The Path Toward Efficient Nano-Mechanical Circuits and Systems

Tsu-Jae King Liu ${ }^{1}$

Elad Alon ${ }^{1}$, Vladimir Stojanovic ${ }^{2}$, Dejan Markovic ${ }^{3}$
${ }^{1}$ University of California at Berkeley
${ }^{2}$ Massachusetts Institute of Technology ${ }^{3}$ University of California at Los Angeles

November 3, 2011

Proliferation of Electronic Devices

Source: ITU, Mark Lipacis, Morgan Stanley Research
http://www.morganstanley.com/institutional/techresearch/pdfs/2SETUP_12142009_RI.pdf 2

Vision for 2020: Swarms of Electronics

Why Mechanical Switches?

- Relays have zero off-state leakage \rightarrow zero leakage energy

- Relays switch on/off abruptly \rightarrow allows for aggressive V_{DD} scaling (ultra-low dynamic energy)

Gate Voltage

Outline

- Electro-Mechanical Relay Design for Digital ICs
- Relay-Based IC Design
- Relay Reliability
- Summary

4-Terminal Relay Structure

AA' cross-section: ON state

- A voltage is applied between the gate and body to bring the channel into contact with the source and drain.
\rightarrow Folded-flexure design relieves residual stress.
\bullet Gate oxide layer insulates the channel from the gate.

4-T Relay Process Flow (I)

4-T Relay Process Flow (II)

Mask 4: Structure

Deposit p+ poly- $\mathrm{Si}_{0.4} \mathbf{G e}_{0.6}$ gate - LPCVD at $410^{\circ} \mathrm{C}$

Pattern gate \& gate oxide layers using LTO as a hard mask

4-T Relay $I_{D}-V_{G}$ Characteristic

- Zero $I_{\text {OFF }} ; S$ < $0.1 \mathrm{mV} /$ dec
- Hysteresis is due to pull-in mode operation ($\mathrm{t}_{\text {dimple }}>\mathrm{t}_{\text {gap }} / 3$) and surface adhesion.

See-Saw Relay Structure

Close-Up of Channel Region

Measured $I_{D}-V_{G}$ Characteristics

- Perfectly complementary operation is achieved in left and right channels
- $\mathrm{V}_{\mathrm{BL}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{BR}}=10 \mathrm{~V}$

See-Saw Relay Latch

4-T Relay Turn-On Delay

Turn-ON Time vs. Gate Voltage

- Turn-on delay improves with gate overdrive, and saturates at $\sim 200 \mathrm{~ns}$ for $V_{B}=0 \mathrm{~V}$.

Turn-ON Time vs. Body Bias

- Turn-on delay improves w/ body biasing to reduce V_{PI}
\rightarrow 100ns turn-on delay

Relay Scaling

- Scaling has similar benefits for relays as for MOSFETs.

Relay Parameter	Scaling Factor
Spring constant	$1 / \kappa$
Mass	$1 / \kappa^{3}$
Pull-in voltage	$1 / \kappa$
Pull-in delay	$1 / \kappa$
Switching energy	$1 / \kappa^{3}$
Device density	$\mathrm{\kappa}^{2}$
Power density	1

65 nm Relay Design

Parameter	Value
Actuation Area	$65 \times 260 \mathrm{~nm}^{2}$
Actuation Gap	15 nm
Dimple Gap	10 nm
Pull-in voltage	$0.4 \mathrm{~V}-1 \mathrm{~V}$
Pull-in delay	$100 \mathrm{~ns}-10 \mathrm{~ns}$

Outline

- Electro-Mechanical Relay Design for Digital ICs
- Relay-Based IC Design
- Relay Reliability
- Summary

Digital IC Design with Relays

CMOS: 30 transistors

Relay: 12 relays

- CMOS: delay is set by electrical time constant
- Quadratic delay penalty for stacking devices
\rightarrow Buffer \& distribute logical/electrical effort over many stages
- Relays: delay is dominated by mechanical movement
- Can stack ~100 devices before $t_{\text {elec }} \approx \mathrm{t}_{\text {mech }}$
\rightarrow Implement relay logic as a single complex gate

Relay-Based VLSI Building Blocks

Technology Transfer to SEMATECH

UC Berkeley: $1 \mu \mathrm{~m}$ litho

1st $^{\text {st }}$ prototype: $120 \mu \mathrm{~m} \times 150 \mu \mathrm{~m}$

SEMATECH: $0.25 \mu \mathrm{~m}$ litho

Scaled relay: $20 \mu \mathrm{~m} \times 20 \mu \mathrm{~m}$

Energy-Delay Comparison with CMOS

- Scaled relay technology is projected to provide for $>10 x$ energy savings, at clock rates up to $\sim 100 \mathrm{MHz}$

Outline

- Electro-Mechanical Relay Design for Digital ICs
- Relay-Based IC Design
- Relay Reliability
- Summary

Stiction

- Hysteresis voltage ($\mathrm{V}_{\mathrm{PI}}-\mathrm{V}_{\mathrm{RL}}$) scales with the pull-in voltage $\left(\mathrm{V}_{\mathrm{PI}}\right)$

$$
V_{P I}-V_{R L}=V_{P I}\left[1-2.6 \sqrt{\frac{t_{\text {dimple }}}{t_{\text {gap }}}}\left(1-\frac{t_{\text {dimple }}}{t_{\text {gap }}}\right)\right] \quad \begin{aligned}
& \text { ignoring surface } \\
& \text { adhesion force }
\end{aligned}
$$

- Surface adhesion force scales with area of contacting region(s):

Contact Design for Logic Gates

- High $R_{\text {ON }}$ (up to $\sim 10 \mathrm{k} \Omega$) is acceptable
\rightarrow To achieve good endurance and reliability:

1. Use hard electrode material \rightarrow Tungsten
2. Apply a surface coating to reduce surface force and current density \rightarrow ALD TiO 2

Contact Stability

ON-state Resistance vs. \# ON/OFF Cycles

AFM Measurements

- Variations are likely due to \mathbf{W} oxidation
- No surface wear is seen after 1 billion ON/OFF cycles

Relay Endurance

Nanoscale Relay Technology

- Sub-100 mV operation is possible
- Zero $\mathrm{l}_{\text {OFF }}$ enables V_{DD} scaling without increasing leakage power
- Hysteresis voltage scales with pull-in voltage

Node (nm)	15	11	8
Actuation Gap (nm)	5.5	4	3
Pull-in Voltage (mV)	113	100	86
Release Voltage (mV)	73	66	58

* All dimensions scaled with technology node

Node (nm)	15	11	8
Supply Voltage (V)	0.4	0.4	0.4
Mechanical Delay (ns)	6.2	3.8	2.5

Footprint for two switches $=14 \times 14 \mathrm{~F}^{2}$

Cross-Point Electro-Mechanical NVM Array

- Electro-mechanical diode cell design:
- Open circuit in Reset state
- Diode in Set state (built-in electric-field \rightarrow electrostatic force)

SEM of NVM Array

Cross-sectional SEM

\checkmark Smallest cell layout area (4F²); 3-D stackable
\checkmark Low-voltage operation
\checkmark Excellent retention behavior
\checkmark Multiple-time programmable (> 10,000 cycles)

Outline

- Electro-Mechanical Relay Design for Digital ICs
- Relay-Based IC Design
- Relay Reliability
- Summary

Summary

- Mechanical switches have the ideal properties of zero off-state leakage and abrupt turn-on/turn-off.
\rightarrow potential for achieving very low E/op (<1 aJ)
- Dimensional scaling is required to achieve low-voltage operation and adequate reliability
- $\mathrm{V}_{\mathrm{DD}}<100 \mathrm{mV}$
- endurance > 10^{15} cycles

Materials optimization can yield further improvements.

- New circuit and system architectures are needed to fully realize the potential energy-efficiency benefits.
\rightarrow device and circuit design co-optimization is key!

Acknowledgements

- NEM-Relay Team (current and former) members:

Post-docs: Louis Hutin; Hei Kam (now with Intel);
Vincent Pott (now with IME, Singapore)
Students: Rhesa Nathanael, Jaeseok Jeon (now with Rutgers U.), I-Ru Chen, Yenhao Chen, Jack Yaung, Matt Spencer;
Fred Chen and Hossein Fariborzi (MIT);
Chengcheng Wang and Kevin Dwan (UCLA)

- Funding:
> DARPA/MTO NEMS Program
> DARPA/MARCO Focus Center Research Program
- Center for Circuits and Systems Solutions (C2S2)
- Center for Materials, Structures, and Devices (MSD)
$>$ NSF Center of Integrated Nanomechanical Systems (COINS)
$>$ NSF Center for Energy Efficient Electronics Science (E3S)
- UC Berkeley Micro/Nanofabrication Laboratory

Frequently Asked Questions

1. Displacement (x) due to gravity?

$$
x=\frac{m g}{k_{e f f}} \cong 0.1 \mathrm{fm}
$$

2. Mechanical shock causing pull-in?

- requires acceleration $>1 \mathbf{0}^{6} \mathbf{g}$
due to small $m\left(10^{-14}\right.$ grams $)$

3. Thermal vibration?

$$
1 / 2_{B} T=1 / 2^{k_{\text {eff }} x^{2}} \rightarrow \mathbf{x} \approx \mathbf{1} \AA \text { for } \mathbf{T}=\mathbf{3 0 0 K}
$$

