The Path Toward Efficient Nano-Mechanical Circuits and Systems

Tsu-Jae King Liu¹

Elad Alon¹, Vladimir Stojanovic^{2,} Dejan Markovic³

¹University of California at Berkeley ²Massachusetts Institute of Technology ³University of California at Los Angeles

November 3, 2011

2nd Berkeley Symposium on Energy Efficient Electronic Systems

Proliferation of Electronic Devices

Source: ITU, Mark Lipacis, Morgan Stanley Research

http://www.morganstanley.com/institutional/techresearch/pdfs/2SETUP_12142009_RI.pdf 2

Vision for 2020: Swarms of Electronics

Why Mechanical Switches?

Relays have zero off-state leakage
 → zero leakage energy

Relays switch on/off abruptly

 → allows for aggressive V_{DD} scaling
 (ultra-low dynamic energy)

Outline

- Electro-Mechanical Relay Design for Digital ICs
- Relay-Based IC Design
- Relay Reliability
- Summary

4-Terminal Relay Structure

- A voltage is applied between the gate and body to bring the channel into contact with the source and drain.
 - ➡ Folded-flexure design relieves residual stress.
 - ➡ Gate oxide layer insulates the channel from the gate.

4-T Relay Process Flow (I)

- Deposit Al₂O₃ substrate insulator
 - ALD at 300°C

Deposit & pattern W electrodes

DC magnetron sputtering

Deposit 1st sacrificial LTO

• LPCVD at 400°C

Define contact regions

Deposit 2nd sacrificial LTO

Deposit & pattern W channel

Deposit Al₂O₃ gate oxide

R. Nathanael et al., IEDM 2009

4-T Relay Process Flow (II)

Mask 4: Structure

4-T Relay $I_{\rm D}$ - $V_{\rm G}$ Characteristic

- Zero *I*_{OFF}; S < 0.1 mV/dec
- Hysteresis is due to pull-in mode operation ($t_{dimple} > t_{gap}/3$) and surface adhesion.

See-Saw Relay Structure

Close-Up of Channel Region

Measured $I_{\rm D}$ - $V_{\rm G}$ Characteristics

 Perfectly complementary operation is achieved in left and right channels

J. Jeon et al., IEEE Electron Device Letters, Vol. 31, pp. 371-373, 2010

See-Saw Relay Latch

J. Jeon et al., IEEE/ASME J. MicroElectroMechanical Systems, Vol. 19, pp. 1012-1014, 2010. 11

4-T Relay Turn-On Delay

- Turn-on delay improves with gate overdrive, and saturates at ~200ns for V_B = 0V.
- Turn-on delay improves w/ body biasing to reduce V_{PI} → 100ns turn-on delay

Relay Scaling

Scaling has similar benefits for relays as for MOSFETs.

Pull-in Voltage: $V_{\rm PI} \propto \sqrt{\frac{k_{\rm eff} t_{\rm gap}^3}{\mathcal{E}_0 A}}$			$\begin{array}{l} \textbf{Pull-in} \\ \textbf{Delay:} t_{\rm PI} \propto \sqrt{\frac{mt_{\rm dimple}}{k_{\rm eff}t_{\rm gap}}} \left(\frac{V_{\rm PI}}{V_{\rm DD}}\right) \end{array}$		
	Relay Parameter	Scaling Factor			
	Spring constant	1/κ	65 nm Relay Design		
	Mass	1 / κ ³	Parameter	Value	
	Pull-in voltage	1/κ	Actuation Area	65×260 nm ²	
	Pull-in delay	1/κ	Actuation Gap	15 nm	
	Switching energy	1 / κ ³	Dimple Gap	10 nm	
	Device density	κ ²	Pull-in voltage	0.4V - 1V	
	Power density	1	Pull-in delay	100ns – 10ns	

V. Pott et al., Proc. IEEE, Vol. 98, pp. 2076-2094, 2010

Outline

- Electro-Mechanical Relay Design for Digital ICs
- Relay-Based IC Design
- Relay Reliability
- Summary

Digital IC Design with Relays

- <u>CMOS</u>: delay is set by electrical time constant
 - Quadratic delay penalty for stacking devices
 - → Buffer & distribute logical/electrical effort over many stages
- <u>Relays</u>: delay is dominated by mechanical movement
 - Can stack ~100 devices before $t_{elec} \approx t_{mech}$
 - → Implement relay logic as a single complex gate

Relay-Based VLSI Building Blocks

F. Chen et al., ISSCC 2010

Technology Transfer to SEMATECH

1st prototype: 120 µm x 150 µm

Scaled relay: 20 µm x 20 µm

SEMATECH: 0.25 µm litho

Energy-Delay Comparison with CMOS

 Scaled relay technology is projected to provide for >10x energy savings, at clock rates up to ~100MHz

V. Pott et al., Proc. IEEE, Vol. 98, pp. 2076-2094, 2010

Outline

- Electro-Mechanical Relay Design for Digital ICs
- Relay-Based IC Design
- Relay Reliability
- Summary

Stiction

• Hysteresis voltage (V_{PI} - V_{RL}) scales with the pull-in voltage (V_{PI})

$$V_{PI} - V_{RL} = V_{PI} \left[1 - 2.6 \sqrt{\frac{t_{dimple}}{t_{gap}}} \left(1 - \frac{t_{dimple}}{t_{gap}} \right) \right]$$

ignoring surface adhesion force

• Surface adhesion force scales with area of contacting region(s):

Contact Design for Logic Gates

- High R_{ON} (up to ~10 k Ω) is acceptable
 - ➡ To achieve good endurance and reliability:
 - 1. Use hard electrode material → Tungsten
 - 2. Apply a surface coating to reduce surface force and current density \rightarrow ALD TiO₂

Contact Stability

- Variations are likely due to W oxidation
- No surface wear is seen after 1 billion ON/OFF cycles

H. Kam et al., IEDM 2009, R. Nathanael et al., IEDM 2009

Relay Endurance

Nanoscale Relay Technology

- Sub-100 mV operation is possible
 - Zero I_{OFF} enables V_{DD} scaling without increasing leakage power
 - Hysteresis voltage scales with pull-in voltage

Node (nm)	15	11	8
Actuation Gap (nm)	5.5	4	3
Pull-in Voltage (mV)	113	100	86
Release Voltage (mV)	73	66	58

* All dimensions scaled with technology node

Node (nm)	15	11	8
Supply Voltage (V)	0.4	0.4	0.4
Mechanical Delay (ns)	6.2	3.8	2.5

Footprint for two switches = 14×14F²

Cross-Point Electro-Mechanical NVM Array

- Electro-mechanical diode cell design:
 - Open circuit in Reset state
 - Diode in Set state (built-in electric-field → electrostatic force)

- ✓ Smallest cell layout area (4F²); 3-D stackable
- ✓ Low-voltage operation
- ✓ Excellent retention behavior
- ✓ Multiple-time programmable (> 10,000 cycles)

Outline

- Electro-Mechanical Relay Design for Digital ICs
- Relay-Based IC Design
- Relay Reliability
- Summary

Summary

- Mechanical switches have the ideal properties of zero off-state leakage and abrupt turn-on/turn-off.
 → potential for achieving very low E/op (<1 aJ)
- <u>Dimensional scaling</u> is required to achieve low-voltage operation and adequate reliability
 - $V_{DD} < 100 \text{ mV}$
 - endurance > 10¹⁵ cycles

Materials optimization can yield further improvements.

 <u>New circuit and system architectures</u> are needed to fully realize the potential energy-efficiency benefits.

→ device and circuit design co-optimization is key!

Acknowledgements

- NEM-Relay Team (current and former) members: <u>Post-docs</u>: Louis Hutin; Hei Kam (now with Intel); Vincent Pott (now with IME, Singapore)
 - Students:Rhesa Nathanael, Jaeseok Jeon (now with Rutgers U.),I-Ru Chen, Yenhao Chen, Jack Yaung, Matt Spencer;Fred Chen and Hossein Fariborzi (MIT);Chengcheng Wang and Kevin Dwan (UCLA)
- Funding:
 - > DARPA/MTO NEMS Program
 - DARPA/MARCO Focus Center Research Program
 - Center for Circuits and Systems Solutions (C2S2)
 - Center for Materials, Structures, and Devices (MSD)
 - NSF Center of Integrated Nanomechanical Systems (COINS)
 - > NSF Center for Energy Efficient Electronics Science (E3S)
- UC Berkeley Micro/Nanofabrication Laboratory

Frequently Asked Questions

1. Displacement (*x*) due to gravity?

$$x = \frac{mg}{k_{eff}} \cong 0.1 \,\mathrm{fm}$$

- 2. Mechanical shock causing pull-in?
 - requires acceleration > $10^{6}g$

due to small m (10⁻¹⁴ grams)

3. Thermal vibration? $\frac{1}{2}k_{B}T = \frac{1}{2}k_{eff}x^{2} \rightarrow \mathbf{x} \approx 1 \text{ Å for } \mathbf{T} = 300 \text{ K}$