FinFET History, Fundamentals and Future

Tsu-Jae King Liu

Department of Electrical Engineering and Computer Sciences University of California, Berkeley, CA 94720-1770 USA

June 11, 2012

2012 Symposium on VLSI Technology Short Course

Impact of Moore's Law

Source: ITU, Mark Lipacis, Morgan Stanley Research

http://www.morganstanley.com/institutional/techresearch/pdfs/2SETUP_12142009_RI.pdf

1996: The Call from DARPA

- 0.25 µm CMOS technology was state-of-the-art
- DARPA Advanced Microelectronics (AME) Program Broad Agency Announcement for 25 nm CMOS technology

1998 International Technology Roadmap for Semiconductors (ITRS)

	1999	2002	2005	2008	2011	2014	2017	2020
Technology Node	180	130	100	70	50	35	25	18
	nm	nm	nm	nm	nm	nm	nm	nm
Gate Oxide	1.9-2.5	1.5-1.9	1.0-1.5	0.8-1.2	0.6-0.8	0.5-0.6		
Thickness <i>,</i> T _{ox} (nm)	Solu	tions		No	know	n		
Drive Current, I _{DSAT}	bein	g purs	sued	sol	utions			
				i de la constante de la consta				

End of Roadmap

- → UC-Berkeley project "Novel Fabrication, Device Structures, and Physics of 25 nm FETs for Terabit-Scale Electronics"
 - June 1997 through July 2001

MOSFET Fundamentals

<u>Metal Oxide Semiconductor</u> <u>Field-Effect Transistor:</u>

0.25 micron MOSFET XTEM

http://www.eetimes.com/design/automotive-design/4003940/LCD-driver-highly-integrated

MOSFET Operation: Gate Control

CMOS Devices and Circuits

Improving the ON/OFF Current Ratio

• The greater the capacitive coupling between Gate and channel, the better control the Gate has over the channel potential.

 \rightarrow higher I_{ON}/I_{OFF} for fixed V_{DD} , or lower V_{DD} to achieve target I_{ON}/I_{OFF}

 \rightarrow reduced <u>drain-induced</u> <u>barrier</u> <u>lowering</u> (DIBL):

MOSFET in ON State (V_{GS} > V_{TH})

Effective Drive Current (I_{EFF})

CMOS inverter chain:

CMOS Technology Scaling

XTEM images with the same scale

courtesy V. Moroz (Synopsys, Inc.)

<u>90 nm node</u>

<u>65 nm node</u>

ode <u>45 nm node</u> <u>32 nm node</u>

T. Ghani *et al., IEDM* 2003

(after S. Tyagi *et al., IEDM* 2005)

K. Mistry *et al., IEDM* 2007 P. Packan *et al., IEDM* 2009

- Gate length has not scaled proportionately with device pitch (0.7x per generation) in recent generations.
 - Transistor performance has been boosted by other means.

MOSFET Performance Boosters

- Strained channel regions $\rightarrow \mu_{eff}^{\uparrow}$
- High-k gate dielectric and metal gate electrodes $\rightarrow C_{ox}^{\uparrow}$

Cross-sectional TEM views of Intel's 32 nm CMOS devices

P. Packan et al. (Intel), IEDM Technical Digest, pp. 659-662, 2009

Process-Induced Variations

- Sub-wavelength lithography:
 - Resolution enhancement techniques are costly and increase process sensitivity
- Gate line-edge roughness:

courtesy Mike Rieger (Synopsys, Inc.)

- Random dopant fluctuations (RDF):
 - Atomistic effects become significant in nanoscale FETs

photoresist

A. Asenov, Symp. VLSI Tech. Dig., p. 86, 2007

A Journey Back through Time...

Why New Transistor Structures?

- Off-state leakage (I_{OFF}) must be suppressed as L_g is scaled down
 - allows for reductions in V_{TH} and hence V_{DD}
- Leakage occurs in the region away from the channel surface

Thin-Body MOSFETs

- I_{OFF} is suppressed by using an adequately thin body region.
 - Body doping can be eliminated
 - → higher drive current due to higher carrier mobility
 - → Reduced impact of random dopant fluctuations (RDF)

Effect of T_{si} on Leakage

Double-Gate MOSFET Structures

DELTA MOSFET

D. Hisamoto, T. Kaga, Y. Kawamoto, and E. Takeda (Hitachi Central Research Laboratory), "A fully depleted lean-channel transistor (DELTA) – a novel vertical ultrathin SOI MOSFET," IEEE Electron Device Letters Vol. 11, pp. 36-39, 1990

 Improved gate control observed for W_g < 0.3 μm

– L_{eff} = 0.57 μm

Double-Gate FinFET

- Self-aligned gates straddle narrow silicon fin
- Current flows parallel to wafer surface

1998: First N-channel FinFETs

D. Hisamoto, W.-C. Lee, J. Kedzierski, E. Anderson, H. Takeuchi, K. Asano, T.-J. King, J. Bokor, and C. Hu, "A folded-channel MOSFET for deep-sub-tenth micron era,"

IEEE International Electron Devices Meeting Technical Digest, pp. 1032-1034, 1998

1999: First P-channel FinFETs

X. Huang, W.-C. Lee, C. Kuo, D. Hisamoto, L. Chang, J. Kedzierski, E. Anderson, H. Takeuchi, Y.-K. Choi, K. Asano, V. Subramanian, T.-J. King, J. Bokor, and C. Hu, "Sub 50-nm FinFET: PMOS," *IEEE International Electron Devices Meeting Technical Digest*, pp. 67-70, 1999

2000: Vested Interest from Industry

- Semiconductor Research Corporation (SRC) & AMD fund project:
 - Development of a FinFET process flow compatible with a conventional planar CMOS process
 - Demonstration of the compatibility of the FinFET structure with a production environment

(October 2000 through September 2003)

- DARPA/SRC Focus Center Research Program funds projects:
 - Approaches for enhancing FinFET performance (MSD Center, April 2001 through August 2003)
 - FinFET-based circuit design
 (C2S2 Center, August 2003 through July 2006)

FinFET Structures

Fin Width Requirement

Sub-Lithographic Fin Patterning

Spacer Lithography

a.k.a. Sidewall Image Transfer (SIT) and Self-Aligned Double Patterning (SADP)

1. Deposit & pattern sacrificial layer

2. Deposit mask layer (SiO₂ or Si₃N₄)

- 3. Etch back mask layer to form "spacers" SOI BOX
- 4. Remove sacrificial layer; etch SOI layer to form fins

Note that fin pitch is 1/2× that of patterned layer

Benefits of Spacer Lithography

• Spacer litho. provides for better CD control and uniform fin width

Spacer-Defined FinFETs

Y.-K. Choi, N. Lindert, P. Xuan, S. Tang, D. Ha, E. Anderson, T.-J. King, J. Bokor, and C. Hu, "Sub-20nm CMOS FinFET technologies,"

IEEE International Electron Devices Meeting Technical Digest, pp. 421-424, 2001

 $L_{g} = 60 \text{ nm}, W_{fin} = 40 \text{ nm}$

2001: 15 nm FinFETs

Y.-K. Choi, N. Lindert, P. Xuan, S. Tang, D. Ha, E. Anderson, T.-J. King, J. Bokor, C. Hu, "Sub-20nm CMOS FinFET technologies,"

IEEE International Electron Devices Meeting Technical Digest, pp. 421-424, 2001

 $W_{fin} = 10 \text{ nm}; T_{ox} = 2.1 \text{ nm}$

GATE

Mag = 77.80 K X 20nm* 200r

RAIN

EHT = 10.00 kV Date :18 Apr 200 WD = 5 mm Sinnel A = Int end

10 nm

OURCE

2002: 10 nm FinFETs

Hole Mobility Comparison

- DG FET has higher hole mobility due to lower transverse electric field
- For the same gate overdrive, hole mobility in DG-FinFET is 2× that in a control bulk FET

FinFET Process Refinements

Y.-K. Choi, L. Chang, P. Ranade, J. Lee, D. Ha, S. Balasubramanian, A. Agarwal, T.-J. King, and J. Bokor, "FinFET process refinements for improved mobility and gate work function engineering," *IEEE International Electron Devices Meeting Technical Digest*, pp. 259-262, 2002

FinFET Reliability

Y.-K. Choi, D. Ha, J. Bokor, and T.-J. King, "Reliability study of CMOS FinFETs," *IEEE International Electron Devices Meeting Technical Digest*, pp. 177-180, 2003

- Narrower fin → improved hot-carrier (HC) immunity
- HC lifetime and oxide Q_{BD} are also improved by smoothening the Si fin sidewall surfaces (by H₂ annealing)

Tri-Gate FET

1.4

1.4

B. Doyle et al. (Intel), IEEE Electron Device Letters, Vol. 24, pp. 263-265, 2003

SOI Multi-Gate MOSFET Designs

after Yang and Fossum, IEEE Trans. Electron Devices, Vol. 52, pp. 1159-1164, 2005

Double-Gate vs. Tri-Gate FET

- The Double-Gate FET does not require a highly selective gate etch, due to the protective dielectric hard mask.
- Additional gate fringing capacitance is less of an issue for the Tri-Gate FET, since the top fin surface contributes to current conduction in the ON state.

Independent Gate Operation

- The gate electrodes of a double-gate FET can be isolated by a masked etch, to allow for separate biasing.
 - One gate is used for switching.
 - The other gate is used for V_{TH} control.

Bulk FinFET

 FinFETs can be made on bulk-Si wafers

✓ lower cost

✓ improved thermal conduction

with super-steep retrograde well (SSRW) or "punchthrough stopper" at the base of the fins

- 90 nm L_g FinFETs demonstrated
 - W_{fin} = 80 nm
 - H_{fin} = 100 nm DIBL = 25 mV

Bulk vs. SOI FinFET

Item	Comment	Bulk FINFET (compared to SOI FinFET)	
Density	Well Contact	-	
Parasitic Cap	Impact of PTS	-	
Performance/ Variability	Performance tradeoff to overcome variability		
Leakage & HVT capability	Impact of PTS implant in bulk FIN	-	
Non FIN structure compatibility (passives, etc)		+	
s/d stressor	eSiGe, eSiC	++	
Gate stressor, liner stressor		Similar	
Channel stressor	SiGe pFET; SSOI Si nFET, III- V nFET	+/-	
SRAM Vt Variation			

2004: High-k/Metal Gate FinFET

Drain Current, |I_{bs}| (A/μm)

10⁻⁹

10⁻¹¹

10-13

D. Ha, H. Takeuchi, Y.-K. Choi, T.-J. King, W. Bai, D.-L. Kwong, A. Agarwal, and M. Ameen, "Molybdenum-gate HfO₂ CMOS FinFET technology," *IEEE International Electron Devices Meeting Technical Digest*, pp. 643-646, 2004

I_{DSAT} **Boost with Embedded-SiGe S/D**

 25% improvement in I_{DSAT} is achieved with silicongermanium source/drain, due in part to reduced parasitic resistance

Fin Design Considerations

- Fin Width
 - Determines DIBL
- Fin Height
 - Limited by etch technology
 - Tradeoff: layout efficiency
 vs. design flexibility
- Fin Pitch
 - Determines layout area
 - Limits S/D implant tilt angle

- Tradeoff: performance vs. layout efficiency

FinFET Layout

• Layout is similar to that of conventional MOSFET, except that the channel width is quantized: *P*_{fin}

Poly Si
SOI
Epi Si
SiN
Silicide
SiO2

M. Guillorn et al. (IBM), Symp. VLSI Technology 2008

Intel Corp.

Impact of Fin Layout Orientation

- If the fin is oriented || or ⊥ to the wafer flat, the channel surfaces lie along (110) planes.
 - lower electron mobility
 - higher hole mobility
- If the fin is oriented 45° to the wafer flat, the channel surfaces lie along (100) planes.

FinFET-Based SRAM Design

<u>Best Paper Award</u>: Z. Guo, S. Balasubramanian, R. Zlatanovici, T.-J. King, and B. Nikolic, "FinFET-based SRAM design," Int'l Symposium on Low Power Electronics and Design, pp. 2-7, 2005

State-of-the-Art FinFETs

C.C. Wu et al. (TSMC), IEDM 2010

Looking to the Future...

2010 International Technology Roadmap for Semiconductors (ITRS)

	2012	2014	2016	2018	2020	2022	2024
Gate Length	24 nm	18 nm	15 nm	13 nm	11 nm	10 nm	7 nm
Gate Oxide Thickness <i>,</i> T _{ox} (nm)							
Drive Current, I _{DSAT}							

End of Roadmap (always ~15 yrs away!)

FinFET vs. UTBB SOI MOSFET

Cross-sectional TEM views of 25 nm UTB SOI devices

K. Cheng et al. (IBM), Symposium on VLSI Technology Digest, pp. 128-129, 2011

B. Doris (IBM), 201 IEEE International	1	*C.C. Wu <i>et al</i> (TSMC) <i>, IEDM</i> 2010
PFET <i>I</i> _{on} (μΑ/μm)	880	850
NFET <i>I</i> on (μΑ/μm)	920	960
<i>I</i> _{OFF} (nA/ μm)	1	1
<i>Pitch</i> (nm)	80-100	100
L _G (nm)	22	> 25
	20nm ETSOI	22nm Bulk finFET*

Projections for FinFET vs. UTBB SOI MOSFETs

Remaining FinFET Challenges

- V_{TH} adjustment
 - Requires gate work-function (WF) or L_{eff} tuning
 - Dynamic V_{TH} control is not possible for high-aspect-ratio multi-fin devices

E

resist

- Fringing capacitance between gate and top/bottom of S/D
 - Mitigated by minimizing fin pitch and using via-contacted, merged S/D M. Guillorn, Symp. VLSI Technology 2008
- Parasitic resistance
 - Uniform S/D doping is difficult to achieve with conventional implantation H. Kawasaki, *IEDM* 2008
- Variability
 - Performance is very sensitive to fin width
 - WF variation dominant for undoped channel
 T. Matsukawa, Symp. VLSI Technology 2008

Random Dopant Fluctuation Effects

- Channel/body doping can be eliminated to mitigate RDF effects.
- However, due to source/drain doping, a trade-off exists between performance & RDF tolerance for L_g < 10nm:

Bulk vs. SOI Multi-Gate FET Design

- To ease the fin width requirement, the fin height should be reduced.
- The bulk tri-gate design has the most relaxed body dimension requirements.
 - SSRW (at the base of the fin) improves
 - electrostatic integrity

SOI MOSFET Evolution

• The Gate-All-Around (GAA) structure provides for the greatest capacitive coupling between the gate and the channel.

http://www.electroiq.com/content/eiq-2/en/articles/sst/print/volume-51/issue-5/features/nanotechnology/fully-gate-all-around-silicon-nanowire-cmos-devices.html

Scaling to the End of the Roadmap

beyond 10 nm

C. Dupré *et al*. (CEA-LETI) *IEDM* 2008

Stacked gate-all-around (GAA) FETs achieve the highest layout efficiency.

Summary

- The FinFET was originally developed for manufacture of self-aligned double-gate MOSFETs, to address the need for improved gate control to suppress I_{OFF}, DIBL and process-induced variability for L_g < 25nm.
 - Tri-Gate and Bulk variations of the FinFET have been developed to improve manufacturability and cost.
 - It has taken ~10 years to bring "3-D" transistors into volume production.
- Multi-gate MOSFETs provide a pathway to achieving lower power and/or improved performance.
 - Further evolution of the MOSFET to a stacked-channel structure may occur by the end of the roadmap.

Acknowledgments

Collaborators at UC-Berkeley

Digh Hisamoto Subramanian

Peigi Xuan

Balasubramanian Zheng Guo Shin

Nick Lindert

Hideki Takeuchi Xuejue Huang Wen-Chin Lee Jakub Kedzierski

- Early research funding: DARPA, SRC, AMD
- **UC Berkeley Microfabrication Laboratory** lacksquare(birthplace of the FinFET)