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Abstract
Given a set of poorly aligned images of the same vi-

sual concept without any annotations, we propose an algo-
rithm to jointly bring them into pixel-wise correspondence
by estimating a FlowWeb representation of the image set.
FlowWeb is a fully-connected correspondence flow graph
with each node representing an image, and each edge rep-
resenting the correspondence flow field between a pair of
images, i.e. a vector field indicating how each pixel in one
image can find a corresponding pixel in the other image.
Correspondence flow is related to optical flow but allows
for correspondences between visually dissimilar regions if
there is evidence they correspond transitively on the graph.
Our algorithm starts by initializing all edges of this com-
plete graph with an off-the-shelf, pairwise flow method. We
then iteratively update the graph to force it to be more self-
consistent. Once the algorithm converges, dense, globally-
consistent correspondences can be read off the graph. Our
results suggest that FlowWeb improves alignment accuracy
over previous pairwise as well as joint alignment methods.

1. Introduction
Consider a pair of chairs depicted in Fig. 1(a). While the

chairs might look similar, locally their features (like the seat
corner above) are very different in appearance, so standard
pairwise image matching approaches like SIFT Flow [25]
have trouble finding correct correspondences. The reason
we, human observers, have little trouble spotting visual cor-
respondences between the features of these two chairs is
likely because we have been exposed to many hundreds of
chairs already, and are able to draw upon this knowledge
to bridge the appearance gap. In this paper, we propose to
“level the playing field” by starting with a set of images
and computing correspondences jointly over this set in a
globally-consistent way, as shown in Fig. 1(b).

Correspondence (also known as alignment or registra-
tion) is the task of establishing connections between similar
points/regions across different images, either sparsely (e.g.
SIFT keypoint matching), or densely at every pixel (e.g. op-
tical flow). Correspondence can be defined either locally, as
a pairwise connection between two images, or globally, as

(a) Example pixel correspondence using SIFT Flow [21]

…	
  

…	
  

(b) Example pixel correspondence using our FlowWeb

Figure 1. Finding pixel-wise correspondences between images is
difficult even if they depict similar objects: (a) a typical correspon-
dence error using a state-of-the-art pairwise flow estimation algo-
rithm. (b) We propose computing correspondences jointly across
an image collection in a globally-consistent way.

a joint label assignment across an image collection.
One can appreciate the power of joint correspondence

by considering faces, a domain where correspondences
are readily available, either via human annotation, or via
domain-specific detectors. Large-scale face datasets, metic-
ulously annotated with globally-consistent keypoint labels
(“right mouth corner”, “left ear lower tip”, etc) were the cat-
alyst for a plethora of methods in vision and graphics for the
representation, analysis, 3D modeling, synthesis, morphing,
browsing, etc. of human faces [8, 29, 19, 3, 20]. Of course,
faces are a special object class in many ways: they can gen-
erally be represented by a linear subspace, are relatively
easy to detect in the wild and relatively easy to annotate (i.e.
have well-defined keypoints). Nonetheless, we believe that
some of the same benefits of having large, jointly registered
image collections should generalize beyond faces and ap-
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ply more broadly to a range of visual entities, provided we
have access to reliable correspondences. Indeed, the recent
work of Vicente et al. [39] on reconstructing PASCAL VOC
classes using hand-annotated keypoints is an exciting step in
this direction. But what about cases when manual keypoint
annotation is difficult or infeasible?

The goal of this work is to establish globally-consistent
pixel-wise correspondences between all images within a
given image collection, without any supervision. Just as the
face modeling approaches start with a collection of detected
faces in coarse alignment (on the level of a bounding box),
we start with a collection of coarsely similar images, which
could be obtained as a result of an object detector [12], a
mid-level discriminative visual element detector [10], or di-
rectly from a dataset with labeled bounding boxes.

The key insight is to focus on the correspondence flow
fields between the images instead of working with image
pixels directly. We achieve this by representing the image
collection as a FlowWeb – a fully-connected graph with im-
ages as nodes and pixel flow fields between pairs of images
as edges. We show that, starting with a simple initialization,
we are able to force the FlowWeb to become consistent by
iteratively updating the flow fields.

2. Prior work
Pairwise Image Flow: The idea of generalizing opti-

cal flow to pairs of images that are only semantically re-
lated was first proposed in SIFT Flow [25], which adopted
the computational framework of optical flow, but with lo-
cal appearance matching being done on SIFT descriptors
instead of raw pixels to add local appearance invariance.
Deformable Spatial Pyramid (DSP) Matching [21], a recent
follow-up to SIFT Flow, greatly improves the speed of the
algorithm, also modestly improving the accuracy. Other
works in this space include [2], which generalizes Patch-
Match [1] to use feature descriptors instead of pixel patches,
and more recently, finding pairwise correspondences using
convolutional features [26].

Image graphs for pattern discovery: The vast liter-
ature on object discovery and co-segmentation treats the
image set as an unordered bag. Recent work exploits
the connectivity within an image collection by defining
a graph over images (e.g. [15, 27, 47, 13]) or objects
(e.g. [28, 20, 6]). More relevant to us, [24, 11, 34] per-
form joint object discovery and segmentation on a noisy im-
age set, resulting in often excellent region-wise correspon-
dences. However, their main aim is to find and segment a
consistent object, whereas we aim to find dense pixel-wise
correspondences in an image set.

Graph consistency: The idea of utilizing consistency
constraints within a global graph structure has been ap-
plied to various vision and graphics problems, including co-
segmentation [40, 41], structure from motion [47, 42], and
shape matching [17]. Most related to ours is [17], which

formulates the constraint of cycle consistency as positive
semi-definiteness of a matrix encoding a collection of pair-
wise correspondence maps on shapes, and solves for con-
sistent maps via low-rank matrix recovery with convex re-
laxation. We also employ a cycle consistency constraint,
but optimize it completely differently. Our problem com-
plexity is also considerably larger: the number of pixels per
image is typically two orders of magnitude greater than the
number of sample points per shape.

Joint pixel-wise alignment of image sets: Average
images have long been used informally to visualize joint
(mis)alignment of image sets (e.g. [37]). However, it was
the seminal work of Congealing [23, 16] that established
unsupervised joint alignment as a serious research problem.
Congealing uses sequential optimization to gradually lower
the entropy of the intensity distribution of the entire image
set by continuously warping each image via a parametric
transformation (e.g. affine). Congealing demonstrates im-
pressive results on the digit dataset and some others, but
does not perform as well on more difficult data.

RASL [33] also focuses on modeling a common image
intensity structure of the image set; in their case, as a low-
rank linear subspace plus sparse distractors specific to each
image. Again, parametric transformations are used to align
the images to the common subspace. The main difficulty
with subspace methods is that they assume that the major-
ity of images are already in good correspondence, else the
subspace would end up encoding multiple shifted copies of
the data. Collection Flow [18] also uses a low-rank sub-
space to model the common appearance of the collection,
but with a clever twist by using non-parametric transforma-
tions (i.e. optical flow) that align between each image and
its low-rank projection at each iteration (their application
domain is faces, where the coarse alignment is good enough
for subspace projections to work well). Mobahi et al. [31]
propose a generative image representation that models each
image as the composition of three functions: color, appear-
ance, and shape. The appearance and shape functions are
assumed to be constructed from a small set of basis func-
tions (i.e., restricted to low-dimensional subspaces) in order
to control the composition capacity. The model is used to
establish dense correspondences between instances of the
same object category.

All the subspace-based methods above share the same
basic idea – compute some global representation of the im-
age data, and then try to warp every image to make it more
consistent with that representation (one can think of this as
a star graph centered at the global representation connect-
ing each image in the set). This works well if the distances
between the images and the global representation can be
trusted. But what if the image data lives on an articulation
manifold [30], where only local distances are reliable? [35]
takes this view, modeling the image collection not by some
global representation, but using a locally-connected graph.



This method shows very good results for aligning images of
the same physical scene under low-dimensional transforma-
tions (global rotation, stretching, etc). However, it is not di-
rectly applicable for collections of multiple instances of the
same object category. Concurrently with our work, Carreira
et al. [4] models the image collection with a ‘virtual view
network’, and resolves the difficulty of cross-view image
alignment by finding the shortest geodesic path along the
network. However, constructing the network requires either
human annotations (e.g. keypoints) or pre-trained, category-
specific pose predictors, whereas our method is fully unsu-
pervised and does not require any training.

Like Collection Flow [18], our method uses composi-
tions of flow fields to model connections between images.
But instead of using a global, centered representation of the
data like [43, 18, 31], our representation is defined on pair-
wise connections in the graph, like [35]. However, we differ
from [35] in a number of important ways: 1) [35] represents
the image set by a nearest neighbor graph, trusting the op-
tical flow algorithm to be reliable when the flow field mag-
nitude is small. We take a different perspective, and rely
instead on the “wisdom of crowd”, trusting the flow consis-
tency among triplets of images in a fully connected image
network. With the complementary information among im-
ages, not only can we ”fill in the blanks” arising from oc-
clusion and outliers, but also find reliable correspondences
between images that do not look alike; 2) [35] explicitly
projects the manifold into a lower-dimensional space (3-
4D), whereas we keep our correspondence flow graph in
high dimension and let it become more self-consistent on
its own, controlling its own intrinsic dimensionality.

3. Approach
Given a collection of images {I1, . . . , IN} of the same

visual concept, we would like to find dense pixel-wise cor-
respondences that are consistent throughout the entire im-
age collection. Our basic idea is that global correspon-
dences emerge from consistent local correspondences in a
bootstrap fashion. The quality of pixel-wise matching be-
tween two images Ii, Ij can be validated with multiple ad-
ditional images. For each third image Ik, pixels p ∈ Ii and
q ∈ image Ij are matched transitively if there is r ∈ Ik,
where (p, Ii) matches (r, Ik), and (r, Ik) matches (q, Ij).
That is, even when p, q do not have sufficient feature sim-
ilarity directly, there may be sufficient indirect evidence
from their similarity to other images supporting their match.
FlowWeb Representation Given a collection of N im-
ages, we build a complete graph of N nodes, where a node
denotes an image, and the edge between two nodes (i, j) is
associated with flow field Tij between images (Ii, Ij) (see
Fig. 3). For M pixels per image, Tij is an M × 2 matrix,
each row containing the displacement vector between two
matching pixels p and q in images Ii and Ij respectively:

T pqij = xq − xp, (p, Ii) matches (q, Ij) , (1)

Figure 3. An example of our FlowWeb representation, where a
node denotes an image, and each edge represents the flow field
between two images.

where xp denotes the spatial coordinates of pixel p.

3.1. Cycle consistency

Global correspondences in the image collection require
the pairwise flow fields to be consistent among different
paths connecting two nodes in the graph. Cycle consistency
criterion can be expressed as the net displacement along a
cycle in the FlowWeb being zero, e.g. for two-image cycle,

T pqij + T qrji = (xq − xp) + (xr − xq)
= xr − xp = 0, iff r = p.

Let Tik ◦Tkj denote such flow composition from Ii through
Ik to Ij . We define:

2-cycle consistency: Tij ◦ Tji = 0

3-cycle consistency: Tik ◦ Tkj ◦ Tji = 0.

While the number of cycles with arbitrary length is expo-
nential in the number of nodes in the graph, [32] shows
that considering only 2-cycles and 3-cycles are often suffi-
cient for complete graphs. The concept of cycle consistency
has also been explored in joint shape matching [17, 32], co-
segmentation [40, 41] as well as SfM [47, 42].

We measure the quality of a matching flow by counting
how many consistent 3-cycles go through it in the FlowWeb.
If three images form a consistent cycle at a flow T pqij , it
means this flow is validated by a third image Ik, such that

T pqij = T prik + T rqkj . (2)

Let4pqij denote the set of image nodes that complete a con-
sistent cycle with flow T pqij . We define the single flow cycle
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Figure 2. The flow update priority pattern over iterations. Shown here is an image ensemble made of 13 wheel images related by in-plane
rotation, i.e. they lie on a 1D manifold (light gray curve) with increasing differences from left to right. The priority score is defined for
each flow and it is large if there exists a transitive alternative that achieves better cycle consistency. Each image is shown with a red mask,
indicating the sum of priority for all the flows associated with each pixel. The connections between each pair of images show the overall
priority summed over all flows between them (thicker means higher). As shown, there are more mid-range connections (high update priority
between not so similar images) initially, more long-range connections (high update priority between more distinct images) subsequently,
and more even connections throughout the ensemble finally. There are far fewer short-range connections throughout iterations, since nearby
images tend to have good correspondences and are cycle-consistent already. These flows thus have low priority.

consistency (SFCC) score as the cardinality of4:

C(T pqij ) = |4
pq
ij |card =

N∑
k=1,k/∈{i,j}

[T pqij = T prik + T rqkj ],

(3)where [·] is the binary indicator function.
We generalize the SFCC concept to the whole flow set

T = {Tij}, and define all flow cycle consistency (AFCC)
that counts the number of consistent 3-cycles in T:

C(T) =
1

3

N∑
i,j=1,i6=j

∑
p∈Ii

C(T pqij ) . (4)

The factor of 1/3 corrects for the over-counting when sum-
ming over SFCC’s for the three edges of the same cycle.

3.2. Objective
Our objective has two terms: FlowWeb cycle consistency

C(·), and regularization R(·) that measures the difference
between the current T = {Tij} and the initial flow set T0 =
{Sij} provided by a pairwise flow method (e.g. [21, 25]):

max
T
C(T)− λR(T,T0) , (5)

R(T,T0) =

N∑
i,j=1,i6=j

∑
p∈Ii

‖T pqij − S
ps
ij ‖ , (6)

where λ > 0 can be chosen based on the initialization qual-
ity, s denotes p’s initial correspondence in image j, and ‖ ·‖
is the Euclidean norm.

3.3. Optimization
For clarity of exposition, we ignore the regularization

term R(·) for now and focus on optimizing the cycle con-
sistency term alone. Our iterative optimization procedure

builds on the following intuition: even when pixels p and
q do not have sufficient feature similarity to be matched
directly, they should still be matched if there is sufficient
indirect evidence from 1) their similarity to other images
supporting the match (inter-image) and/or 2) proximity to
neighboring pixels that have a good match (intra-image).
Both are provided by the cycle consistency measure, and
exploited alternately at each iteration.
Inter-image phase The first phase of our iterative opti-
mization involves the computation of a priority score for
each flow in the current flow set. The update priority is high
for flows that satisfy two criteria: 1) have low cycle con-
sistency and 2) the consistency of an alternative solution is
high. In our case, the alternative solutions to T pqij are pro-
vided by one-hop transitive flows, i.e. {T prik + T rtkj ,∀k}1.
Essentially, we would like the priority to measure the over-
all consistency gap between the current solution and some
transitive solution. However, exact evaluation of the consis-
tency gap is too expensive, as the change of one flow could
potentially affect the consistency of all other flows that in-
volve it in the SFCC computation.

Instead, we compute a lower bound based on the follow-
ing observation: if pixels < p, r, t > are cycle-consistent,
and there exists another pixel u such that both < p, u, r >
and < r, u, t > are cycle-consistent, then < p, u, t > are
also cycle-consistent. In other words, if we consider the
two flows T pr and T rt that comprise a transitive flow be-
tween p and t, and denote the set of nodes each is consis-
tent with by 4pr and 4rt respectively, then the transitive
flow T pt = T pr + T rt is guaranteed to be consistent with
4pr ∩4rt, and |4pr ∩4rt|card is the SFCC lower bound

1Note that we use q to denote p’s direct correspondence in image j, and
t to denote the transitive correspondence.



for T pt, while holding all other flows fixed. In light of this
observation, for each pair of images i and j, we compute
the update priority of a flow T pqij by

P(i, j, p) = max
k
|4prik ∩4

rt
kj |card − |4

pq
ij |card , (7)

where the first term of the RHS computes the consistency
lower bound for each transitive flow and takes the max-
imum. Intuitively, P(i, j, p) is the lower bound of cycle
consistency improvement if T pqij is replaced by the transi-
tive flow through image k̂, where k̂ = argmaxk |4prik ∩
4rtkj |card. See Figure 2 for an illustration of the update pri-
ority pattern on a set of synthetic examples.
Intra-image phase While the previous phase essentially
identifies and updates inconsistent flows to consistent ones
through propagation, it is nonetheless unable to deal with
cases in which the correct correspondence does not exist
in the initial flow set, or simply has low cycle consistency
because most of its transitive counterparts are noisy. Con-
sider a set of front-view car images. The hood is typically
texture-less while occupying a large image area, and pair-
wise matching based on low-level features such as SIFT
would be highly noisy. As a result, it is likely that all flows
emanating from such regions are incorrect and not consis-
tent for propagation with the priority-based update.

The second phase of our iterative optimization ad-
dresses this issue by exploiting consistency-weighted spa-
tial smoothing, which identifies highly-consistent flows
within a pairwise flow field, and utilizes them as soft anchor
points to guide inconsistent flows to likely better solutions.
For the example of front-view cars, one could potentially
use flows from headlights or window corners that tend to be
more cycle-consistent to guide flows from the hood. Specif-
ically, for each flow field corresponding to a pair of images,
we first identify flows that are of relatively low cycle con-
sistency, and then apply a consistency-weighted Gaussian
filter to each of them by

T pqij =
1

Z

∑
p′∈Ii

T p
′q′

ij gσs
(‖xp′−xp‖)hσc

(C(T p
′q′

ij )−C(T pqij ))

(8)
where

Z =
∑
p′∈Ii

gσs
(‖xp′ − xp‖)hσc

(C(T p
′q′

ij )− C(T pqij )) . (9)

gσs
(·) is a zero-mean Gaussian with σs controlling the spa-

tial extent of the filter, and

hσc(x) =

{
exp(x/σc) if x ≥ 0

0 Otherwise
(10)

determines how much an adjacent flow is weighted accord-
ing to the gap in cycle consistency. Having g(·) and h(·)

together ensures that each filtered flow is only influenced by
flows that are both spatially near and more cycle-consistent.

Our iterative update pipeline is summarized below:

1. Compute the SFCC score for each T pqij using Eq. 3.

2. For each T pqij , compute its update priority by Eq. 7, and
record the node k̂ that achieves the maximum.

3. Sort flows according to P(i, j, p), and update top β%
flows by their transitive alternatives through image k̂.

4. For each image pair i and j, apply Eq. 8 for
consistency-weighted filtering.

5. Iterate 1–4 until the improvement of C(T) is below
some threshold.

Regularization Optimizing the regularization term R(·)
can be easily incorporated into both update phases above.
For the inter-image phase, the update priority becomes

P(i, j, p) = max
k
|4prik ∩4

rt
kj |card − |4

pq
ij |card−

λ(‖T prik + T rtkj − S
ps
ij ‖ − ‖T

pq
ij − S

ps
ij ‖). (11)

Similarly for the intra-image phase, we replace
hσc

(C(T p
′q′

ij ) − C(T pqij )) with hσc
(C(T p

′q′

ij ) − C(T pqij ) −
λ(‖T p

′q′

ij − Spsij ‖ − ‖T
pq
ij − S

ps
ij ‖)).

Implementation details: For better robustness to noisy ini-
tial pairwise matching, we use a relaxed threshold for deter-
mining cycle completeness in Eq. 3. In particular, we re-
place [T prik + T rqkj = T pqij ] with [‖T prik + T rqkj − T

pq
ij ‖ ≤ ε],

where ε = 0.05 ·max(h,w) (h and w are image height and
width). β = 20, σc = 0.05, σs = ε, and λ = 0.01 for all
our experiments. The code will be available on our website.

4. Experiments
We compare our alignment performance with Congeal-

ing [23] (using SIFT), Collection Flow [18], DSP [21], and
RASL [33]. All the baseline algorithms perform joint align-
ment across the whole image collection, except DSP, which
is the state-of-the-art pairwise image matching algorithm
and also used by us to initialize T0. We use publicly avail-
able code for all baselines except Collection Flow, for which
we implement our own version in Matlab. All baselines are
run with default parameters.

The image sets we use are sampled from the PASCAL-
Part dataset [5]. To parse the images of each category into
sets that are meaningful to align (a counter example would
be aligning front-view cars to side-view cars), we run K-
means clustering (K = 10) on the provided part visibility
labels and coarse viewpoint annotations from the original
VOC 2010 dataset, and select three representative clusters
with largest sizes to evaluate for each category. A cluster
is pruned if it has less than 10 images since joint alignment
has little effect with few samples. The total number of im-
age sets remaining is 47. In the interest of time, we limit



aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean

Congealing 0.26 0.40 0.24 0.48 0.68 0.46 0.39 0.19 0.49 0.30 0.42 0.15 0.26 0.32 0.18 0.38 0.35 0.71 0.45 0.58 0.38
RASL 0.26 0.40 0.22 0.49 0.70 0.46 0.42 0.19 0.51 0.30 0.43 0.15 0.25 0.33 0.18 0.38 0.34 0.72 0.47 0.64 0.39

CollectionFlow 0.29 0.40 0.22 0.49 0.69 0.46 0.41 0.20 0.51 0.28 0.35 0.15 0.25 0.28 0.18 0.36 0.34 0.66 0.44 0.59 0.38
DSP 0.25 0.46 0.21 0.48 0.63 0.50 0.45 0.19 0.48 0.30 0.37 0.14 0.26 0.35 0.13 0.40 0.37 0.66 0.48 0.62 0.39
Ours 0.33 0.53 0.24 0.51 0.72 0.54 0.51 0.20 0.52 0.32 0.41 0.15 0.29 0.45 0.19 0.41 0.39 0.73 0.51 0.68 0.43

Table 1. Weighted intersection over union (IOU) for part segment matching on 20 PASCAL VOC categories. Higher is better.

aero bike boat bottle bus car chair table mbike sofa train tv mean

Congealing 0.12 0.23 0.03 0.22 0.19 0.14 0.06 0.04 0.12 0.07 0.08 0.06 0.11
RASL 0.18 0.17 0.04 0.33 0.31 0.17 0.09 0.04 0.12 0.10 0.11 0.23 0.16

CollectionFlow 0.16 0.17 0.04 0.31 0.25 0.16 0.09 0.02 0.08 0.07 0.06 0.09 0.12
DSP 0.17 0.30 0.05 0.19 0.33 0.34 0.09 0.03 0.17 0.12 0.12 0.18 0.17
Ours 0.29 0.41 0.05 0.34 0.54 0.50 0.14 0.04 0.21 0.16 0.15 0.33 0.26

Table 2. Keypoint matching accuracy (PCK) on 12 rigid PASCAL VOC categories (α = 0.05). Higher is better.
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Figure 6. Alignment accuracy as a function of image set size using
our method. The test set remains fixed as more images are in-
cluded for joint alignment. Left: PCK. Right: Part segment IOU.
Overall, more images leads to more accurate correspondences.

the largest size of each set to 100. Images within each set
are further resized to the average aspect ratio and maximum
dimension of 150.

4.1. Part segment matching
We first evaluate alignment quality using human-

annotated part segments. For quantitative evaluation, we
use weighted intersection over union (IOU) with weights
determined by the pixel area of each part, and report the
mean performance over all sets for each category in Table 1.
For categories without part annotations (boat, chair, table,
and sofa) we simply use silhouette annotations for evalua-
tion. We outperform all baselines on almost all categories.

We also visualize the part matching results in Fig. 4.
Overall, our method is able to produce substantially more
accurate correspondences than the baselines. The fact that
many of the mistakes made by the initial DSP matching are
corrected in our final output highlights the effectiveness of
our joint alignment procedure.

4.2. Keypoint matching
We next compare alignment accuracy using keypoint an-

notations for the 12 rigid PASCAL categories provided by
[44]. We use the same set of images sampled in the previous
experiment. The matching accuracy is assessed by the stan-
dard PCK measure [45], which defines a keypoint matching
to be correct if the prediction falls within α ·max(h,w) pix-
els of the ground-truth (h and w are image height and width
respectively). For each category, we report the mean PCK

Source Target DSP Mobahi et al. Ours

Figure 7. Comparison with the compositional model of [31]. Rows
1–4/5 are success/failure examples of our method.

over all sampled sets with different methods in Table 2.
Again, our method substantially outperforms all baselines.

Fig. 5 compares the keypoint correspondence tracks be-
tween DSP (pairwise matching used for our initialization)
and ours. DSP tracks tend to drift more as the path be-
comes longer, while our tracks are relatively stable and
cycle-consistent along the graph (note that the first and the
last image is the same for all examples).

4.3. Effect of image collection size

We hypothesize that the more images in the set, the bet-
ter correspondences our method would produce as the cy-
cle consistency measure becomes more robust. To verify
this, we plot alignment accuracy as a function of image set
size. Specifically, for car, aeroplane, and bicycle categories,
we randomly sample 10 images as the test set for evalua-
tion, and progressively add more images to construct the
alignment set together with the 10 test images. As shown
in Fig. 6, both keypoint and part-based matching accuracies
indeed improve as more images become available.



Source Target Source Mask Congealing CollectionFlow DSP Ours Target MaskRASL

Figure 4. Correspondence visualization for different methods with color-coded part segments. Columns 1–2: source and target images.
Column 3: annotated part segments for the source image. Column 4–8: predicted part correspondences on the target image using different
methods. Column 9: annotated part segments for the target image (i.e. ground-truth). Overall, our correspondence output improves
significantly over the initial DSP matching, and align part segments in greater precision than all baselines. (Best viewed in pdf.)

4.4. Comparison with Mobahi et al. [31]

To compare with Mobahi et al. [31], we use their Mush-
room dataset [31], comprised of 120 mushroom images
and ground-truth foreground region and boundary masks for
evaluation. After joint alignment, for each image pair, we
compute both region and boundary matching scores as de-
fined in [31]. The region score measures the fraction of
foreground pixels in the warped source image that coincide
with the foreground pixels in the target image (perfect align-
ment would result in a region score of 1; so higher is better).
The boundary matching score measures the boundary dis-
placement error (in pixels) between the warped source im-
age and the target image (perfect alignment would result in
a boundary score of 0; so lower is better). We average these
scores computed for every pair of images in the dataset.

We obtain 0.84 and 6.44 for region and boundary align-
ment, respectively, compared to Mobahi et al.’s 0.73 and
5.69. Upon closer examination of why we perform worse
in the boundary measure, we find our alignment to be more
deformable than [31]. This can lead to highly accurate re-
sults (top four rows in Fig. 7) but also to very poor results if
the deformation of the object is completely wrong (bottom
row in Fig. 7). Such behavior could greatly affect boundary
matching score as it is very sensitive to outliers.

4.5. Annotation-free Active Appearance Models

Training Active Appearance Models (AAM) [8] typi-
cally requires extensive human labeling of landmark key-
points. We show that it is possible to bypass the keypoint
annotation step by using the cycle-consistency measure to
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Figure 5. Comparison of keypoint correspondence tracks along a cycle in the graph (the first and the last image is the same for all examples)
between DSP (initialization to our method) and ours. The keypoint correspondences become much more accurate and cycle-consistent after
our joint alignment procedure.

identify keypoint surrogates. In particular, we can sum over
the SFCC score for all the flows coming out of a pixel p in
image i by

∑N
j=1

∑N
k=1,k/∈{i,j}[T

pq
ij = T prik +T rqkj ], and use

it to guide keypoint selection. Here is a simple pipeline: 1)
Compute per-pixel consistency score using the above equa-
tion; 2) Pick a seed alignment image with the highest over-
all consistency; 3) Run max pooling to select a sparse set
of candidate keypoints; 4) Do thresholding to select a final
high-quality set of keypoints; 5) Obtain the keypoint cor-
respondences for the rest of the image set according to the
flows from the seed image to the target. Once the keypoints
are established, standard AAM can be applied (we used the
package from [38]). Fig. 8 shows sample results on cars.
4.6. Runtime complexity

For 50 images of size 150 × 150, our algorithm takes
about 10 iterations to converge, each iteration taking about
10 minutes on a 3GHz, 16GB machine using a Matlab im-
plementation. For 100 images, each iteration takes about an
hour. There are two major computational bottlenecks: 1)
The computation of priority is O(MN4); 2) Consistency-
weighted filtering is O(N2M2). One way to speed up the
alignment process is to first break down the fully-connected
graph into sub-clusters (to reduceN ) and optimize the flows
within each cluster, and then bring them together by con-
necting the closest matches between clusters. Our prelimi-
nary experiments show that the overall alignment accuracy
won’t be compromised much with such approximation as
long as the size of each cluster is still considerably large.
We plan to explore more options for efficiency improvement
in the future.

Synthesized

Retrieved

Synthesized

Retrieved

Consistency Map Unsupervised KeypointsA dataset sample

Component 1

Component 2

Figure 8. Visualization of unsupervised keypoint selection using
cycle-consistency and its application to AAM (see Sec. 4.5 for
more details). By varying the coefficients for AAM shape com-
ponents, one can synthesize new instances that pertain to the vari-
ations within the image collection.

5. Discussion
Now that object detection and retrieval are finally start-

ing to work, it’s possible to go from a very large, unorga-
nized image collection to a relatively small set of coarsely-
aligned images, e.g. using CNNs [22]. But going from
coarse to fine-grained pixel-wise correspondence is still
very much an open problem, which this paper is aiming
to tackle. A successful solution could benefit many vision
and graphics tasks, e.g. image edit propagation [14, 46],
co-segmentation [34, 7], structure-from-motion [36], 3D
object reconstruction [4, 39] unsupervised object discov-
ery [9, 34, 7].
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Jun-Yan Zhu for insightful discussions. This work is par-
tially sponsored by ONR MURI N000141010934. The au-
thors are also grateful to the young Jessica for not being in
a hurry.

References
[1] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Gold-

man. Patchmatch: A randomized correspondence algorithm
for structural image editing. SIGGRAPH, 28(3), 2009. 2

[2] C. Barnes, E. Shechtman, D. B. Goldman, and A. Finkel-
stein. The generalized patchmatch correspondence algo-
rithm. In ECCV, 2010. 2

[3] V. Blanz and T. Vetter. A morphable model for the synthesis
of 3d faces. In SIGGRAPH, pages 187–194, 1999. 1

[4] J. Carreira, A. Kar, S. Tulsiani, and J. Malik. Virtual view
networks for object reconstruction. In Computer Vision
and Pattern Recognition (CVPR), 2015 IEEE Conference on.
IEEE, 2015. 3, 8

[5] X. Chen, R. Mottaghi, X. Liu, S. Fidler, R. Urtasun, and
A. Yuille. Detect what you can: Detecting and represent-
ing objects using holistic models and body parts. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2014. 5

[6] X. Chen, A. Shrivastava, and A. Gupta. Neil: Extracting
visual knowledge from web data. In ICCV, 2013. 2

[7] X. Chen, A. Shrivastava, and A. Gupta. Enriching visual
knowledge bases via object discovery and segmentation. In
Computer Vision and Pattern Recognition (CVPR), 2014
IEEE Conference on, pages 2035–2042. IEEE, 2014. 8

[8] T. F. Cootes, G. J. Edwards, C. J. Taylor, et al. Active ap-
pearance models. TPAMI, 23(6):681–685, 2001. 1, 7

[9] C. Doersch, A. Gupta, and A. A. Efros. Context as super-
visory signal: Discovering objects with predictable context.
In Computer Vision–ECCV 2014, pages 362–377. Springer,
2014. 8

[10] C. Doersch, S. Singh, A. Gupta, J. Sivic, and A. A. Efros.
What makes paris look like paris? SIGGRAPH, 31(4):101,
2012. 2

[11] A. Faktor and M. Irani. “Clustering by Composition”–
Unsupervised discovery of image categories. In ECCV.
2012. 2

[12] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-
ture hierarchies for accurate object detection and semantic
segmentation. In CVPR, 2014. 2

[13] Y. HaCohen, E. Shechtman, D. B. Goldman, and D. Lischin-
ski. Optimizing color consistency in photo collections. SIG-
GRAPH, 32(4):85:1 – 85:9, 2013. 2

[14] S. W. Hasinoff, M. Jwiak, F. Durand, and W. T. Freeman.
Search-and-replace editing for personal photo collections. In
ICCP, 2010. 8

[15] K. Heath, N. Gelfand, M. Ovsjanikov, M. Aanjaneya, and
L. J. Guibas. Image webs: Computing and exploiting con-
nectivity in image collections. In CVPR, 2010. 2

[16] G. B. Huang, V. Jain, and E. Learned-Miller. Unsupervised
joint alignment of complex images. In ICCV, 2007. 2

[17] Q. Huang and L. Guibas. Consistent shape maps via semidef-
inite programming. In SGP, 2013. 2, 3

[18] I. Kemelmacher-Shlizerman and S. Seitz. Collection flow. In
CVPR, 2012. 2, 3, 5

[19] I. Kemelmacher-Shlizerman and S. M. Seitz. Face recon-
struction in the wild. In ICCV, 2011. 1

[20] I. Kemelmacher-Shlizerman, E. Shechtman, R. Garg, and
S. M. Seitz. Exploring photobios. SIGGRAPH, 30(4):61,
2011. 1, 2

[21] J. Kim, C. Liu, F. Sha, and K. Grauman. Deformable spatial
pyramid matching for fast dense correspondences. In CVPR,
2013. 1, 2, 4, 5

[22] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
Advances in neural information processing systems, pages
1097–1105, 2012. 8

[23] E. Learned-Miller. Data driven image models through con-
tinuous joint alignment. TPAMI, 28(2):236–250, 2005. 2,
5

[24] Y. J. Lee and K. Grauman. Collect-Cut: Segmentation with
Top-Down Cues Discovered in Multi-Object Images. In
CVPR, 2010. 2

[25] C. Liu, J. Yuen, and A. Torralba. Sift flow: Dense correspon-
dence across scenes and its applications. TPAMI, 33(5):978–
994, 2011. 1, 2, 4

[26] J. L. Long, N. Zhang, and T. Darrell. Do convnets learn cor-
respondence? In Advances in Neural Information Processing
Systems, pages 1601–1609, 2014. 2

[27] Y. Lou, N. Snavely, and J. Gehrke. Matchminer: Efficient
spanning structure mining in large image collections. In
ECCV, 2012. 2

[28] T. Malisiewicz and A. A. Efros. Beyond categories: The vi-
sual memex model for reasoning about object relationships.
In NIPS, 2009. 2

[29] I. Matthews and S. Baker. Active appearance models revis-
ited. IJCV, 60(2):135–164, 2004. 1

[30] X. Miao and R. P. N. Rao. Learning the lie groups of visual
invariance. Neural Computation, 2007. 2

[31] H. Mobahi, C. Liu, and W. T. Freeman. A compositional
model for low-dimensional image set representation. In
CVPR, 2014. 2, 3, 6, 7

[32] A. Nguyen, M. Ben-Chen, K. Welnicka, Y. Ye, and
L. Guibas. An optimization approach to improving collec-
tions of shape maps. In SGP, 2011. 3

[33] Y. Peng, A. Ganesh, J. Wright, W. Xu, and Y. Ma. RASL:
Robust Alignment by Sparse and Low-rank Decomposition
for Linearly Correlated Images. TPAMI, 34(11), November
2012. 2, 5

[34] M. Rubinstein, A. Joulin, J. Kopf, and C. Liu. Unsupervised
joint object discovery and segmentation in internet images.
In CVPR, 2013. 2, 8

[35] A. C. Sankaranarayanan, C. Hegde, S. Nagaraj, and R. G.
Baraniuk. Go with the flow: Optical flow-based transport
operators for image manifolds. In Annual Allerton Confer-
ence on Communication, Control, and Computing, 2011. 2,
3

[36] N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourism:
exploring photo collections in 3d. In ACM transactions on
graphics (TOG), volume 25, pages 835–846. ACM, 2006. 8



[37] A. Torralba. http://people.csail.mit.edu/torralba/gallery/,
2001. 2

[38] G. Tzimiropoulos and M. Pantic. Optimization problems for
fast aam fitting in-the-wild. In ICCV, 2013. 8

[39] S. Vicente, J. Carreira, L. Agapito, and J. Batista. Recon-
structing pascal voc. In CVPR, 2014. 2, 8

[40] F. Wang, Q. Huang, and L. Guibas. Image co-segmentation
via consistent functional maps image co-segmentation via
consistent functional maps. In ICCV, 2013. 2, 3

[41] F. Wang, Q. Huang, M. Ovsjanikov, and L. Guibas. Unsuper-
vised multi-class joint image segmentation. In CVPR, 2014.
2, 3

[42] K. Wilson and N. Snavely. Network principles for sfm: Dis-
ambiguating repeated structures with local context. In ICCV,
2013. 2, 3

[43] J. Wright, A. Ganesh, S. Rao, Y. Peng, and Y. Ma. Robust
principal component analysis: Exact recovery of corrupted
low-rank matrices via convex optimization. In NIPS, 2009.
3

[44] Y. Xiang, R. Mottaghi, and S. Savarese. Beyond pascal: A
benchmark for 3d object detection in the wild. In WACV.
2014. 6

[45] Y. Yang and D. Ramanan. Articulated human detection with
flexible mixtures of parts. Pattern Analysis and Machine In-
telligence, IEEE Transactions on, 35(12):2878–2890, 2013.
6

[46] K. Ycer, A. Jacobson, A. Sorkine-Hornung, and O. Sorkine-
Hornung. Transfusive image manipulation. SIGGRAPH
Asia, 31(6), 2012. 8

[47] C. Zach, M. Klopschitz, and M. Pollefeys. Disambiguating
visual relations using loop constraints. In CVPR, 2010. 2, 3


