implemented using $2^{\mathrm{N}+1}-2$ switches

Full Adder

- for carry-lookahead adder

Device Count Comparison

- Relay-based implementation results in lower device count:

FUNCTION	CMOS	6-T NEM RELAY
BUF	4	1
NOT	2	1
NAND	4	2
XOR	6	2
$2: 1$ MUX	8	1
Full adder	24	8

- Note that each of the relay-based circuits are single-stage (1 mechanical delay).

Outline of Presentation

- Overcoming Surface Adhesion Energy Limit
- Compact BEOL Relay Design
- Zero Crowbar Current Relay-Based Circuits
- Conclusion

Conclusion

- Surface adhesion does not set a fundamental limit for NEM relay operating energy if adhesion force is used to switch ON a relay
- An advanced CMOS BEOL technology can be leveraged to fabricate vertical NEM relays
$>$ footprint $<0.1 \mu \mathrm{~m}^{2}$; switching voltage $<1 \mathrm{~V}$ See Paper 28.8 (12 noon tomorrow!)
- A complementary (SPDT) relay design ensures zero crowbar current (as well as zero leakage) and provides for substantial reduction in device count

