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Why Mechanical Switches?

• Relays have zero off-state leakage 
 zero leakage energy
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3-Terminal Switch

• Relays switch on/off abruptly 
 allows for aggressive VDD scaling 

(ultra-low dynamic energy)
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• A voltage is applied between the gate and body to bring 
the channel into contact with the source and drain.
 Folded-flexure design relieves residual stress.
 Gate oxide layer insulates the channel from the gate.

4-Terminal Relay Structure
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4-T Relay Process Flow (I)

100nm SiO2

80 nm Al2O3

50 nm W

Si substrate

200nm100nm

Deposit Al2O3 substrate insulator
• ALD at 300oC

Deposit & pattern W electrodes
• DC magnetron sputtering

Deposit 1st sacrificial LTO
• LPCVD at 400oC
Define contact regions

Deposit 2nd sacrificial LTO

Deposit & pattern W channel

Deposit Al2O3 gate oxide

50 nm W

40 nm Al2O3

SiO2

Mask 1: Electrode

Mask 2: Contact dimple

Mask 3: Channel
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4-T Relay Process Flow (II)
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TiO2

HF
vapor

p+ poly-Si0.4Ge0.6

SiO2

1m

Deposit p+ poly-Si0.4Ge0.6 gate
• LPCVD at 410oC

Coat with ultra-thin (~0.3nm) TiO2
• ALD at 300oC

Pattern gate & gate oxide layers 
using LTO as a hard mask

Release in HF vapor

Mask 4: Structure
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4-T Relay ID-VG Characteristic

• Zero IOFF; S < 0.1 mV/dec
• Hysteresis is due to pull-in mode operation (tdimple > tgap/3) 

and surface adhesion.

Plan View SEM of 4-T Relay

20 μm
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• Perfectly complementary 
operation is achieved in 
left and right channels

• VBL = 0 V; VBR = 10 V

Plan View Close-Up of Channel Region

See-Saw Relay Structure

Measured ID-VG Characteristics
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See-Saw Relay Latch
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4-T Relay Turn-On Delay

• Turn-on delay improves with 
gate overdrive, and saturates 
at ~200ns for VB = 0V.

Turn-ON Time vs. Gate Voltage Turn-ON Time vs. Body Bias

• Turn-on delay improves w/ body 
biasing to reduce VPI
 100ns turn-on delay

12R. Nathanael et al., IEDM 2009



,  ,  Relay Scaling
• Scaling has similar benefits for relays as for MOSFETs.

65 nm Relay DesignSpring constant 1 / 
Mass 1 / 3

Pull-in voltage 1 / 
Pull-in delay 1 / 

Switching energy 1 / 3

Device density 2

Power density 1

Relay Parameter
Scaling
Factor

V. Pott et al., Proc. IEEE, Vol. 98, pp. 2076-2094, 2010

Pull-in
Voltage:

Pull-in
Delay:

Parameter Value
Actuation Area 65260 nm2

Actuation Gap 15 nm
Dimple Gap 10 nm

Pull-in voltage 0.4V - 1V
Pull-in delay 100ns – 10ns
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4 gate delays 1 mechanical delay

Digital IC Design with Relays

F. Chen et al., ICCAD 2008

• CMOS: delay is set by electrical time constant
‒ Quadratic delay penalty for stacking devices
 Buffer & distribute logical/electrical effort over many stages

• Relays: delay is dominated by mechanical movement
‒ Can stack ~100 devices before telec ≈ tmech

 Implement relay logic as a single complex gate

15



Relay-Based VLSI Building Blocks

2010 ISSCC Jack Raper Award for 
Outstanding Technology Directions

F. Chen et al., ISSCC 2010 16



Technology Transfer to SEMATECH

1st prototype: 120 µm x 150 µm Scaled relay: 20 µm x 20 µm

SEMATECH: 0.25 µm lithoUC Berkeley: 1 µm litho
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Energy-Delay Comparison with CMOS

transition probability=0.01
cap/CMOS inverter=0.57fF

• Scaled relay technology is projected to provide for 
>10x energy savings, at clock rates up to  ~100MHz

V. Pott et al., Proc. IEEE, Vol. 98, pp. 2076-2094, 2010 18
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• Hysteresis voltage (VPI-VRL) scales with the pull-in voltage (VPI)

• Surface adhesion force scales with area of contacting region(s):

ignoring surface 
adhesion force

Extracted from measured VPI,VRL

Stiction

H. Kam et al., 2009 IEDM 20
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Contact Design for Logic Gates

• High RON (up to ~10 kΩ) is acceptable
 To achieve good endurance and reliability:

1. Use hard electrode material  Tungsten
2. Apply a surface coating to reduce surface force 

and current density  ALD TiO2

VDD

Electrical Delay
tRC < 1 ps

Mechanical Delay
tPI ~10 – 100 nsRON

21F. Chen et al., ICCAD 2008
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Contact Stability

• Variations are likely due to W oxidation
• No surface wear is seen after 1 billion ON/OFF cycles

ON-state Resistance vs. # ON/OFF Cycles AFM Measurements
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Relay Endurance

• Endurance increases 
exponentially with 
decreasing VDD, and 
linearly with decreasing CL

• Endurance is projected to 
exceed 1015 cycles @ 1V

H. Kam et al., IEDM 2010 23



Nanoscale Relay Technology

• Sub-100 mV operation is possible
‒ Zero IOFF enables VDD scaling without increasing leakage power
‒ Hysteresis voltage scales with pull-in voltage

24

Node (nm) 15 11 8
Actuation Gap (nm) 5.5 4 3
Pull-in Voltage (mV) 113 100 86
Release Voltage (mV) 73 66 58

* All dimensions scaled with technology node 

Footprint for two 
switches = 14×14F2

Node (nm) 15 11 8
Supply Voltage (V) 0.4 0.4 0.4
Mechanical  Delay (ns) 6.2 3.8 2.5

L. Hutin et al., to be published
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Drain1
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Drain2

Device Layout



Cross-Point Electro-Mechanical NVM Array

 Smallest cell layout area (4F2); 3-D stackable
 Low-voltage operation
 Excellent retention behavior
 Multiple-time programmable (> 10,000 cycles)

25W. Kwon et al., to appear in IEEE Electron Device Letters
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• Electro-mechanical diode cell design:
‒ Open circuit in Reset state
‒ Diode in Set state (built-in electric-field  electrostatic force)

Measured I-VCross-sectional SEMSEM of NVM Array
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Summary

• Mechanical switches have the ideal properties of      
zero off-state leakage and abrupt turn-on/turn-off.
 potential for achieving very low E/op (<1 aJ)

• Dimensional scaling is required to achieve low-voltage 
operation and adequate reliability 
‒ VDD < 100 mV
‒ endurance > 1015 cycles
Materials optimization can yield further improvements.

• New circuit and system architectures are needed to 
fully realize the potential energy-efficiency benefits. 
 device and circuit design co-optimization is key!
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Frequently Asked Questions

1. Displacement (x) due to gravity?

2. Mechanical shock causing pull-in?
‒ requires acceleration > 106g

due to small m (10-14 grams)

3. Thermal vibration?
 x ≈ 1Å for T = 300K

29
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