Nanomechanical Switches for Ultra-Low-Power Computation and Memory

Tsu-Jae King Liu

Department of Electrical Engineering and Computer Sciences University of California, Berkeley, CA 94720-1770 USA

June 22, 2014

A Vision of the Future

• Emergence of Ambient Intelligence:

Sense/monitor, communicate and react to the environment → Ultra-low-power, robust computing technology required!

Outline

- Introduction
 - CMOS energy efficiency
 - Why mechanical switches?
- Nanomechanical switches for computing
- Nanomechanical memory
- Summary

Improving CMOS Energy Efficiency

• Parallelism is the main technique to improve system performance under a power density constraint.

CMOS Energy Efficient Limit

Leakage & sub-threshold slope define minimum Energy/op

Future Logic Switch Requirements

- Zero leakage
- Simple design
- Robust
- Reconfigurable
- Low operating voltage

- → Zero standby power
- \rightarrow Low cost
- → Wide applicability
- \rightarrow Versatility
- \rightarrow Low active power

Micro-Electro-Mechanical Switch

- Zero OFF-state current (I_{OFF}); abrupt switching
 - Turns on by electrostatic force when $|V_{GS}| \ge V_{PI}$
 - Turns off by spring restoring force when $|V_{GS}| \leq V_{RL}$

Surface Micromachining Process

Cross-sectional View

- Mechanical structures can be made using conventional microfabrication techniques
- Structures are freed by selective removal of sacrificial layer(s)

Three-Dimensional (3-D) Integration

• The semiconductor industry has developed air-gap back-end-of-line (BEOL) processes which can be leveraged to make MEM switches.

Outline

Introduction

- Nanomechanical switches for computing
 - Logic switch designs
 - Relay-based integrated circuit design
 - Relay scaling limit
- Nanomechanical memory
- Summary

First Micro-Relay

K. E. Petersen, IEEE Trans. Electron Devices, Vol. 25, pp. 1241-1250, 1978

• 4-terminal (4-T) micro-electro-mechanical switch demonstrated 0.35 μ m thick × 76 μ m long SiO₂ membrane; 7 μ m actuation gap 60 V switching voltage; 40 μ s switching delay

Scaled 4-T Electro-Mechanical Relay

4-T MEM Relay Process Flow

Process Flow (cont'd)

$I_{\rm D}$ - $V_{\rm G}$ Characteristics

R. Nathanael et al., IEDM 2009

 NMOS- or PMOS-like operation is achieved by applying an appropriate body bias voltage:

✓ Zero off-state leakage; abrupt switching (SS < 0.1 mV/dec)

Contact Endurance

Y. Chen et al., to be published

Endurance increases exponentially with decreasing V_{DD}
 projected to reach 10¹⁵ cycles at 1 Volt, for W contacts

Switching Delay

- Turn-on delay improves with gate overdrive, saturates at ~200 ns for V_B = 0V.
- Turn-on delay improves w/ body biasing to reduce V_{PI}
 → 100 ns turn-ON delay

Relay Scaling

• Scaling has similar benefits for relays as for MOSFETs: $k_{eff} \propto \frac{EWt^3}{I^3}$

Pull-in Voltage: $V_{ m PI} \propto \sqrt{1}$	$\frac{k_{\rm eff} g_{\rm actuation}^3}{\mathcal{E}_0 A}$	Pull-in Delay: $t_{ m PI} \propto $	$\frac{mg_{\text{contact}}}{k_{\text{eff}}g_{\text{actuation}}}$	$\left(\frac{V_{\rm PI}}{V_{\rm DD}}\right)$
--	---	--	--	--

Relay Parameter Scaling Factor

Spring constant, k _{eff}	1/κ
Mass	1 / κ ³
Pull-in voltage, V _{PI}	1/κ
Pull-in delay, t _{PI}	1/κ
Switching energy	1 / κ ³
Device density	К ²
Power density	1

Parameter	Value		
Actuation Area, A	1 μm²		
Actuation Gap, t _{gap}	4.3 nm		
Dimple Gap, t _{dimple}	3 nm		
Pull-in voltage, V _{PI}	9.4 mV		
Release voltage, V _{RL}	6 mV*		
^Pull-in delay, t _{Pl}	25 ns		

Beam length = 3.5 μ m, thickness = 40 nm, width = 83 nm ^ V_{DD}/V_{PI} = 3 *Assumes negligible contact adhesion

Digital Circuit Design with Relays

F. Chen et al., ICCAD 2008

<u>CMOS</u>: delay is set by electrical time constant

Quadratic delay penalty for stacking devices

→ Buffer & distribute logical/electrical effort over many stages

• <u>Relays</u>: delay is dominated by mechanical movement

- Can stack ~100 devices before $t_{d,elec} \approx t_{d,mech}$

 \rightarrow Implement relay logic as a single complex gate

Single-Gate, Dual-Source/Drain Relay

I-R. Chen et al., ECS Spring Meeting 2012 and Transducers 2013

Relay Multiplier Sub-Ckt: (7:3) Compressor

Fariborzi et al., ASSCC 2011

 Most complex scaled MEM-relay integrated circuit reported to date (46 relays)

Energy-Delay Comparison with CMOS

M. Spencer et al., JSSC 2011; H. Fariborzi et al., ESSCIRC 2011

• 90nm relay vs. CMOS adders and multipliers:

>2-100× energy savings @ 3-100× higher delay

Single-Gate Relay Inverter/Buffer

R. Nathanael et al., VLSI-TSA 2012

Dual-Gate, Dual Source/Drain Relay

R. Nathanael et al., VLSI-TSA 2012

Measured V_{PI} & V_{RL} of Dual-Gate Relay R. Nathanael *et al.*, VLSI-TSA 2012

- Each gate has equal influence
- Depending on V_B, relay can be actuated using one or two gate electrodes

Dual-Gate Relay Circuit: AND/NAND

R. Nathanael et al., VLSI-TSA 2012

Dual-Gate Relay Circuit: OR/NOR

R. Nathanael et al., VLSI-TSA 2012

See-Saw (Active Turn-Off) Relay

J. Jeon et al., IEEE Electron Device Letters, Vol. 31, No. 4, pp. 371-373, 2010

Perfectly complementary switching , symmetric about V_{DD}/2

See-Saw Relay Logic Gates

J. Jeon et al., IEEE/ASME Journal of MicroElectroMechanical Systems, Vol. 19, No. 4, pp. 1012-1014, 2010

Stiction: Relay Scaling Limiter (?)

In order for a conventional electrostatic switch to turn off properly,

 \rightarrow Limits scaling of actuation area A and/or V_{PI}

Contact Adhesive Force Scaling

J. Yaung et al., IEEE/ASME Journal of Microelectromechanical Systems, Vol. 23, pp. 198-203, 2014

• Adhesive force is lowered by TiO₂ coating

10 mV Micromechanical Switch Operation

U. Zaghloul et al., IEEE Electron Device Letters Vol. 35, pp. 669-671, June 2014

Non-Volatile Memory Technologies

ITRS (Table ERD3), 2011 Edition

		Baseline Technologies		Prototypical technologies		
		Fla NOR Embedded	ash NAND Stand-alone	FeRAM	STT-MRAM	PCM
Storage Mechanism		Charge trapped in floating gate or in gate insulator		Remnant polarization on a ferroelectric capacitor	Magnetization of ferromagnetic layer	Reversibly changing amorphous and crystalline phases
Cell Elements		1T		1T1C	1(2)T1R	1T(D)1R
Faatura siza E nm	2011	90	22	180	65	45
reature size r, nm	2024	25	8	65	16	8
Coll Area	2011	10 F ²	4 F ²	22F ²	20F ²	4F ²
Cell Area	2024	10 F ²	4 F ²	12F ²	8F ²	4F ²
Read Time	2011	15 ns	0.1ms	40 ns	35 ns	12 ns
	2024	8 ns	0.1ms	<20 ns	<10 ns	< 10 ns
W/E Time	2011	1µs/10ms	1/0.1 ms	65 ns	35 ns	100 ns
	2024	1µs/10ms	1/0.1 ms	<10 ns	<1 ns	<50 ns
Potentian Time	2011	10 y	10 y	10 y	>10 y	>10 y
Kelention Time	2024	10 y	10 y	10 y	>10 y	>10 y
Write Cycles	2011	1E5	1E4	1E14	>1E12	1E9
	2024	1E5	5E3	>1E15	>1E15	1E9
Write Operating Voltage (V)	2011	10	15	1.3-3.3	1.8	3
	2024	9	15	0.7–1.5	<1	<3
Read Operating Voltage (V)	2011	1.8	1.8	1.3–3.3	1.8	1.2
	2024	1	1	0.7–1.5	<1	<1
Write Energy (J/bit)	2011	1E-10	>2E-16	3E-14	2.5E-12	6E-12
	2024	1E-11	>2E-17	7E-15	1.5E-13	~1E-15

In contrast to logic switches, NVM devices can have:

- Long write/erase times (>1 us)
- Modest endurance (< 10⁶ cycles)
- Large operating voltages (>1 V)

Outline

- Introduction
- Nanomechanical switches for computing
- Nanomechanical memory
 - Early designs
 - Recent design for cross-point array architecture
- Summary

B. Halg, IEEE Trans. Electron Devices, Vol. 37, pp. 2230-2236, 1990

Fig. 1. Schematic drawing of a micro-electro-mechanical nonvolatile memory cell based on a bistable bridge (B) on a spacer (S) on the substrate (SUB) with lateral electrodes (L). The materials used are indicated, and the symbols for the dimensions are defined.

Fig. 6. Experimentally observed and calculated switching voltages V as a function of the length l_0 of a 300-Å-thick bridge.

- Bistable buckled beam
 - Switched with electrostatic force
 - Immune to radiation, shock
- Too large (>100um²) for reasonable storage capacities...

Nanomech[™] Technology

R. Gaddi et al. (Cavendish Kinetics), Microelectronics Reliability Vol. 50, pp. 1593-1598, 2010

TEM cross-section

Endurance test results

- The beam can be pulled out of contact by biasing the cap.
- A select device (*e.g.* a transistor) is needed for each MEM switch in the memory array.

Cross-Point Array Architecture

- Most compact architecture (4F² cell size)
- Requires selector device at each cross-point to reduce "sneak" leakage current during a read operation

http://www.smartplanet.com/blog/thinking-tech/what-might-replace-flash-memory/943

Electro-Mechanical Diode NVM Cell

W. Kwon et al. (UC Berkeley), IEEE Electron Device Letters, Vol. 33, pp. 131-133, 2012

• Achieve bi-stable operation of an electrostatic gap-closing actuator by leveraging the built-in electric field of a diode:

First Prototype MEM Diode

W. Kwon et al. (UC Berkeley), IEEE Electron Device Letters, Vol. 33, pp. 131-133, 2012

- Cross-point arrays of MEM diodes were fabricated using conventional planar processing techniques.
 - The WL (100-nm p-type poly-Si_{0.4}Ge_{0.6}) is supported by SiN_x spacers formed along the sidewalls of the BL (100 nm n-type poly-Si).
 - The air-gap (~13 nm thick) between the WL and BL is formed by selectively removing a sacrificial layer of LTO using HF vapor.

Bird's-eye view of memory array

Cross-sectional view of a bit-cell

Set Operation

W. Kwon et al. (UC Berkeley), IEEE Electron Device Letters, Vol. 33, pp. 131-133, 2012

 A sudden increase in current is seen at the voltage when the WL is pulled in to the BL.

$$-V_{\text{Set}} \cong 6 \text{ V, } t_{\text{Set}} \cong 2 \text{ us}$$

 Since it is an applied voltage (not current) that is required to actuate the WL, the Set current can be lowered by inserting a currentlimiting resistor.

I-V Characteristics

W. Kwon et al. (UC Berkeley), IEEE Electron Device Letters, Vol. 33, pp. 131-133, 2012

Reset Operation

W. Kwon et al. (UC Berkeley), IEEE Electron Device Letters, Vol. 33, pp. 131-133, 2012

 To Reset a memory cell, a voltage pulse is applied to counteract the built-in field of the p-n diode.

– forward bias \rightarrow current flow

 A sudden decrease in current is seen at the voltage when the WL comes out of contact with the BL.

- $V_{\text{Reset}} \cong$ -6 V, $t_{\text{Reset}} \cong$ 100 ms

Retention Behavior

W. Kwon et al. (UC Berkeley), IEEE Electron Device Letters, Vol. 33, pp. 131-133, 2012

Endurance Characteristics

W. Kwon et al. (UC Berkeley), IEEE Electron Device Letters, Vol. 33, pp. 131-133, 2012

P = 1 atm; T = 25°C

Scaled NVM Technology Comparison

W. Kwon et al. (UC Berkeley), 2012 International Memory Workshop

Technology	NAND Flash	РСМ	STT-MRAM	Redox RRAM	Electro-mechanical diode
Cell Size	2.5 F ²	6 F ²	20-40 F ²	5-8 F ²	4-6 F ²
Scaling Limit	16 nm	5-10 nm	7-10 nm	5-10 nm	5 nm W x 20 nm L
Storage Mechanism	F-N Tunneling	Phase change by Joule heating	Electron spin torque transfer	lon transport and redox reaction	Mechanical gap closing actuation
Write/Erase Voltage	18-20 V	< 3 V	< 1.8 V	< 0.5 V	< 3 V
Write time	>10 us	50-120 ns	< 100 ns	< 5 ns	< 1 ns
Endurance	10 ⁴ - 10 ⁵	10 ¹⁵	10 ¹²	10 ¹⁶	>10 ¹⁰
Retention	10 yrs	10 yrs	10 yrs	10 yrs	> 10 yrs @ 200 ℃
Ease of Integration	10 Masks	2-3 Masks to BEOL	3-4 Masks to BEOL	2-3 Masks to BEOL	2 Masks
Write Energy per Bit	> 1 fJ	< 2 pJ	< 4 pJ	1 fJ	< 0.1 fJ

http://www.itrs.net/Links/2010ITRS/2010Update/ToPost/ERD_ERM_2010FINALReportMemoryAssessment_ITRS.pdf

 NEMory technology potentially offers the best performance and lowest energy consumption!

3-D Integration

Unity Semiconductor Corp.

 Conventional cross-point memory array technologies require 2 lithography steps per memory layer

- NEMory technology requires only 2 lithography steps to define the 3-D memory array
 - built-in redundancy (2 WL/cell)
 - allows for longer beam length

W. Kwon et al. PhD thesis, UC Berkeley

Outline

- Introduction
- Nanomechanical switches for computing
- Nanomechanical memory
- Summary

Summary

- Electronic devices which enable more energy-efficient computing and information storage, at ever lower cost per function, will be required to realize the vision of ambient intelligence.
- Mechanical devices show promise in this regard:
 - ✓ Ideal switching behavior
 - ✓ Simple fabrication process (lower cost)
 - ✓ Enhanced device functionality
 - ✓ Adequate reliability

Contact adhesive forces must be well controlled in order to fully realize this promise.

Acknowledgements

- Faculty: Elad Alon, Vladimir Stojanović; Dejan Marković (UCLA)
- <u>Former post-docs</u>: Vincent Pott (LSI Logic), Louis Hutin (CEA-LETI)
- <u>Former students</u>: Hei Kam, Jaeseok Jeon, Rhesa Nathanael, Jack Yaung, Wookhyun Kwon

@ MIT: Fred Chen, Sumit Datta, Hossein Fariborzi

@ UCLA: Kevin Dwan, Cheng C. Wang, Mingzhe Jiang

- <u>Students</u>: I-Ru Chen, Yenhao Chen, Chuang Qian, Matt Spencer
- <u>SEMATECH</u>: Muhammad Hussain, Casey Smith, Chanro Park, Weize Xiong, Rinus Lee
- <u>Research Funding</u>:

DARPA/MTO NEMS Program

DARPA/MARCO Focus Center Research Program

NSF Center of Integrated Nanomechanical Systems (COINS)

NSF Center for Energy Efficient Electronics Science (E3S)

• UC Berkeley Micro/Nanofabrication Laboratory