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PROBLEM
Novel view synthesis: given an input im-
age, synthesizing new images of the same
object or scene seen from novel viewpoints.

Object rotation Scene fly-through 

Why is it interesting:

• Humans excel at “mental rotation" [5].
• 3D geometry + appearance modeling
• Key problem in virtual reality.

Previous approaches:

• Geometry based [6, 7]: high visual qual-
ity, but requires user intervention and
3D shape collection at test time.

• Learning based [1, 4]: no user interven-
tion or shape collection needed, but
misses high-frequency texture details.

WHY APPEARANCE FLOW
1) Avoids perceptual blurriness caused by
naive Lp loss minimization – no longer al-
lowed to predict the ‘mean’ that minimizes
the error but loses high-frequency details.

2) Color identity is preserved by construc-
tion – can only use existing pixels.

3) Interpretable results – can visualize ex-
actly how each output image is constructed.
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NETWORK ARCHITECTURE
Single input view:
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Multiple input views:
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Our multi-vew architecture can in theory uti-
lize arbitrary number of input views.

SHAPENET RESULTS
Data setup:

• 7, 497 cars and 700 chairs split into 80%
training and 20% testing.

• Each shape is rendered for 504 viewing
angles (azimuth = 0◦ − 355◦, elevation
= 0◦ − 30◦ both at steps of 5◦)

• Viewpoint transformation limited to
azimuth only with the range of−180◦−
160◦ at steps of 20◦.

Quantitative measure (mean L1 pixel error):

Input Method Car Chair KITTI

Single-view Tatarchenko et al. [1] 0.404 0.345 0.492
Ours 0.368 0.323 0.471

Multi-view Tatarchenko et al. [1] 0.385 0.334 0.471
Ours 0.285 0.248 0.409

SHAPENET RESULTS (CONTD)
Single input view:
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Error analysis for single view prediction:

• Ours is especially strong when cross-
view correlation is high (within ±45
azimuth variation or along the corre-
sponding symmetry planes).

• Ours struggles when synthesizing
‘new’ pixels is required (e.g. wheels
when going from frontal to the side
view), which is effectively resolved
when given multiple input views.
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KITTI RESULTS
Data setup:

• 11 driving sequences through urban
scenes (9 for training, 2 for testing)

• Viewpoint transf. = car ego-motion
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SOURCE CODE
Code will be available at:
https://github.com/tinghuiz/
appearance-flow

METHOD
Key insight: high visual correlation across
different views → pixels to be synthesized
likely exist in the input view.

Appearance flow: 2-D coordinate vectors
specifying where to copy pixels to reconstruct
the target view.

Learning to predict appearance flow:
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The above constraint can be rewritten in the
form of bilinear sampling [2]:

g(i)(Is, T ) =
X

q2{neighbors of (x(i),y(i))}
I(q)
s (1 � |x(i) � x(q)|)(1 � |y(i) � y(q)|)

Learning to leverage multiple input views:

1. Extra output channel for confidence of
each single-view prediction.

2. Final prediction = per-pixel weighted
sum (weight determined by confi-
dence) over all single-view predictions.


