
Journal of Machine Learning Research ? (?) ? Submitted ?/21; Published ?/?

Efficient Global Optimization of Two-layer ReLU Networks:
Quadratic-time Algorithms and Adversarial Training

Yatong Bai yatong bai@berkeley.edu
Department of Mechanical Engineering
University of California
Berkeley, CA 94720-1776, USA

Tanmay Gautam tgautam23@berkeley.edu
Department of Electrical Engineering and Computer Science
University of California
Berkeley, CA 94720-1776, USA

Somayeh Sojoudi sojoudi@berkeley.edu

Department of Electrical Engineering and Computer Science and Department of Mechanical Engi-

neering

University of California

Berkeley, CA 94720-1776, USA

Editor:

Abstract

The non-convexity of the artificial neural network (ANN) training landscape brings inherent
optimization difficulties. While the traditional back-propagation stochastic gradient descent
(SGD) algorithm and its variants are effective and efficient in certain cases, they can become
stuck at spurious local minima and are sensitive to initializations and hyperparameters.
Recent work has shown that the training of an ANN with rectified linear units (ReLU)
activations can be reformulated as a convex program, bringing hope to globally optimizing
interpretable ANNs. However, naively solving the convex training formulation has an
exponential complexity, and even a relaxed approximation heuristic requires cubic time.
In this work, we characterize the quality of this approximation and develop two efficient
algorithms that train ANNs with global convergence guarantees. The first algorithm is based
on the alternating direction method of multiplier (ADMM). It aims to solve both the exact
convex formulation and the approximate counterpart. Linear asymptotic global convergence
is achieved, and the first several iterations yield a solution that is often satisfactory (high
prediction accuracy). When solving the approximate formulation, the time complexity
is quadratic. The second algorithm is simpler to implement. It is based on the theory
of sampled convex programs and solves unconstrained convex formulations. It converges
to an approximate globally optimal classifier. The non-convexity of the ANN training
landscape exacerbates when adversarial training is considered. We apply the robust convex
optimization theory to convex training and develop convex formulations that train ANNs
robust to adversarial input perturbations. Our analysis explicitly focuses on one-hidden-layer
fully connected ANNs, but can extend to more sophisticated architectures.

Keywords: Robust Optimization, Convex Optimization, Adversarial Training, Neural
Networks

©? Yatong Bai, Tanmay Gautam, Somayeh Sojoudi.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v?/?.html.

mailto:Yatong Bai <yatong_bai@berkeley.edu>?Subject=Your UAI 2021 paper
mailto:Tanmay Gautam <tgautam23@berkeley.edu>?Subject=Your UAI 2021 paper
mailto:Somayeh Sojoudi <sojoudi@berkeley.edu>?Subject=Your UAI 2021 paper
https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v?/?.html

Bai, Gautam, and Sojoudi

1. Introduction

The artificial neural network (ANN) is one of the most powerful and popular machine
learning tools. While the training formulations of training some particular ANNs are convex
(Bengio et al., 2006b; Bach, 2017), optimizing a typical neural network with non-linear
activation functions and a finite width requires solving non-convex optimization problems.
Traditionally, training ANNs relies on stochastic gradient descent (SGD) back-propagation
(Rumelhart et al., 1986). While SGD back-propagation has seen a tremendous empirical
success, it is only guaranteed to converge to a local minimum when applied to the non-
convex ANN training objective. While SGD back-propagation can converge to a global
optimizer for one-hidden-layer ReLU-activated networks when the considered network is wide
enough (Lacotte and Pilanci, 2020; Du et al., 2019) or when the inputs follow a Gaussian
distribution (Brutzkus and Globerson, 2017), spurious local minima can exist in general
applications. Moreover, the non-convexity of the training landscape and the structure of the
back-propagation algorithm causes the issues listed below:

• Poor interpretability: With back-propagation, it is hard to monitor the training
status. For example, when the progress slows down, we may or may not be close to a
local minimum. Even if the algorithm arrives at a local optimum, this optimum may
be spurious.

• High sensitivity to hyperparameters: Back-propagation SGD has several impor-
tant hyperparameters to tune, including the number of epochs, batch size, and step
size. Every parameter is crucial to the performance, but selecting the parameters can
be difficult. Back-propagation is also sensitive to the initialization.

• Vanishing / exploding gradients: The gradient at shallower layers depends on the
weights at deeper layers for back-propagation algorithms. The gradient at shallower
layers can be tiny (or huge) if the deeper layer weights are tiny (or huge).

While more advanced back-propagation variants such as Adam (cite) may alleviate the
above issues, avoiding them entirely can be cumbersome. These problems make ANNs
more difficult to harness than many other machine learning tools that are inherently convex.
Convex programs possess the desirable property that all local minima are global. To solve
the issue of getting stuck at spurious local minima when training ANNs, the existing works
have considered convexifying the neural network training problem (Bengio et al., 2006c;
Bach, 2017; Arora et al., 2018). More recently, (Pilanci and Ergen, 2020) proposed a convex
optimization formulation with the same global minimum as the non-convex cost function of a
one-hidden-layer fully-connected ReLU neural network, enabling efficient global optimization.
While the explicit focus is on the squared loss, their analysis extends to arbitrary convex loss
functions. The favorable properties of convex optimization make convex training immune to
the deficiencies of back-propagation discussed earlier. This “convex training” approach also
extends to more complex ANNs such as convolutional neural networks (CNNs) (Ergen and
Pilanci, 2021a), deeper networks (Ergen and Pilanci, 2021b), and vector-output networks
(Sahiner et al., 2021). This work starts with one-hidden-layer ANNs for simplicity and
shows that extending to more complex ANNs is possible. One-hidden-layer networks are the

2

Efficient Global Optimization of Two-layer ReLU Networks: Adversarial Training and Quadratic-time Algorithms

simplest ANN instances possessing the vast representation power of neural networks (Hornik,
1991), and their theoretical analysis helps with understanding more complex networks (Du
et al., 2019; Venturi et al., 2019).

Unfortunately, the O
(
d3r3(nr)3r

)
computational complexity of (Pilanci and Ergen, 2020) is

prohibitively high. The reason behind this high complexity is two folds:

• The size of the convex program grows exponentially in the training data matrix
rank r. This high complexity is inherent due to the large number of possible ReLU
activation patterns, and thus can be hard to reduce. While highly undesirable from
a theoretical standpoint, this complexity is not a deal-breaker in practice: Pilanci
and Ergen (2020) show that a heuristic stochastic approximation that forms much
smaller convex optimizations works surprisingly well. In this work, we analyze this
approximation and theoretically show that for a given level of suboptimality, the required
size of the convex training programs is linear in the number of training training data
points n.

• The convex training formulation is constrained. The naive choice of algorithm for
solving a constrained convex optimization is often the interior-point method (IPM).
The per-step computational complexity of IPM is cubic in the number of optimization
variables. Since IPM does not take advantage of the problem structures, there is an
enormous room for improvements. The focus of this paper is thus to develop more
efficient algorithms that exploit the problem structure and achieve a faster global
convergence. Specifically, an algorithm based on ADMM with a quadratic per-iteration
complexity, as wells an Sampled Convex Program (SCP)-based algorithm with a linear
per-iteration complexity, are introduced.

Detailed comparisons among the ADMM-based algorithm, the SCP-based algorithm, the
original convex training algorithm in (Pilanci and Ergen, 2020), and back-propagation
SGD are presented in Table 1. Compared to IPM, our ADMM-based algorithm converges
significantly faster to a moderate accuracy with a much improved computational complexity.
Compared with SGD back-propagation, ADMM has a higher theoretical complexity but is
guaranteed to linearly converge to a global optimum. The ADMM training method balances
global convergence and efficiency.

Prior literature has considered the application of the ADMM method to the training of
ANNs (Taylor et al., 2016; Wang et al., 2019). These works used ADMM to separate the
activations and the weights of each layer, enabling parallel computing. Compared to the
SGD back-propagation, their ADMM formulations are gradient-free and immune to issues
such as vanishing gradients and poor conditioning. While Wang et al. (2019) proved that
their ADMM algorithm converges at an O(1/t) rate (t is the number of iterations here) to a
critical point of the augmented Lagrangian of the training formulation, there is no guarantee
that such critical point is a global optimizer of the considered cost function. In contrast,
this paper uses ADMM as an efficient convex optimization algorithm, focusing less on the
separation properties of ADMM. The novel ADMM-based algorithm discussed in this work
has an entirely different splitting scheme and bases on the convex formulations conceived by

3

Bai, Gautam, and Sojoudi

Method Complexity Global convergence

IPM
(Pilanci and Ergen, 2020)

O
(
d3r3(n

r)3r
)†

Superlinear to the global optimum.

ADMM (exact) O
(
d2r2(n

r)2r
)† Rapid to a moderate accuracy;

linear to the global optimum.

ADMM (approximate) O
(
n2d2

)§ Rapid to a moderate accuracy;
linear to an approximate global optimum.

SCP layer-wise O
(
n2
)§ Towards an approximate global optimum;

O
(
1/T

)
rate for weakly convex loss;

linear for strongly convex loss.

SGD back-propagation O
(
mnd

)‡
/O
(
n2d
)† No spurious valleys if m ≥ 2n+ 2;

no general results.

Table 1: Comparisons between the proposed neural network training methods and related
methods. The middle column is the per-iteration complexity (per-epoch for back-propagation
since the batch size is arbitrary) when the squared loss is considered. n is the number of
training points; d is the data dimension; r is the training data matrix rank.
†: Towards the theoretically lowest loss – further increasing network width will not reduce
the training loss;
§: Towards a fixed desired level of suboptimality in the sense defined in Theorem 2;
‡: For an arbitrary network width m. Since there exists a globally optimal neural network
with no more than n+ 1 active hidden-layer neuron (Lacotte and Pilanci, 2020), the O(mnd)
bound for SGD back-propagation evaluates to O(n2d).

Pilanci and Ergen (2020). More importantly, our ADMM algorithm provably converges to a
globally optimal classifier.

Combining SCP analysis and convex training framework leads to a further simplified convex
training program that solves unconstrained convex optimizations. This SCP-based method
converges to an approximate global optimum. The scale of the convex programs solved in the
SCP-based method can be larger than those solved in the ADMM-based algorithm. However,
the unconstrained nature enables the use of gradient methods and their stochastic and
accelerated variants. Gradient updates are much cheaper than ADMM updates but generally
converge slower. Intuitively, this simplified convex training method samples a large number of
hidden-layer weights and only optimizes the output layer, drawing connections to layer-wise
training. The idea of layer-wise training is not entirely new. This idea has previously
been applied to training generative models (Bengio et al., 2006a) and convolutional models
(Jangid and Srivastava, 2018). Unlike this work, these previous works focus on inserting
more layers into a shallow network to form a deep network. More recently, (Belilovsky et al.,
2019) designed a layer-wise training scheme that concatenates one-hidden-layer ANNs into a
deep network, where each layer reduces the training error. This concatenation approach
can be combined with the convex training of one-hidden-layer ANNs discussed in this work,
ultimately leading to training deep networks with convex optimization.

High-performance ANNs can be vulnerable to adversarial attacks. In the field of computer
vision, for instance, slight manipulations in the input images can elicit misclassifications in

4

Efficient Global Optimization of Two-layer ReLU Networks: Adversarial Training and Quadratic-time Algorithms

neural networks with high confidence (Szegedy et al., 2014; Moosavi-Dezfooli et al., 2016;
Goodfellow et al., 2015). ANNs can also apply to controls tasks, where robustness is a high
priority. However, an adversarial attack on the underlying ANN may cause the control
system to fail (Huang et al., 2017). Thus, it is crucial to analyze the adversarial robustness
of ANNs, especially when applied to controls and other safety-critical technologies such as
autonomous driving.

While there have been studies on robustness certification (Anderson et al., 2020; Ma and
Sojoudi, 2020), researchers have also been working extensively on training classifiers whose
predictions are robust to input perturbations (Kurakin et al., 2017; Goodfellow et al., 2015;
Huang et al., 2015). “Adversarial training” is one of the most effective methods to train
robust classifiers, compared with other methods such as obfuscated gradients (Athalye
et al., 2018). Adversarial training replaces the standard loss function with an adversarial
loss function and solves a bi-level mini-max optimization to train neural networks. More
recently, (Cohen et al., 2019) analyzed the feasibility of achieving robustness via “randomized
smoothing”. Different from adversarial training, this method tends to smooth the decision
boundary, making it more suitable for defending `2 attacks rather than the more common
`∞ attacks (Blum et al., 2020).

When adversarial training is considered, the aforementioned issues of SGD back-propagation
become worse: adversarial training can be highly unstable in practice, and convergence
properties are pessimistic. Furthermore, most existing attack methods do not guarantee to
generate the worst-case inputs. Therefore, extending convex training to adversarial training
is crucial. In our conference version (Bai et al., 2021), we built upon the above results to
develop “convex adversarial training”, explicitly focusing on the cases of hinge loss (for
binary classification) and squared loss (for regression). We theoretically showed that solving
the proposed robust convex optimizations trains robust ANNs and empirically demonstrated
the efficacy and advantages over traditional methods. This work extends the analysis to the
binary cross-entropy loss and discusses the extensibility to more complex ANN architectures.

Previously, researchers have applied convex relaxation techniques to adversarial training.
These works obtain robust convex certifications (semi-definite program (SDP) (Raghunathan
et al., 2018) or linear program (LP) (Wong and Kolter, 2018)) that upper-bound the inner
maximization of the adversarial training formulation and use weak duality to develop robust
loss functions that can be optimized with back-propagation. Note that while these works
use convex relaxation, the resulting training formulations are still non-convex. Furthermore,
since multiple layers of relaxations stack together in these works, the analysis can be too
conservative. Our numerical experiments confirm this speculation.

The structure of this paper is as follows:

• First, in Section 2 we mathematically bound the suboptimality of an approximate
convex training formulation, significantly reducing the problem size.

• Then, in Section 3, we apply the ADMM algorithm to the “convex neural network
training” framework and obtain a novel training method that efficiently optimizes
ANNs with a linear global convergence guarantee. We also use the SCP framework
to provide a theoretical intuition on the scalability and the optimality of a heuristic

5

Bai, Gautam, and Sojoudi

approximation procedure that makes convex training practical. Coupling the ADMM
algorithm and the approximation yields a quadratic (with respect to training data size)
overall per-iteration computational complexity, a noticeable improvement compared
with previous results.

• Then, in Section 4, we perform a convex relaxation on the neural network training
formulation based on the SCP analysis. The result is an alternative convex training
scheme that is easy to implement, flexible, and scalable. This SCP-based training
method achieves a linear per-iteration complexity when first-order algorithms are applied.
The connection between this new training scheme and “layer-wise training” provides
new insights into the dynamics of neural network training.

• Next, in Section 5, we show that convex training introduces new possibilities to the
“adversarial training” problem by addressing various computational issues associated
with the severe non-convexity of adversarial training. We support the theoretical results
with numeric experiments on real-world datasets.

• Finally, in Section 6, we provide numerical experiments to verify the effectiveness of
the proposed neural network training techniques and show that they extend convex
training to various machine learning problems such as image classification.

1.1 Notations

Throughout this work, we focus on fully-connected neural networks with one rectified linear
activated (ReLU) hidden layer and a scalar output, defined as

ŷ =
m∑
j=1

(
Xuj + bj1n

)
+
αj ,

where X ∈ Rn×d is the input data matrix with n data points in Rd and ŷ ∈ Rn is the output
vector of the neural network. We denote the target output used for training as y ∈ Rn.
The vectors u1, . . . , um ∈ Rd are the weights of the m neurons in the hidden layer while the
scalars α1, . . . , αm ∈ R are the weights of the output layer. b1 . . . , bm ∈ R are the hidden
layer bias terms. The symbol (·)+ = max{0, ·} indicates the ReLU activation function which
sets all negative entries of a vector or a matrix to zero. The symbol 1n defines a column
vector with all entries being 1, where the subscript n denotes the dimension of this vector.

Furthermore, for a vector q ∈ Rn, sgn(q) ∈ {−1, 0, 1}n denotes the signs of the entries of q.
[q ≥ 0] denotes a boolean vector in {0, 1}n with ones at the locations of the nonnegative
entries of q and zeros at the remaining locations. The symbol diag(q) denotes a diagonal
matrix Q ∈ Rn×n where Qii = qi for all i and Qij = 0 for all i 6= j. For a vector q ∈ Rn
and a scalar b ∈ R, the inequality q ≥ b means that qi ≥ b for all i ∈ [n]. The symbol
� denotes the Hadamard product between two vectors with same dimensionalities. The
notation ‖·‖p denotes the `p-norm within Rn. For a matrix A, the max norm ‖A‖max is
defined as maxij |aij |, where aij is the entry at the location (i, j).

Moreover, for a set A, the notation ΠA(·) denotes the projection onto the set and |A| denotes
the cardinality of the set. The notation proxf denotes the proximal operator associated

6

Efficient Global Optimization of Two-layer ReLU Networks: Adversarial Training and Quadratic-time Algorithms

with a function f(·). The notation R ∼ N (0, In) indicates that a random variable R ∈ Rn is
a standard normal random vector. For P ∈ N+, we define [P] as the set {a ∈ N+|a ≤ P},
where N+ is the set of positive integer numbers.

2. Practical Convex Neural Network Training

2.1 Prior work – convex ANN training

We define the problem of training the above ANN with an `2 regularized convex loss function
`(ŷ, y) as:

min
(uj ,αj ,bj)mj=1

`

(m∑
j=1

(
Xuj + bj1n

)
+
αj , y

)
+
β

2

m∑
j=1

(
‖uj‖22 + b2j + α2

j

)
.

where β > 0 is a regularization parameter. Without loss of generality, we assume that bj = 0
for all j ∈ [m]. We can safely make this simplification because concatenating a column of
ones to the data matrix X absorbs the bias terms into the weight vectors.

The simplified training problem is then:

min
(uj ,αj)mj=1

`

(m∑
j=1

(Xuj)+αj , y

)
+
β

2

m∑
j=1

(
‖uj‖22 + α2

j

)
. (1)

Consider a set of diagonal matrices {diag([Xu ≥ 0])|u ∈ Rd}, and let the distinct elements
of this set be denoted as D1, . . . , DP . The constant P corresponds to the total number of
partitions of Rd by hyperplanes passing through the origin that are also perpendicular to
the rows of X (Pilanci and Ergen, 2020). Intuitively, P can be regarded as the number of
possible ReLU activation patterns associated with X.

Consider the convex optimization problem

min
(vi,wi)Pi=1

`

(P∑
i=1

DiX(vi − wi), y
)

+ β
P∑
i=1

(
‖vi‖2 + ‖wi‖2

)
(2)

s. t. (2Di − In)Xvi ≥ 0, (2Di − In)Xwi ≥ 0, ∀i ∈ [P]

and its dual formulation

max
v
−`∗(v) s. t. |v>(Xu)+| ≤ β, ∀u : ‖u‖2 ≤ 1 (3)

where `∗(v) = maxz z
>v− `(z, y) is the Fenchel conjugate function. Note that (3) is a convex

semi-infinite program. FIXITThe next theorem borrowed from (Pilanci and Ergen, 2020)
explains the relationship between the non-convex training problem (1), the convex problem
(2), and the dual problem (3) when the neural network is sufficiently wide.

Theorem 1 ((Pilanci and Ergen, 2020)) Let (v?i , w
?
i)
P
i=1 denote a solution of (2) and

define m? as |{i : v?i 6= 0}|+ |{i : w?i 6= 0}|. Suppose that the neural network width m is at

7

Bai, Gautam, and Sojoudi

Algorithm 1 Practical convex training

1: Generate Ps distinct diagonal matrices via Dh ← diag([Xah ≥ 0]), where ah ∼ N (0, Id)
i.i.d. for all h ∈ [Ps].

2: Solve

p?s1 = min
(vh,wh)Psh=1

`
(Ps∑
h=1

DhX(vh − wh), y
)

+ β

Ps∑
h=1

(
‖vh‖2 + ‖wh‖2

)
(5)

s. t. (2Dh − In)Xvh ≥ 0, (2Dh − In)Xwh ≥ 0, ∀h ∈ [Ps].

;3: Recover u1, . . . , ums and α1, . . . , αms from the solution (v?sh , w
?
sh

)Psh=1 of (5) using (4).

least m?, where m? is upper-bounded by n+ 1. If the loss function `(·, y) is convex, then (1),
(2), and (3) share the same optimal objective. The optimal network weights (u?j , α

?
j)
m
j=1 can

be recovered using the formulas

(u?j1i , α
?
j1i) =

(v?i√
‖v?i ‖2

,
√
‖v?i ‖2

)
if v?i 6= 0;

(u?j2i , α
?
j2i) =

(w?i√
‖w?i ‖2

,−
√
‖w?i ‖2

)
if w?i 6= 0.

(4)

where the remaining m−m? neurons are chosen to have zero weights.

The worst-case computational complexity of solving (2) for the case of squared loss is
O
(
d3r3(nr)3r

)
using standard interior-point solvers (Pilanci and Ergen, 2020). Here, r is the

rank of the data matrix X and in many cases r = d. Such complexity is polynomial in n
but exponential in r. This complexity is already a significant improvement over previous
methods but still prohibitively high for many practical applications. Such high complexity is
due to the large number of Di matrices, which is upper-bounded by min

{
2n, 2r

(e(n−1)
r

)r}
(Pilanci and Ergen, 2020).

2.2 A practical algorithm for convex training

A natural direction of mitigating this high complexity is to reduce the number of Di matrices
by sampling a subset of them. This idea leads to Algorithm 1, which approximately solves
the training problem. Algorithm 1 is an instance of the approximation described in (Pilanci
and Ergen, 2020, Remark 3.3), but Pilanci and Ergen (2020) did not provide theoretical
insights regarding its level of suboptimality. The following theorem bridges the gap by
providing a probabilistic bound on the suboptimality of the neural network trained with
Algorithm 1. Algorithm 1 can train ANNs with widths much less than m?. The following
theorem provides a probabilistic bound on the level of suboptimality of the neural network
trained using Algorithm 1.

Theorem 2 Consider an additional diagonal matrix DPs+1 sampled uniformly, and then
construct

8

Efficient Global Optimization of Two-layer ReLU Networks: Adversarial Training and Quadratic-time Algorithms

p?s2 = min
(vh,wh)Ps+1

h=1

`
(Ps+1∑
h=1

DhX(vh − wh), y
)

+ β

Ps+1∑
h=1

(
‖vh‖2 + ‖wh‖2

)
(6)

s. t. (2Dh − In)Xvh ≥ 0, (2Dh − In)Xwh ≥ 0, ∀h ∈ [Ps + 1].

It holds that p?s2 ≤ p?s1. Furthermore, if Ps ≥ min
{
n+1
ψξ − 1, 2

ξ (n+ 1− logψ)
}

, where ψ and
ξ are preset confidence level constants between 0 and 1, then with probability at least 1− ξ,
it holds that P{p?s2 < p?s1} ≤ ψ.

The proof of Theorem 2 is presented in Section C.1. Intuitively, Theorem 2 shows that
sampling an additional DPs+1 matrix will not reduce the training cost with high probability
when Ps is large. One can recursively apply this bound T times to show that when Ps is
large, the solution with Ps matrices is close to the solution with Ps + T matrices for an
arbitrary number T . Therefore, although the theorem does not directly bound the gap
between the approximated optimization problem and its exact counterpart, it states that the
optimality gap due to sampling is not too large for a suitable value of Ps, and the trained
network is nearly optimal.

Compared with the exponential relationship between P and r, a satisfactory value of Ps
should be on the order of O(n). Therefore, Ps is linear in n and is independent from r. Thus,
when r is large, solving the approximated formulation (5) is significantly (exponentially)
more efficient than solving the exact formulation (2). On the other hand, Algorithm 1 is no
longer deterministic due to the stochastic sampling of the Dh matrices, and yields solutions
that upper-bound those of (2). While Algorithm 1 is not exact, we have verified empirically
(shown in Section 6.1) that even when Ps is significantly smaller than P , Algorithm 1 still
reliably returns a low training cost.

Since the confidence constants ψ and ξ are no greater than one, Theorem 2 only applies to
overparameterized ANNs, where Ps ≥ n. Intuitively, selecting Ps in practice is equivalent
to choosing the neural network width. While Theorem 2 provides a guideline on how Ps
should scale with n, selecting a much smaller Ps will not necessarily become an issue. Our
experiments show that even when Ps is much less than n, Algorithm 1 still reliably returns
high-performance classifiers.

FIXIT(Pilanci and Ergen, 2020) shows that there exists a globally optimal ANN whose
width is at most n+ 1, while Theorem 2 only provides a probabilistic bound for ANNs wider
than n. Although Theorem 2 seems loose by this comparison, it bounds a different quantity
and is meaningful. The bound by (Pilanci and Ergen, 2020) does not provide a method
that scales linearly, and therefore while a globally optimal ANN narrower than n+ 1 exists,
finding such an ANN requires solving a convex program with an exponential number of
constraints. In contrast, Theorem 2 characterizes the optimality of a convex optimization
with a manageable number of constraints.

3. An ADMM Algorithm for Global Neural Network Training

The convex ReLU neural network training program (2) may be solved with the interior point
method (IPM). The IPM is an iterative algorithm that repeatedly performs Newton updates.

9

Bai, Gautam, and Sojoudi

Each Newton update requires solving a linear system, which has a cubic complexity, hindering
the application of IPM to large-scale optimization problems. Unfortunately, large-scale
problems are ubiquitous in the field of machine learning. This section proposes an algorithm
based on the alternating direction method of multipliers (ADMM). ADMM breaks down the
optimization (2) to smaller subproblems that are easier to solve. When `(·) is the squared
loss, each subproblem has a closed-form solution. We will show that the complexity of
each ADMM iteration is linear in n and quadratic in d and P , and the number of required
ADMM steps to reach a desired precision is logarithmic in the precision level. When other
convex loss functions are used, a closed-form solution may not always exist. We illustrate
that iterative methods can solve the subproblems for general convex losses efficiently.

Define Fi := DiX and Gi := (2Di − In)X for all i ∈ [P]. Furthermore, we introduce vi, wi,
si, ti as slack variables and let vi = ui, wi = zi, si = Givi, and ti = Giwi. For a vector
q = (q1, . . . , qn) ∈ Rn, let the indicator function of the positive quadrant I≥0 be defined as

I≥0(q) :=

{
0 if qi ≥ 0, ∀i ∈ [N];

+∞ otherwise.

The convex training formulation (2) can be reformulated as a convex optimization problem
with positive quadrant indicator functions and linear equality constraints:

min
(vi,wi,si,ti,ui,zi)Pi=1

`
(P∑
i=1

Fi(ui − zi), y
)

+ β
P∑
i=1

‖vi‖2 + β
P∑
i=1

‖wi‖2 +
P∑
i=1

I≥0(si) +
P∑
i=1

I≥0(ti)

s. t. Giui − si = 0, Gizi − ti = 0, vi − ui = 0, wi − zi = 0, ∀i ∈ [P]. (7)

Next, we simplify the notations by concatenating the matrices. Define

u := [u>1 · · · u>P z>1 · · · z>P]>, v := [v>1 · · · v>P w>1 · · · w>P]>,

s := [s>1 · · · s>P t>1 · · · t>P]>,

F := [F1 · · · FP − F1 · · · − FP], and G := blkdiag(G1, · · · , GP , G1, · · · , GP),

where blkdiag(·, . . . , ·) denotes the block diagonal matrix formed by the submatrices in the
parentheses. The formulation (7) is then equivalent to the compact notation

min
v,s,u

`(Fu, y) + β‖v‖2,1 + I≥0(s) s. t.

[
I2dP

G

]
u−

[
v
s

]
= 0, (8)

where ‖·‖2,1 denotes the group sparse regularization and I2dP is the idendity matrix in
R2dP×2dP . The corresponding augmented Lagrangian (Hestenes, 1969) of (8), denoted as
L(u, v, s, ν, λ), is:

L(u, v,s, ν, λ) =

`(Fu, y) + β‖v‖2,1 + I≥0(s) +
γa
2

(
‖u− v + λ‖22 − ‖λ‖22

)
+
γa
2

(
‖Gu− s+ ν‖22 − ‖ν‖22

)
where λ := [λ11 . . . λ1P λ21 . . . λ2P]> ∈ R2dP and ν := [ν11 . . . ν1P ν21 . . . ν2P]> ∈ R2nP

are dual variables, and γa is a positive step-size constant.

10

Efficient Global Optimization of Two-layer ReLU Networks: Adversarial Training and Quadratic-time Algorithms

Algorithm 2 An ADMM algorithm for the convex neural network training problem.
1: repeat

2: Solve uk+1 = arg min
u

`(Fu, y) +
γa
2
‖u− vk + λk‖22 +

γa
2
‖Gu− sk + νk‖22 (9a)

3: Solve

[
vk+1

sk+1

]
= arg min

v,s
β‖v‖2,1 + I≥0(s) +

γa
2
‖uk+1 − v + λk‖22 +

γa
2
‖Guk+1 − s+ νk‖22

(9b)

4: Dual update:

[
λk+1

νk+1

]
=

[
λk + γa(u

k+1 − vk+1)
νk + γa(Gu

k+1 − sk+1)

]
(9c)

5: until FIXIT

We can apply the ADMM iterations described in Algorithm 2 to globally optimize (8). As
will be shown next, (9b) and (9c) have simple closed-form solutions. The update (9a) has a
closed-form solution when `(·) is the squared loss, and can be efficiently solved numerically
for general convex loss functions.

The following theorem shows the linear convergence of Algorithm 2, with the proof provided
in Appendix C.2:

Theorem 3 If `(ŷ, y) is strictly convex and continuously differentiable with a uniform Lips-
chitz continuous gradient with respect to ŷ, then the sequence {(uk, vk, sk, λk, νk)} generated
by Algorithm 2 converges linearly to an optimal primal-dual solution for (8), provided that
the step size γa is sufficiently small.

Many popular loss functions satisfy the conditions of Theorem 3. Examples include the
squared loss (for regression) and the binary cross-entropy loss coupled with the tanh output
activation (for binary classification, details shown in Section 6.2.4).

When we apply Algorithm 2 to solve the approximated convex training formulation (5),
Algorithm 2 becomes a subalgorithm of Algorithm 1.

3.1 s and v updates

The update step (9b) can be separated for vk+1 and sk+1 as:

vk+1 = arg min
v

β‖v‖2,1 +
γa
2
‖uk+1 − v + λk‖22; (10a)

sk+1 = arg min
s

I≥0(s) + ‖Guk+1 − s+ νk‖22 = arg min
s≥0

‖Guk+1 − s+ νk‖22. (10b)

11

Bai, Gautam, and Sojoudi

Note that (10a) can be separated for each vi and wi (allowing parallelization) and solved
analytically using the formulas:

vk+1
i = arg min

v
β‖vi‖2 +

γa
2
‖uk+1

i − v + λk1i‖22 = prox β
γa
‖·‖2

(
uk+1
i + λk1i

)
=

(
1− β

γa ·
∥∥uk+1

i + λk1i
∥∥

2

)
+

(
uk+1
i + λk1i

)
, ∀i ∈ [P];

wk+1
i = arg min

v
β‖wi‖2 +

γa
2
‖sk+1
i − w + λk2i‖22 = prox β

γa
‖·‖2

(
zk+1
i + λk2i

)
=

(
1− β

γa ·
∥∥zk+1

i + λk2i
∥∥

2

)
+

(
zk+1
i + λk2i

)
, ∀i ∈ [P],

where prox β
γa
‖·‖2 denotes the proximal operation on the function f(·) = β

γa
‖·‖2. The

computational complexity of finding vi and wi is O(d). Similarly, (10b) can also be separated
for each si and ti and solved analytically using the formulas:

sk+1
i = arg min

si≥0

∥∥Giuk+1
i − si + νk1i

∥∥2

2
= Π≥0

(
Giu

k+1
i + νk1i

)
=
(
Giu

k+1
i + νk1i

)
+
, ∀i ∈ [P];

tk+1
i = arg min

ti≥0

∥∥Gizk+1
i − si + νk2i

∥∥2

2
= Π≥0

(
Giz

k+1
i + νk2i

)
=
(
Giz

k+1
i + νk2i

)
+
, ∀i ∈ [P].

where Π≥0 denotes the projection onto the non-negative quadrant. The computational
complexity of finding si and ti is O(n). The updates (10a) and (10b) can be performed in
O(nP + dP) time in total.

3.2 u updates

The u update step depends on the specific structure of `(·). For the squared loss, the u
update step can be solved in closed form. For many other loss functions, the update can be
performed with numerical methods.

3.2.1 Squared loss

The squared loss `(ŷ, y) = 1
2‖ŷ − y‖

2
2 is a commonly used loss function in machine learning.

It is widely used for regression tasks, but can also be used for classification. For the squared
loss, (9a) amounts to

uk+1 = arg min
u

{
‖Fu− y‖22 +

γa
2
‖u− vk + λk‖22 +

γa
2
‖Gu− sk + νk‖22

}
(11)

Setting the gradient to zero yields that(
I + 1

γa
F>F +G>G

)
uk+1 = 1

γa
F>y + vk − λk +G>sk −G>νk (12)

Therefore, the u update can be performed by solving the linear system (12) in each iteration.
While solving a linear system Ax = b for a square matrix A has a cubic time complexity in

12

Efficient Global Optimization of Two-layer ReLU Networks: Adversarial Training and Quadratic-time Algorithms

general, by taking advantage of the structure of (12), a quadratic per-iteration complexity
can be achieved. Specifically, the matrix I + 1

γa
F>F +G>G is symmetric, positive definite,

and fixed throughout the ADMM iterations. In general, solving Ax = b for some symmetric
A ∈ S2dP×2dP , A � 0 and b ∈ R2dP can be done via the procedure:

1. Perform the Cholesky decomposition A = LL>, where L is lower-triangular (cubic in
2dP);

2. Solve Lb̂ = b by forward substitution (quadratic in 2dP);

3. Solve L>x = b̂ by back substitution (quadratic in 2dP).

Throughout the ADMM iterations, the first step only needs to be performed once, while
the second and the third steps are required for every iteration. Since the dimension of the
matrix (I + 1

γa
F>F +G>G) is 2dP × 2dP , the per-iteration time complexity of the u update

is O(d2P 2), making it the most time-consuming step of the ADMM algorithm when d and
P are large. Therefore, the overall complexity of a full ADMM primal-dual iteration for the
case of squared loss is O(nP + d2P 2), which is quadratic. In contrast, the linear system for
IPM’s Newton updates can be completely different for each iteration, and thus generally has
a cubic complexity. Therefore, the proposed ADMM method achieves a notable efficiency
improvement over the IPM baseline.

In the case when the approximated formulation (5) is considered and Ps diagonal matrices
are sampled in place of the full set of P matrices, obtaining a given level of optimality
requires Ps to be linear in n, as discussed in Section 2. Coupling with the above analysis, we
obtain an overall per-iteration complexity of O(d2n2), a significant improvement compared
with the O

(
d3r3(nr)3r

)
per-iteration complexity of (Pilanci and Ergen, 2020). The total

computational complexity for reaching a solution satisfying FIXITis O(d2n2/ log(ε)). In
Section 6.2, we provide numerical experiments to demonstrate that the improved efficiency of
the ADMM algorithm enables the application of convex ANN training on image classification
tasks, which was not possible before. Moreover, our experiments show that it does not
require a high optimization precision to achieve a favorable prediction accuracy.

3.2.2 General convex loss functions

When a general convex loss function `(ŷ, y) is considered, a closed-form solution to (9a) does
not always exist and one may need to use iterative methods to solve (9a). One natural use
of an iterative optimization method is gradient descent. However, for large-scale problems, a
full gradient evaluation can be too expensive. To address this issue, we exploit the symmetric
and separable property of each ui and zi in (9a) and propose an application of the randomized
block coordinate descent (RBCD) method. The details of RBCD are presented in Algorithm
3. The superscript + denotes the updated quantities for each iteration, and the notation
γr is the step size. In practice, the RBCD step size γr can be adaptively chosen with a
backtracking line search. Steps 5 and 6 of Algorithm 3 are derived via the chain rule of
differentiation. It can be verified that (9a) is always strongly convex because its second term
is strongly convex while the first and third terms are convex. (Lu and Xiao, 2015, Theorem
1) has shown that when minimizing strongly-convex functions, RBCD converges linearly.

13

Bai, Gautam, and Sojoudi

The theoretical convergence rate is higher when the convexity of (9a) is stronger and P is
smaller.

Algorithm 3 Randomized Block Coordinate Descent (RBCD)

1: Initialize ŷ =
∑P

i=1 Fi(ui − zi);
2: Fix s̃i = G>i (si − ν1i), t̃i = G>i (ti − ν2i) for all i ∈ [P];
3: Select accuracy thresholds τ > 0, ϕ > 0;
4: repeat
5: ỹ ← ∇ŷ`(ŷ, y)
6: Uniformly select i from [P] at random;
7: u+

i ← ui − γrF>i ỹ − γrγa(ui − vi + λ1i +G>i Giui − s̃i);
8: z+

i ← zi + γrF
>
i ỹ − γrγa(zi − wi + λ2i +G>i Gizi − t̃i);

9: ŷ+ ← ŷ + Fi
(
(u+
i − z

+
i)− (ui + zi)

)
;

10: until ‖∇uL(u, v, s, ν, λ)‖2 ≤
ϕ

max{τ, ‖u‖2}
.

Furthermore, G>i Gi = X>X for all i ∈ [P]. To see this, recall that Gi = (2Di − In)X
by definition. Since (2Di − In) is a diagonal matrix with all entries being ±1, it holds
that (2Di − In)>(2Di − In) = In. Thus, G>i Gi = X>(2Di − In)>(2Di − In)X = X>X.
Consequently, X>X can be calculated in advance, and there is no need to calculate G>i Gi
in each RBCD iteration. Therefore, the most expensive calculations per RBCD update have
the followings complexities:

F>i ỹ Fi

(
(u+
i − z

+
i)− (ui + zi)

)
(X>X)ui (X>X)zi

O(nd) O(nd) O(d2) O(d2).

While it can be costly to solve (9a) to a high accuracy using iterative methods, especially
during the early iterations of ADMM, (Eckstein and Yao, 2017, Algorithm 1, Prop 6) has
shown that even when (9a) is solved approximately, as long as the accuracy threshold ϕ of
each ADMM iteration forms a convergent sequence, the ADMM algorithm can eventually
converge to the global optimum of (8). Each iterative solution of the u-update subproblem
can also take advantage of warm-starting by initializing from the result of the previous
ADMM iteration. In other words, in practical implementations, we alternate between an
ADMM update and several RBCD updates in a disciplined manner.

4. SCP-based Layer-wise Convex Training

While the practical training formulation (5) coupled with the ADMM algorithm (Algorithm 2)
was proved to vastly improve the efficiency and the practicality of globally optimizing neural
networks compared with prior works, the complexity of the aforementioned methods can still
be too high for large-scale machine learning problems due to the complicated structure of
(2). A natural question is then: Can we build simpler convex training formulations that are
easier to optimize? In this section, we propose a “sampled convex program (SCP)”-based

14

Efficient Global Optimization of Two-layer ReLU Networks: Adversarial Training and Quadratic-time Algorithms

alternative approach to approximately globally optimize scalar-output one-hidden-layer
neural networks. This approach constructs scalable unconstrained convex optimization
problems with simpler structures. Unconstrained convex optimization problems are much
easier to numerically solve compared to constrained ones. Scalable and simple first-order
methods can be easily applied to unconstrained convex programs, while the same cannot be
said for constrained optimization in general due to feasibility issues.

Compared with the ADMM approach in Algorithm 2, the SCP approach is easier to
implement and has a lower per-iteration complexity. The tradeoff is that while Algorithm 2
can be applied to find the exact global minimum of (1) (albeit with an exponential complexity
with respect to the data matrix rank), the SCP approach only finds an approximately global
solution. In the approximate case, the qualities of the ADMM solution and the SCP solution
can both be characterized.

4.1 One-shot sampling of hidden-layer weights

In this subsection, we focus on scalar-output one-hidden-layer ReLU neural networks.
Appendix B.2 discusses the extensions to vector-output networks, which see a broader set of
applications.

Pilanci and Ergen (2020) has shown that the non-convex training formulation (1) has the
same global optimum as

p? = min
(uj ,αj)mj=1

`
(m∑
j=1

(Xuj)+αj , y
)

+
β

2

m∑
j=1

|αj | s. t. ‖uj‖2 ≤ 1, ∀j ∈ [m]. (13)

Note that we can replace the perturbation set {u | ‖u‖2 ≤ 1} with {u | ‖u‖2 = 1} without
changing the optimum. This is because for any pair (uj , αj) such that ‖uj‖2 < 1, replacing
(uj , αj) with the scaled weights (

uj
‖uj‖2 , ‖uj‖2 · αj) will reduce the regularization term of (13)

while keeping the loss function term unchanged, meaning that the optimal u?j must satisfy
‖u?j‖2 = 1.

To approximate the semi-infinite program (13), we randomly sample a total of N vectors,
namely u1, . . . , uN , on the `2 unit norm sphere Sd−1 following a uniform distribution. It is
well-known that such a procedure can be performed by randomly sampling ûi ∼ N (0, Id) for
all i ∈ [N] and projecting each ûi onto the unit `2 norm sphere by calculating ui = ûi

‖ûi‖2 for

all i ∈ [N]. Next, u1, . . . , uN are used to construct the following SCP:

p?s3 = min
(αi)Ni=1

`
(N∑
i=1

(
Xui

)
+
αi, y

)
+ β

N∑
i=1

|αi|, (14)

where the sampled hidden-layer weights (ui)
N
i=1 are fixed.

The finite-dimensional unconstrained convex formulation (14) is a relaxation of (13), and
can be used as a surrogate for the optimization (1) to approximately globally optimize
one-hidden-layer neural networks. The formulation (14) optimizes the output layer of the
ANN while keeping the hidden layer fixed. When the squared loss `(ŷ, y) = 1

2‖ŷ − y‖
2
2 is

15

Bai, Gautam, and Sojoudi

considered, (14) is a Lasso Regression problem. Intuitively, the sampled hidden-layer weights
transform the training data points into a higher-dimensional space. While some of the
sampled weights will inevitably be far from the optimum weights for the neural network,
the `1 regularization term promotes sparsity, providing a tendency to assign zero weights to
“disable” the suboptimal hidden neurons.

The SCP training formulation (14) recovers the training formulation of one-hidden-layer
RVFL and ELM (FIXIT). Such an equivalence shows that training an ELM is a convex
relaxation to training a neural network. Compared with traditional ELMs, (14) contains
a sparsity-promoting regularization, and requires a different initialization of the untrained
hidden layer weights. This connection supports the finding (cite) that neural networks seek
sparsity.

The method in this subsection is referred to as “one-shot sampling” because all hidden layer
weights are sampled in advance, in contrast with the iterative sampling procedure described
in Section 4.2. The neural networks trained with (14) can be suboptimal in terms of empirical
loss compared with the network that globally minimizes the non-convex cost function, but
are expected to be close to the optimal classifier. The next theorem characterizes the level
of suboptimality of the SCP optimizer, with the proof provided in Appendix C.3.

Theorem 4 Suppose that an additional hidden neuron uN+1 is randomly sampled on the
unit Euclidean norm sphere via a uniform distribution to augment the neural network.
Consider the following formulation to train the augmented network:

p?s4 = min
(αi)

N+1
i=1

`
(N+1∑
i=1

(
Xui

)
+
αi, y

)
+ β

N+1∑
i=1

|αi|. (15)

It holds that p?s4 ≤ p?s3. Furthermore, if N ≥ min
{
n+1
ψξ − 1, 2

ξ (n+ 1− logψ)
}

, where ψ and ξ
are preset confidence level constants between 0 and 1, then with probability no smaller than
1− ξ, it holds that P{p?s4 < p?s3} ≤ ψ.

Intuitively, this bound means that uniformly sampling another hidden layer weight uN+1

on the unit norm sphere will not improve the training cost with high probability. For a
fixed level of suboptimality, the required scale of the SCP formulation (14) has a linear
relationship with respect to the number of training data points.

Similar to Algorithm 1, the SCP (14) converges to an approximate global minimum of
the ANN cost function. If we consider training an ANN with the same width using back-
propagation, Algorithm 1, and SCP (in this case, m = Ps = N < P), then both Algorithm
1 and SCP achieve convexity at the price of leaving out a part of the parameter space.
The reason is that Algorithm 1 and SCP both impose assumptions on the network weights.
Specifically, Algorithm 1 solves (5), which restricts the ReLU activation pattern of the
hidden layer, while the SCP relaxation (14) imposes a stronger restriction by limiting the
choice of hidden layer weights. Thus, if Ps = N , then (5) is expected to have a larger
search space than (14) and may perform better as a consequence. Furthermore, when Ps
in (5) is the same as P in (2), then the exact convex reformulation is recovered. However,

16

Efficient Global Optimization of Two-layer ReLU Networks: Adversarial Training and Quadratic-time Algorithms

recovering the exact counterpart from (14) requires N →∞, confirming that (14) is a cruder
approximation than (5).

However, somewhat surprisingly, from the perspective of the probabilistic optimality, the
bound provided by Theorem 4 is the same as the bound associated with Algorithm 1
presented in Theorem 2. The reason is that both bounds are obtained via the sampled
convex program analysis framework.

The main advantage of the SCP-based training approach is that when Ps = N , the uncon-
strained optimization (14) is much easier (and thus faster) to solve than the constrained
optimization (5). Specifically, the iterative soft-thresholding algorithms (ISTA) (Beck and
Teboulle, 2009) and their accelerated or stochastic variants can be readily applied to solve
(14). Specifically, ISTA converges at a a linear rate if `

(∑N
i=1(Xui)+αi, y

)
is strongly convex

over each αi, and converges at a O(1/T) rate for weakly convex cases, where T is the
iteration count. As a result, with the same amount of computational resources, one can
solve (14) with N � Ps, allowing for training wider networks (with stronger representation
powers) than those trainable with (2) within a reasonable amount of time. Such an advantage
is especially significant when a large-scale problem is considered. Numerical experiments
presented in Section 6.3 verify that the SCP relaxation (14) can train accurate classifiers
with reasonable computing effort.

When `(·) is the squared loss, the SCP formulation (14) evaluates to minα‖Hα−y‖22 +β‖α‖1,
where H =

[
(Xu1)+ . . . (XuN)+

]
∈ Rn×N and α = (α1, . . . , αN) ∈ RN . The ISTA

update is then α+ = proxγrβ‖·‖1(α − γrH>Hα + γrH
>y), where proxγrβ‖·‖1(·) evaluates

to sgn(·) max(| · | − γrβ, 0), α+ denotes the updated α at each iteration, and γr is a step
size that can be determined with backtracking line search. Therefore, the per-iteration
complexity is O(N2). Since N is linear in n for a fixed solution quality (cf. Theorem 4),
the complexity amounts to O(n2). In comparison, while back-propagation SGD’s O(n2d)
complexity seems worse than ISTA, each back-propagation SGD epoch is likely to be faster
than an ISTA iteration in practice. This is because while N scales linearly in the number of
data points n, the slope of this linear relationship can be very steep, and therefore N can be
large if an accurate solution is desired.

Theorem 2 also sheds light on ANN training dynamics: for the purpose of approximating
the training data, when the network is wide, the hidden layers are less important than
the output layer. The role of the hidden layers is to map the data to features in higher-
dimensional spaces, facilitating the output layer to extract the most important information.
Comparatively, the convex formulations (Pilanci and Ergen, 2020, Equation 8) show that
one-hidden-layer ANNs can be regarded as combinations of linear classifiers, where the
mixed regularization terms promote group sparsity and discard suboptimal linear classifiers.
Similarly, our SCP-based convex formulation shows that the output of a one-hidden-layer
ANNs is a weighted average of features, where the `1 regularization term promotes sparsity
and discards less informative features.

17

Bai, Gautam, and Sojoudi

4.2 Iterative sampling of hidden-layer weights

While the efficacy of the SCP-based convex training formulation with a one-shot sampling
of the hidden layer neurons can be proved theoretically and experimentally, the probabilistic
optimality bound provided in Theorem 4 may be too conservative in some cases. To provide
a more accurate and robust estimation of the level of suboptimality of the SCP relaxation
(14), we propose a scheme (Algorithm 4) that iteratively samples hidden layer neurons used
in (14) to train classifiers.

The convex semi-infinite training formulation (13) has a dual problem: (Pilanci and Ergen,
2020, Appendix A.4)

d? = max
v∈Rn

−`∗(v) s. t. |v>(Xu)+| ≤ β, ∀u : ‖u‖2 ≤ 1, (16)

where `∗(·) is the Fenchel conjugate function defined as `∗(v) = maxz z
>v − `(z, y). When

m ≥ m∗, where m∗ is upper-bounded by n+ 1, strong duality holds p? = d?. Moreover, the
dual problem (16) is a convex semi-infinite problem, which is a category of uncertain convex
programs (UCP) (Calafiore and Campi, 2005).

We then use the sampled vectors u1, . . . , uN to construct the following sampled convex
program (SCP) that approximates the UCP (16):

d?s3 = max
v∈Rn

−`∗(v) s. t. |v>(Xui)+| ≤ β, ∀i ∈ [N]. (17)

Similarly, strong duality holds between (17) and (14) and it holds that p?s3 = d?s3. The
level of suboptimality of the dual solution v? to (17) can be easily verified by checking the
feasibility of v? to the UCP (16).

While it is easier to check the quality of the dual solution, it is desirable to solve the primal
problem (14) because the primal is unconstrained and thus easier to solve. Suppose that
(α?i)

N
i=1 is a solution to (14). By following the procedure described in Appendix C.4, one can

recover the optimal dual variable v? from (α?i)
N
i=1 by exploiting the strong duality between

(14) and (17). Next, we independently sample another set of N1 hidden layer weights (u1
i)
N1
i=1

via uniform distribution and check if |v?>(Xu1
i)+| > β for each i ∈ [N1]. If |v?>(Xu1

i)+| > β
for a particular i, then adding u1

i to the set of sampled constraint set of (17) will change
(reduce) the value of d?s3 and thereby reduce the relaxation gap between p?s3 and p?. In
other words, by incorporating u1

i as another hidden layer node, the considered ANN can be
improved.

Define the notations

Zi :=

{
1 if |v?>(Xu1

i)+| > β

0 otherwise
, for all ∀i ∈ [N1],

Z :=

∑N1
i=1 Zi
N1

, and θ := E[Zi] = Pu∼Unif(Sd−1)

[
|v?>(Xu)+| > β

]
.

where Unif(Sd−1) denotes the uniform distribution on a (d− 1)-sphere.

18

Efficient Global Optimization of Two-layer ReLU Networks: Adversarial Training and Quadratic-time Algorithms

Algorithm 4 Convex ANN training based on iterative sampling hidden-layer weights

1: Let t = 0; sample û0
1, . . . , û

0
N0
∼ N (0, Id) i.i.d., and let u0

i =
û0i
‖û0i ‖2

for all i ∈ [N0].

2: Construct U0 := {u0
1, . . . , u

0
N0
}; let U0 = N0.

3: repeat
4: Solve (αti)

Ut
i=1 = arg min

(αi)
Ut
i=1

`
(∑Ut

i=1

(
Xuti

)
+
αi, y

)
+ β

∑Ut
i=1 |αi|, the same formula-

tion as (14).
5: Update vt = y −

∑Ut
i=1(Xui)+α

t
i.

6: Sample ût+1
1 , . . . , ût+1

Nt+1
∼ N (0, Id) i.i.d., and let ūt+1

i =
ût+1
i

‖ût+1
i ‖2

for all i ∈ [Nt+1].

7: Construct E t+1 =
{
ūt+1
i

∣∣ |vt>(Xūt+1
i)+| > β

}
to be the set of newly sampled weight

vectors that tighten the dual constraint.
8: Construct U t+1 = U t ∪ E t+1 and rename all vectors in U t+1 as ut+1

1 , . . . , ut+1
Ut+1

, where

Ut+1 is the cardinality of U t+1.
9: t← t+ 1.

10: until |E
t|

Nt
+ log(1/ξ)

2Nt
≤ ψ or/and Ut−1 ≥ n+1

ψξ − 1, where ψ and ξ are preset thresholds.

By Hoeffding’s inequality, it holds that P
(
θ − Z ≥ t

)
≤ exp(−2N1t

2). Therefore, with

probability at least 1− ξ, it holds that θ ≤ Z + log(1/ξ)
2N1

, where ξ ∈ (0, 1]. In other words, by

evaluating the feasibility of the additional set of hidden layer weights u1
1 . . . u

1
N1

, one can
obtain a probabilistic bound on the level of suboptimality of the solution to (17) constructed

with u1 . . . uN : as long as Z + log(1/ξ)
2N1

≤ ψ for a constant ψ ∈ (0, 1], it holds that θ ≤ ψ with
probability at least 1− ξ.

We now introduce a scheme of training scalar-output fully-connected ReLU neural networks
to an arbitrary degree of suboptimality by repeating the evaluation and sampling procedure,
described in Algorithm 4. Let T denote the total iterations of Algorithm 4, Ut denote the
total number of hidden layer neurons at iteration t, and Nt denote the number of hidden
layer neurons sampled at iteration t. In light of Theorem 4, it holds that the solution (α?i)

UT
i=1

yielded by Algorithm 4 satisfies the following property with probability at least 1 − ξ: if
an additional vector ũ is sampled on the unit Euclidean norm sphere Sd−1 via a uniform
distribution, then adding ũ to the set of hidden layer weights used in (14) will not improve
the training loss of the neural network with probability at least 1− ψ.

5. Convex Adversarial Training

The inherent difficulties with adversarial training can be addressed by taking advantage of
the convex training framework and the related algorithms.

5.1 Background about adversarial training

A classifier is considered robust against adversarial perturbations if it assigns the same label
to all inputs within an `∞ bound with radius ε (Goodfellow et al., 2015). The perturbation

19

Bai, Gautam, and Sojoudi

set can then be defined as

X =
{
X + ∆ ∈ Rn×d

∣∣∣ ∆ = [δ1, . . . , δn]>, δk ∈ Rd, ‖δk‖∞ ≤ ε, ∀k ∈ [n]
}
.

In this work, we consider the “white box” setting, where the adversary has complete
knowledge about the neural network. As stated in (Madry et al., 2018), one common method
for training robust classifiers is to minimize the maximum loss within the perturbation set
by solving the following minimax problem:

min
(uj ,αj)mj=1

(
max

∆:X+∆∈X
`

(m∑
j=1

(
(X + ∆)uj

)
+
αj , y

)
+
β

2

m∑
j=1

(
‖uj‖22 + α2

j

))
(18)

This process of “training with adversarial data” is often referred to as “adversarial training”,
as opposed to “standard training” that trains on clean data. In the prior literature, Fast
Gradient Sign Method (FGSM) and Projected Gradient Descent (PGD) are commonly used
to numerically solve the inner maximization of (18) and generate adversarial examples in
practice (Madry et al., 2018). More specifically, FGSM generates adversarial examples x̃
using

x̃ = x+ ε · sgn
(
∇x`

(m∑
j=1

(x>uj)+αj , y
))
. (19)

Since FGSM is a one-shot method that assumes linearity, it may miss the worst-case
adversarial input. PGD better explores the nonlinear landscape of the problem and is
capable of generating “universal” first-order adversaries by running the iterations

x̃t+1 = ΠX

(
x̃t + γp · sgn

(
∇x`

(m∑
j=1

(x>uj)+αj , y
)))

(20)

for t = 0, 1, . . . , where xt is the perturbed data vector at the tth iteration, ΠX denotes the
projection onto the perturbation set X , and γp > 0 is the step size. The initial vector x̃0 is
the unperturbed data x.

5.2 The convex adversarial training formulation

While PGD adversaries have been considered “universal” in the literature, adversarial
training with PGD adversaries has several limitations. Since the optimization landscapes of
ANNs are generally non-concave over ∆, there is no guarantee that PGD will find the true
worst-case adversary within the perturbation bound. Furthermore, traditional adversarial
training algorithms solve complex bi-level minimax optimization problems, exacerbating the
instability issue of non-convex ANN training. Our experiments show that back-propagation
gradient methods can struggle to solve (18) and can be highly sensitive to initializations.
Moreover, iteratively solving the bi-level optimization (18) requires an algorithm with a
nested loop structure, which is computationally cumbersome. To conquer such difficulties,
we leverage Theorem 1 to re-characterize (18) as robust, convex upper-bound problems that
can be efficiently solved globally.

20

Efficient Global Optimization of Two-layer ReLU Networks: Adversarial Training and Quadratic-time Algorithms

We first develop a result about adversarial training involving general convex loss functions.
The connection between the convex training objective and the non-convex neural network loss
function holds only when the linear constraints in (2) are satisfied. For adversarial training,
we need this connection to hold at all perturbed data matrices X + ∆ ∈ X . Otherwise, if
some matrix X + ∆ violates the linear constraints, then this perturbation ∆ can correspond
to a low convex objective value but a high actual loss. To ensure the correctness of the
convex reformulation throughout X , we introduce some robust constraints below.

Since the Di matrices in (2) reflects the ReLU patterns of X, these matrices can change when
X is perturbed. Therefore, we include all distinct diagonal matrices diag([(X + ∆)u ≥ 0])
that can be obtained for all u ∈ Rd and all ∆ : X + ∆ ∈ U , denoted as D1, . . . , D

P̂
, where

P̂ is the total number of such matrices. Since D1, . . . , D
P̂

include D1, . . . , DP in (2), we

have P̂ ≥ P . While P̂ is at most 2n in the worst case, since ε is often small, we expect P̂ to
be relatively close to P , where P ≤ 2r

(e(n−1)
r

)r
as discussed above.

Finally, we replace the objective of the convex standard training formulation (2) with its
robust counterpart, giving rise to the optimization

min
(vi,wi)P̂i=1

 max
∆:X+∆∈U

`

(P̂∑
i=1

Di(X + ∆)(vi − wi), y
)

+ β
P̂∑
i=1

(
‖vi‖2 + ‖wi‖2

) (21a)

s. t. min
∆:X+∆∈U

(2Di − In)(X + ∆)vi ≥ 0, min
∆:X+∆∈U

(2Di − In)(X + ∆)wi ≥ 0, ∀i ∈ [P̂]

(21b)

where U is any convex additive perturbation set. The next theorem shows that (21) is an
upper-bound to the robust loss function (18), with the proof provided in Appendix C.5.

Theorem 5 Let (v?robi , w
?
robi

)P̂i=1 denote a solution of (21) and define m̂? as |{i : v?robi 6=
0}|+ |{i : w?robi 6= 0}|. When the neural network width m satisfies m ≥ m̂?, the optimization
problem (21) provides an upper-bound on the non-convex adversarial training problem (18).
The robust neural network weights (u?robj , α

?
robj

)m̂j=1 can be recovered using (4).

When the perturbation set is zero, Theorem 5 reduces to Theorem 1. In light of Theorem 5,
we use optimization (21) as a surrogate for the optimization (18) to train the neural network.
We will show that the new problem can be efficiently solved in important cases. By the
analogy to Theorem 2, an approximation to (21) can be applied to train neural networks
with width much less than m̂?. Since (21) includes all Di matrices in (2), we have P̂ ≥ P .
While P̂ is at most 2n in the worst case, since ε is often small, we expect P̂ to be relatively
close to P , where P ≤ 2r

(e(n−1)
r

)r
as discussed above.

The robust constraints in (21b) force all points within the perturbation set to be feasible.
Intuitively, for every j ∈ [m̂?], (21b) forces the ReLU activation pattern sgn

(
(X + ∆)u?robj

)
to stay the same for all ∆ such that X + ∆ ∈ U . Moreover, if ∆?

rob denotes a solution to
the inner maximization in (21a), then X + ∆?

rob corresponds to the worst-case adversarial
inputs for the recovered neural network.

21

Bai, Gautam, and Sojoudi

Corollary 6 For the perturbation set X , the constraints in (21b) can be equivalently replaced
by

(2Di − In)Xvi ≥ ε‖vi‖1, (2Di − In)Xwi ≥ ε‖wi‖1, ∀i ∈ [P̂]. (22)

The proof of Corollary 6 is provided in Appendix C.6. Note that the left side of each
inequality in (22) is a vector while the right side is a scalar, which means that each element
of the corresponding vector should be greater than or equal to that scalar.

5.3 Practical algorithm for convex adversarial training

Since Theorem 2 does not rely on assumptions about the matrix X, it applies to an arbitrary
X + ∆ matrix, and naturally extends to the convex adversarial training formulation (21).
Therefore, an approximation to (21) can be applied to train robust neural networks with
widths much less than m̂?. Similar to the strategy rendered in Algorithm 1, we use a subset
of the Di matrices for practical adversarial training. Since the Di matrices depend on the
perturbation ∆, we also add randomness to the data matrix X in the sampling process
to cover Di matrices associated with different perturbations, leading to Algorithm 5. Pa
and S are preset parameters that determine the number of random weight samples, with
Pa × S ≥ Ps.

Algorithm 5 Practical convex adversarial training

1: for h = 1 to Pa do
2: ah ∼ N (0, Id) i.i.d.
3: Dh1 ← diag([Xah ≥ 0])
4: for j = 2 to S do
5: Rhj ← [r1, . . . , rd], where rκ ∼ N (0, In), ∀κ ∈ [d]
6: Dhj ← diag([Xhjah ≥ 0]), where Xhj ← X + ε · sgn(Rhj)
7: Discard repeated Dhj matrices
8: break if Ps distinct Dhj matrices has been generated
9: end for

10: end for
11: Solve

min
(vi,wi)P̂i=1

(
max

∆:X+∆∈U
`

(Ps∑
h=1

Dh(X + ∆)(vh − wh), y

)
+ β

Ps∑
h=1

(
‖vh‖2 + ‖wh‖2

))
(23)

s. t. min
∆:X+∆∈U

(2Dh − In)(X + ∆)vh ≥ 0, ∀h ∈ [Ps],

min
∆:X+∆∈U

(2Dh − In)(X + ∆)wh ≥ 0, ∀h ∈ [Ps].

12: Recover u1, . . . , ums and α1, . . . , αms from the solution (v?robsh
, w?robsh

)Psh=1 of (23)
using (4).

22

Efficient Global Optimization of Two-layer ReLU Networks: Adversarial Training and Quadratic-time Algorithms

5.4 Convex hinge loss adversarial training

While the inner maximization of the robust problem (21) is still hard to solve in general,
it is tractable for some loss functions. The simplest case is the piecewise-linear hinge loss
`(ŷ, y) = (1 − ŷ � y)+, which is widely used for classification. Here, we focus on binary
classification with y ∈ {−1, 1}n. 1

Consider the training problem for a one-hidden-layer ANN with `2 regularized hinge loss:

min
(uj ,αj)mj=1

(
1

n
· 1>

(
1− y �

m∑
j=1

(Xuj)+αj

)
+

+
β

2

m∑
j=1

(
‖uj‖22 + α2

j

))
(24)

The adversarial training problem considering the `∞-bounded adversarial data perturbation
set X is:

min
(uj ,αj)mj=1

(
max

∆:X+∆∈X

1

n
· 1>

(
1− y �

m∑
j=1

(
(X + ∆)uj

)
+
αj

)
+

+
β

2

m∑
j=1

(
‖uj‖22 + α2

j

))
(25)

Applying Theorem 5 and Corollary 6 leads to the following formulation as an upper bound
on (25):

min
(vi,wi)P̂i=1

 max
∆:X+∆∈X

1

n
· 1>

(
1− y �

P̂∑
i=1

Di(X + ∆)(vi − wi)
)

+

+ β
P̂∑
i=1

(
‖vi‖2 + ‖wi‖2

)
s. t. (2Di − In)Xvi ≥ ε‖vi‖1, (2Di − In)Xwi ≥ ε‖wi‖1, ∀i ∈ [P̂] (26)

For the purpose of generating the D1, . . . , DP̂
matrices, instead of enumerating an infinite

number of points in X , we only need to enumerate all vertices of X , which is finite. This is
because the solution ∆?

hinge to the inner maximum always occurs at a vertex of X , as will be
shown in Theorem 7. Solving the inner maximization of (26) in closed form leads to the
next theorem, whose proof is provided in Section C.7.

Theorem 7 For the binary classification problem, the inner maximum of (26) is attained

at ∆?
hinge = −ε · sgn

(∑P̂
i=1Diy(vi − wi)>

)
, and the bi-level optimization problem (26) is

equivalent to the classic optimization problem:

min
(vi,wi)P̂i=1

 1

n

n∑
k=1

(
1− yk

P̂∑
i=1

dikx
>
k (vi − wi) + ε

∥∥∥∥ P̂∑
i=1

dik(vi − wi)
∥∥∥∥

1

)
+

+β
∑P̂

i=1

(
‖vi‖2 + ‖wi‖2

)
 (27)

s. t. (2Di − In)Xvi ≥ ε‖vi‖1, (2Di − In)Xwi ≥ ε‖wi‖1, ∀i ∈ [P̂]

where dik denotes the kth diagonal element of Di.

1. Other `p norm-bounded additive perturbation sets can be similarly analyzed, as shown in Appendix
B.3. It is also straightforward to extend the analysis in this section to any convex piecewise-affine loss
functions.

23

Bai, Gautam, and Sojoudi

The problem (27) is a finite-dimensional convex program that provides an upper bound on
(25), which can be considered as the robust counterpart of (24). We can thus solve (27) to
robustly train the neural network. The `1 norm term in (27) explains the regularization
effect of adversarial training.

5.5 Convex squared loss adversarial training

As discussed before, the squared loss `(ŷ, y) = 1
2‖ŷ − y‖

2
2 is another commonly used loss

function in machine learning. Consider the non-convex training problem of a one-hidden-layer
ReLU ANN trained with the `2-regularized squared loss:

min
(uj ,αj)mj=1

1

2

∣∣∣∣∣∣∣∣ m∑
j=1

(Xuj)+αj − y
∣∣∣∣∣∣∣∣2

2

+
β

2

m∑
j=1

(
‖uj‖22 + α2

j

)
. (28)

Coupling this nominal problem with the perturbation set X gives us the robust counterpart
of (28) as

min
(uj ,αj)mj=1

(
max

∆:X+∆∈X

1

2

∣∣∣∣∣∣∣∣ m∑
j=1

(
(X + ∆)uj

)
+
αj − y

∣∣∣∣∣∣∣∣2
2

+
β

2

m∑
j=1

(
‖uj‖22 + α2

j

))
. (29)

Applying Theorem 5 and Corollary 6 leads to the following formulation as an upper bound
on (29):

min
(vi,wi)P̂i=1

 max
∆:X+∆∈X

1

2

∣∣∣∣∣
∣∣∣∣∣
P̂∑
i=1

Di(X + ∆)(vi − wi)− y

∣∣∣∣∣
∣∣∣∣∣
2

2

+ β
P̂∑
i=1

(
‖vi‖2 + ‖wi‖2

) (30)

s. t. (2Di − In)Xvi ≥ ε‖vi‖1, (2Di − In)Xwi ≥ ε‖wi‖1, ∀i ∈ [P̂].

Solving the maximization over ∆ in closed form leads to the next result, with the proof
provided in Appendix C.8.

Theorem 8 The optimization problem (30) is equivalent to the convex program:

min
(vi,wi)P̂i=1,a,z

a+ β

P̂∑
i=1

(‖vi‖2 + ‖wi‖2) (31)

s. t. (2Di − In)Xvi ≥ ε‖vi‖1, (2Di − In)Xwi ≥ ε‖wi‖1, ∀i ∈ [P̂]

zk ≥
∣∣∣∣ P̂∑
i=1

Dikx
>
k (vi − wi)− yk

∣∣∣∣+ ε

∥∥∥∥ P̂∑
i=1

Dik(vi − wi)
∥∥∥∥

1

, ∀k ∈ [n]

zn+1 ≥
∣∣2a− 1

4

∣∣, ‖z‖2 ≤ 2a+ 1
4 .

Problem (31) is a convex optimization that can train robust neural networks. However,
directly using (31) for adversarial training can be intractable due to the large number of

24

Efficient Global Optimization of Two-layer ReLU Networks: Adversarial Training and Quadratic-time Algorithms

constraints that arise when we include all Di matrices associated with all ∆ such that
X + ∆ ∈ X . To this end, one can use the approximation in Algorithm 5 and sample a subset
of the diagonal matrices D1, . . . , DPs . As before, the optimality gap can be characterized
with Theorem 2.

5.6 Convex binary cross-entropy loss adversarial training

The binary cross-entropy loss is also widely used in binary classification. Here, we consider a
scalar-output ANN with a scaled tanh output layer for binary classification with y ∈ {0, 1}n.
The loss function `(·) in this case is `(ŷ, y) = −2ŷ>y + 1> log(e2ŷ + 1), with the detailed
derivation shown in Appendix 6.2.4.

The non-convex adversarial training formulation considering the `∞-bounded adversarial
data uncertainty X is then:

min
(uj ,αj)mj=1

(
max

‖∆‖max≤ε

1

n

n∑
k=1

(
− 2ŷkyk + log(e2ŷk + 1)

))
+
β

2

m∑
j=1

(
‖uj‖22 + α2

j

)
(32)

s. t. ŷ =

m∑
j=1

(
(X + ∆)uj

)
+
αj .

Applying Theorem 5 and Corollary 6 leads to the following optimization as an upper bound
on (32):

min
(vi,wi)P̂i=1

(
max

‖∆‖max≤ε

1

n

n∑
k=1

(
− 2ŷkyk + log(e2ŷk + 1)

))
+ β

P̂∑
i=1

(
‖vi‖2 + ‖wi‖2

)
s. t. (2Di − In)Xvi ≥ ε‖vi‖1, (2Di − In)Xwi ≥ ε‖wi‖1, ∀i ∈ [P̂],

ŷk =
P̂∑
i=1

dikx
>
k (vi − wi) +

P̂∑
i=1

dikδ
>
k (vi − wi).

(33)

Consider the formulation

min
(vi,wi)P̂i=1

1

n

(n∑
k=1

f ◦ gk
(
{vi, wi}P̂i=1

))
+ β

P̂∑
i=1

(
‖vi‖2 + ‖wi‖2

)
(34)

s. t. (2Di − In)Xvi ≥ ε‖vi‖1, (2Di − In)Xwi ≥ ε‖wi‖1, ∀i ∈ [P̂]

f(u) = log(e2u + 1),

gk
(
{vi, wi}P̂i=1

)
= (2yk − 1)

P̂∑
i=1

dikx
>
k (vi − wi) + ε ·

∥∥∥∥ P̂∑
i=1

dik(vi − wi)
∥∥∥∥

1

, ∀k ∈ [n].

The next theorem establishes the equivalence between (34) and (33). The proof is provided
in Appendix C.9.

25

Bai, Gautam, and Sojoudi

Theorem 9 The optimization (34) is a convex program that is equivalent to the bi-level
optimization (33), and can be used as a surrogate for (32) to train robust neural networks.

The worst-case perturbation is ∆?
BCE = −ε · sgn

(
(2y − 1)

∑P̂
i=1Di(vi − wi)>

)
.

Note that the worst-case perturbation occurs at the same location as for the hinge loss case,
which is a vertex in X . Thus, for the purpose of generating the D1, . . . , DP̂

matrices, we
again only need to enumerate all vertices of X instead of all points in X .

5.7 More complex ANN structures

While our discussions explicitly focus on one-hidden-layer scalar-output ReLU networks,
the derived training methods can be used for more sophisticated ANN architectures. As
discussed before, greedily training one-hidden-layer ANNs leads to a well-performing deep
network (Belilovsky et al., 2019). Leveraging recent works that reform the training of more
complex ANNs into convex programs (cite), our analysis can also extend to those ANNs
because most convex training formulations share similar structures. Specifically, the convex
training formulations rely on binary matrices to represent ReLU activation patterns and rely
on convex (and often linear) constraints to enforce the patterns, with different regularizations
revealing the sparse properties of different architectures. As an example, in Appendix B.1,
we extend our convex adversarial training analysis to various CNN formulations used in
(Ergen and Pilanci, 2021a). In Appendix B.2, we extend the SCP-based convex training
algorithm to vector-output networks. Coupling layer-wise training and SCP convex training
recovers multi-layer ELMs.

6. Numerical Experiments

6.1 Approximated convex standard training

In this subsection, we use numerical experiments to demonstrate the efficacy of practical
standard training (Algorithm 1) and to show the level of suboptimality of the neural network
trained using Algorithm 1.2 The experiment was performed on a randomly-generated dataset
with n = 40 and d = 2. The upper bound on the number of ReLU activation patterns is
4
(e(39)

2

)2
= 11239. We ran Algorithm 1 to train neural networks using the hinge loss with

the number of Dh matrices equal to 4, 8, 16, . . . , 2048 and compared the optimized loss. We
repeated this experiment 15 times for each setting, and plotted the loss in Figure 1.3 The
error bars show the loss values achieved in the best and the worst runs. When there are
more than 128 matrices (much less than the theoretical bound on P), Algorithm 1 yields

2. For all experiments in this paper, CVX (Grant and Boyd, 2014) and CVXPY (Agrawal et al., 2018;
Diamond and Boyd, 2016) with the MOSEK (ApS, 2019) solver was used for solving optimization on
a MacBook Pro laptop computer, unless otherwise stated. Off-the-shelf solvers supported by CVX
and CVXPY often treat the convex training problem as a general SOCP. Among all solvers that we
experimented on the convex training formulation, MOSEK is the most efficient.

3. To reliably sample Ps matrices, Pa ·S in Algorithm 5 was set to a large number (81920), and the sampling
was terminated when a sufficient number of Dh matrices was generated. The regularization strength β
was chosen as 10−4.

26

Efficient Global Optimization of Two-layer ReLU Networks: Adversarial Training and Quadratic-time Algorithms

4 8 16 32 64 128 256 512 1024 2048

Number of D Matrices

10
-1

10
-0.5

10
0

10
0.5

10
1

L
o
s
s

Figure 1: FIXITThe left figure is a randomized 2-dimensional dataset. The right figure
is the optimized training loss for each Ps. The red crosses are positive training points and
the white circles are negative training points. The region classified as positive is in blue,
whereas the negative region is in black. When Ps reaches 128, the mean and variance of the
optimized loss become very small.

consistent and favorable results. Further increasing the number of D matrices does not
produce a significantly lower loss. By Theorem 2, Ps = 128 corresponds to ψξ = 0.318.

6.2 The ADMM convex training algorithm

In this section, we present the experiment results of the ADMM training algorithm (Algorithm
2). For the best efficiency, throughout this section, we use Algorithm 2 to solve the
approximate convex training formulation (5) with the sampled Dh matrices.

6.2.1 Squared loss (closed form u updates) – convergence

For the case of the squared loss, the closed-form solution (12) is used for the u updates.
We first demonstrate the convergence of the proposed ADMM algorithm using contrived
random data with dimensions n = 6, d = 5, Ps = 8. CVX (Grant and Boyd, 2014) with the
IPM-based MOSEK solver (ApS, 2019) was used to solve the optimal objective of (2) as the
ground truth.

Figure 2 demonstrates the behavior of the ADMM algorithm when it converge to the global
optimum of (2). Before discussing the results, we first explain the notations used in this
figure. The CVX optimal objective is denoted as l?CVX. Similarly, we use l?ADMM to denote
the objective that ADMM converges to as the number of iterations k goes to infinity. Note
that there are several methods to calculate the training cost obtained by ADMM. For
fair comparisons among ADMM, CVX, and back-propagation, we use (4) to recover the
neural network weights (uj , αj)

m
j=1 from the ADMM optimization variables (vkh, w

k
h)Psh=1,

and use (uj , αj)
m
j=1 to calculate the true non-convex training loss (1). The loss at each

27

Bai, Gautam, and Sojoudi

0 100000 200000 300000
10−19

10−16

10−13

10−10

10−7

10−4

10−1
lu,αADMM− l *ADMM

0 100000 200000 300000

010−11
10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3

lu,αADMM− l *CVX

0 100000 200000 300000
10−19

10−17

10−15

10−13

10−11

10−9

10−7
|lu,αADMM− lv,wADMM|

Figure 2: Gap between the cost returned by ADMM at each iteration and the true optimal
cost for five independent runs.
Left: lu,αADMM − l?ADMM; middle: lu,αADMM − l?CVX; right:

∣∣lu,αADMM − l
v,w
ADMM

∣∣. FIXIT

iteration calculated via this method is denoted as lu,αADMM. The ADMM solution l?ADMM

is also calculated via this method. Throughout the optimization process, we also directly
calculate the convex objective of (2) using (vkh, w

k
h)Psh=1. The loss at each iteration calculated

via this method is denoted as lv,wADMM. When the constraints of (2) are satisfied, it holds that
lu,αADMM = lv,wADMM. When some of the constraints are violated, then lu,αADMM may be different
from lv,wADMM. Since ADMM uses dual variables to enforce the constraints, the sequence of
optimization variables generated by Algorithm 2 may not always satisfy the constraints
(the ADMM solution is feasible, but the intermediate iterations may not be feasible). For
this reason, the gap between lu,αADMM and lv,wADMM indirectly characterizes the feasibility of

the ADMM intermediate solutions. When this gap is small, (vkh, w
k
h)Psh=1 should be almost

feasible. When this gap is large, the constraints may have been severely violated.

FIXITThe left plot of Figure 2 shows that the ADMM training loss converges to a stationary
value at a linear rate, verifying the findings of Theorem 3. FIXITThe middle plot shows
that ADMM converges towards the CVX ground truth, verifying the correctness of the
ADMM solution. Note that l?ADMM is often slightly (on the order of 10−12) lower than
l?CVX. This discrepancy between the two solutions is likely due to the inherent inaccuracy
of the interior point method used by CVX: the IPM reforms the constraints as log barrier
functions, resulting in strictly feasible (overly conservative) trajectories and objectives that
are slightly higher than the true optimal. We observe that relaxing the accuracy setting
of CVX increases this optimality gap, confirming this reasoning. FIXITThe right plot of
Figure 2 shows that lv,wADMM and lu,αADMM are close throughout the ADMM iterations, implying
that vi and wi violate the constraints of (2) insignificantly at every step. Together, these
figures confirm that the ADMM algorithm optimizes (1) effectively as designed.

While it can take about FIXIT3×105 iterations for ADMM to converge to machine precision,
an approximate solution is usually sufficient for ANN training. As shown in Figure 3, which
is a zoomed-in version of Figure 2, an accuracy of 10−3 can be achieved within 25 iterations.
Moreover, FIXITthe right figure shows that the solution after 25 iterations violates the
constraints insignificantly. This behavior of “converging rapidly in the first several steps and

28

Efficient Global Optimization of Two-layer ReLU Networks: Adversarial Training and Quadratic-time Algorithms

0 5 10 15 20 25
10−4

10−3

10−2

10−1

100

lu,α
ADMM − l *

ADMM, 25 steps

0 5 10 15 20 25
10−4

10−3

10−2

10−1

100

lu,α
ADMM − l *

CVX, 25 steps

0 5 10 15 20 25
10−10

10−8

10−6

10−4

10−2

100

|lu,α
ADMM − lv,w

ADMM|, 25 steps

Figure 3: Gap between the cost returned by ADMM for the first 25 iterations and the
true optimal cost for the five independent runs. FIXITLeft: lu,αADMM − l?ADMM; middle:
lu,αADMM − l?CVX; right:

∣∣lu,αADMM − l
v,w
ADMM

∣∣.

0 50 100 150 200
−0.08

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

0.08

0 1 2 3 4 5
−0.08

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

0.08

0 50 100 150 200
0

10

20

30

40

50

60

70

80

Figure 4: FIXITLeft: AccuracyADMM−AccuracyCVX (positive means the ADMM solution
outperforms the CVX solution); middle: zoomed in to the first five iterations; right:
lu,αADMM − l?CVX. Ten independent runs are shown.

slowing down (to a linear rate) afterward” is typical for the ADMM algorithm. As will be
shown next, a medium-accuracy solution returned by only running a few ADMM iterations
can achieve a better prediction performance than the CVX solution.

To visualize how the prediction performance achieved by the model changes as the ADMM
iteration progresses, we ran the ADMM iterations on the “mammographic masses” dataset
from the UCI Machine Learning Repository (Dua and Graff, 2017), and recorded the
prediction accuracy on the test set at each iteration. The exact global optimum of (2) was
found via CVX as a baseline. 70% of the dataset was randomly selected as the training
set, and the other 30% was used as the test set. Figure 4 plots the difference between the
ADMM accuracies and the CVX accuracies at each iteration. Note that all vi and wi are
initialized to be zero, and therefore the initial accuracy at the zeroth iteration is zero.

All ten runs achieved superior test accuracies throughout the first 200 iterations compared
with the CVX baseline, and even the first five iterations outperformed the baseline, with the
best run outperforming the baseline by 6%. After about 80 iterations, the accuracies stabilize

29

Bai, Gautam, and Sojoudi

0 2000 4000 6000 8000 10000 12000
0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

CVX Accuracy
ADMM Accuracy

0 2000 4000 6000 8000 10000 12000
0

5

10

15

20

CVX Time (s)
ADMM Time (s)

Figure 5: FIXITLeft: average test accuracy for each n; right: average CPU time for each n.

at around 2% to 4% better than the CVX baseline. On the other hand, the optimality
gap between the ADMM solution after 20 iterations and the global optimum is around 30.
Specifically, the average true optimal objective over the ten runs is 96.63, and the average
ADMM objective is 125.0. In conclusion, the prediction performance of the classifiers trained
by ADMM is superior even when only a few iterations are run, and an approximate solution
with a slightly higher training cost may perform better.

6.2.2 Squared loss (closed form u updates) – complexity

To demonstrate the computational complexity of the proposed ADMM method, we used
the ADMM method to train ANNs on a downsampled version of the MNIST handwritten
digits database with d = 100. The task was to perform binary classification between digits
“2” and “8”. We first fixed Ps = 8 and varied n from 100 to 11809, the total number of 2’s
and 8’s in the training set. The experiment was independently repeated five times for each
n setting, and the results were averaged and shown in Figure 5. ADMM is allowed to run
six iterations for each run. For all choices of n except n = 100, the networks trained with
ADMM attained higher accuracies than those trained with CVX. More importantly, the
CPU time required for CVX grows much faster than ADMM’s execution time as n increases,
verifying that the ADMM execution time increases linearly over n.

Similarly, we fixed n = 1000 and varied Ps from 4 to 50. The averaged results are shown in
Figure 6. Once again, the proposed ADMM algorithm achieved a higher accuracy for each
Ps, and the average CPU time required for ADMM grows much slower than the CVX CPU
time. Figure 6 also shows that the CPU time scales quadratically with Ps, which supports
our claim of an O(nPs + d2P 2

s) overall per-iteration complexity.

6.2.3 Squared loss (closed form u updates) – MNIST prediction

Finally, we demonstrate the effectiveness of the proposed ADMM algorithm on the full
MNIST dataset (still for binary classification, but “full” in the sense of including all images

30

Efficient Global Optimization of Two-layer ReLU Networks: Adversarial Training and Quadratic-time Algorithms

10 20 30 40 50

0.65

0.70

0.75

0.80

0.85

0.90

0.95

CVX Accuracy
ADMM Accuracy

10 20 30 40 50
0

10

20

30

40

50
CVX Time (s)
ADMM Time (s)

Figure 6: Left: average test accuracy for each Ps; right: average CPU time for each Ps.

Method Accuracy CPU Time (s) Training Cost Global Convergence

Back-propagation 98.86 % 74.09 422.4 No
CVX 70.99 % 14879 1.146 Yes
ADMM 98.90 % 802.2 223.2 Yes

Table 2: Average test accuracy, training cost, and CPU time achieved with the squared loss
on the MNIST dataset over five independent runs.

of “2” and “8” and not downsampling), with n = 11809 and d = 784. The parameter Ps was
chosen to be 24, corresponding to a network width of at most 48, the regularization strength
β was chosen as 0.001, and the ADMM step size γa was chosen as 0.1. The ADMM method
was allowed to run ten iterations. The prediction accuracy on the test set, the returned
training cost, and the CPU time are shown in Table 2. The “CVX” method corresponds
to using CVX to globally optimize the ANN by directly solving (2). This method globally
optimizes the neural network and is thus considered the baseline. The solution returned
by CVX is regarded as the true global optimum. “Back-propagation” is the conventional
method that performs a local search on the non-convex cost function (1).

As Table 2 shows, the ADMM algorithm achieved a higher test accuracy than both CVX and
back-propagation. While ADMM and CVX solve the same problem and the CVX solution
achieves a lower loss, the CVX solution suffers from overfitting and cannot generalize well
to the test data as a result. The training cost returned by ADMM is higher than the true
optimal cost but lower than the back-propagation solution. The training time of ADMM is
considerably shorter than the time required by CVX. Specifically, assembling the matrix
I + 1

γa
F>F + G>G required 22% of the time, and the Cholesky decomposition needed

34% of the time, while each ADMM iteration only took 4.4% of the time. Thus, running
more ADMM iterations will not considerably increase the training time. If allowed more
iterations, the ADMM algorithm will converge to the global optimum of (2). In contrast,
back-propagation does not have this guarantee due to the non-convexity of (1). Moreover,
back-propagation is very sensitive to the initializations and hyperparameters and may fail in

31

Bai, Gautam, and Sojoudi

Method Accuracy CPU Time (s) Training Cost Global Convergence

Back-propagation 98.91 % 62.06 437.6 No
CVX 98.21 % 14217 1.007 Yes
ADMM-RBCD 98.89 % 555.8 310.3 Yes

Table 3: Average test accuracy, training cost, and CPU time achieved with the binary
cross-entropy loss on the MNIST dataset over five independent runs.

some instances. While ADMM also requires a pre-specified step size γa, it is much more
stable: its convergence to a primal optimum does not depend on the step size (Boyd et al.,
2011, Appendix A). An optimal step size speeds up the training, but a suboptimal step size
is also acceptable.

6.2.4 Binary cross-entropy loss (iterative u updates) – MNIST prediction

To verify the efficacy and efficiency of using the RBCD method to numerically solve (9a),
we similarly experimented on the MNIST handwritten digits dataset with the binary cross-
entropy loss. For this experiment, a tanh output activation is coupled with the binary
cross-entropy loss:

`(p, y) =
n∑
k=1

−yk log(pk)− (1− yk) log(1− pk), yk ∈ {1, 0},

pk =
1

2

(
tanh(ŷk) + 1

)
=

1

2

(e2ŷk − 1

e2ŷk + 1
+ 1
)

=
1

1 + e−2ŷk
, ŷk =

m∑
j=1

(x>k uj)+αj , ∀k ∈ [n].

where the subscript k specifies the kth entry of a vector.

Substituting each pk into `(·) and expanding the hyperbolic tangent function yields:

`(ŷ, y) = −2ŷ>y + 1> log(e2ŷ + 1), (35)

which is a convex loss function with the gradient given by:

∇ŷ`(ŷ, y) = −2y +
2

1 + e−2ŷ
,

where the operations in the second term are performed element-wise to each entry of ŷ.

Since the RBCD subroutine finds an approximate solution to the subproblem (9a), the
ADMM outer loop was allowed to run more iterations (34 iterations) with a smaller step size
(γa = 0.01) to compensate. The regularization parameter β was chosen to be .001. Since the
value of the full augmented Lagrangian gradient in the stopping condition of Algorithm 3 is
difficult to obtain, we use the amount of objective improvement as a surrogate. In other
words, the RBCD iterations terminate when the objective of (9a) decreases slow enough.
Other experiment settings were the same as the squared loss experiment discussed in Section
6.2.3.

32

Efficient Global Optimization of Two-layer ReLU Networks: Adversarial Training and Quadratic-time Algorithms

The experiment results with the binary cross-entropy loss are shown in Table 3. The
ADMM-RBCD algorithm achieved a high test accuracy while requiring a training time 94.6%
shorter than the time of globally optimizing the cost function (2) with CVX. The ADMM-
RBCD method requires less time to reach a comparable accuracy than the closed-form
ADMM method with the squared loss. On the other hand, ADMM-RBCD is still slower
than traditional back-propagation, trading the training speed for the global convergence
guarantee. The extremely slow pace of CVX training hindered the application of convex
training to even medium-scaled problems. The ADMM-RBCD algorithm has made convex
training much more practical by providing a balance between efficiency and optimality.

6.2.5 Choosing the ADMM step size γa

The proposed ADMM algorithm has a hyperparameter γa, which is the step size. In fact, γa
controls the level of infeasibility of v and w. Note that while ADMM guarantees to converge
to an optimal feasible solution, the optimization variables may be infeasible in intermediate
steps. The feasibility of vi and wi to (2) is emphasized when γa is large, while a low objective
value is emphasized when γa is small. For the purpose of finding optimal uj and αj that
minimize (1), a balance between feasibility and low objective is required. In practice, if there
exists a significant gap between the objective of (2) and the training cost (1), then γa needs
to be increased. If the objective of (2) struggles to reduce, then γa needs to be decreased.

6.3 The SCP convex training formulation

In this subsection, we demonstrate the efficacy of the SCP relaxed training using the one-shot
random sampling approach to choose u1, . . . , uN and explore the effect of the number of
sampled weights N . We independently sampled different numbers of hidden-layer-weights
and used the SCP training formulation (14) to train ANNs on the “mammographic masses”
dataset (Dua and Graff, 2017). We removed instances containing NaNs and randomly
selected 70% of the data for the training set and 30% for the test set, resulting in n = 581
and d = 5. We used two different regularization strengths: β = 10−4 and β = 10−2. The
training cost and the test accuracy of each N setting are plotted in Figure 7. The neural
network training process is stochastic due to the randomly generated hidden-layer weights
uj and the random splitting of training and test sets. To reduce the effect of randomness,
we performed 20 independent trials for each N . Since the problem scale is small, we used
CVXPY (Diamond and Boyd, 2016) and the MOSEK solver (ApS, 2019) to solve the
underlying optimization problem (14).

For both regularization strength settings, adding more sampled hidden layer weights decreased
the training cost. This phenomenon is expected since more sampled weights make the SCP
approximation more refined. When the regularization strength β is 10−4, the test accuracy
increases, peaks, and then decreases as N increases. The accuracy drops when N is large,
possibly because of overfitting. As a comparison, training ANNs using Algorithm 1 with Ps
set to 120 achieved an average accuracy of 79.80% and an average training loss of 0.2428
on the same dataset. Directly optimizing the non-convex cost function (1) using gradient
descent back-propagation with the width m set to 2Ps = 240 achieved a 81.14% average

33

Bai, Gautam, and Sojoudi

β=1e-4 β=1e-2

Figure 7: FIXITAverage accuracy and average cost with different choices of N for two
different selections of the regularization strength β.

test accuracy and a 0.3560 average cost. So, with a proper choice of N , the prediction
performance of the SCP convex training approach is on par with Algorithm 1 and traditional
back-propagation SGD. When the regularization strength β is 10−2, the test accuracy of the
ANNs trained with the SCP method generally increases with N .

To verify the performance of the proposed training approach on larger-scale data, we used the
SCP method to train ANNs on the MNIST handwritten digits database (LeCun et al., 2010)
for binary classification between digits “2” and “8” using the binary cross-entropy loss, where
d = 784 and n = 11809. With the number of sampled weights N set to 39365 (corresponding
to an optimality level of ξψ = 0.3), the SCP formulation (14) was able to achieve an accuracy
of 99.45%. Since the dimension of the MNIST dataset is much larger than the dimension of
the previous mammographic masses dataset, the interior point method used by CVX became
extremely slow. Therefore, in this experiment, we solved the SCP training optimization
(14) using the ISTA algorithm, a first-order method. Compared with the ADMM approach
discussed in Section 3, we were able to train much wider ANNs using the SCP approach using
a similar amount of computational power. Specifically, Ps was chosen to be 24 in the ADMM
experiments, corresponding to a network width of m ≤ 2Ps = 48, whereas m = N = 39365
in the SCP experiment. In summary, this result demonstrates the performance and efficiency
advantage of the SCP formulation (14) for medium or large machine learning problems.

6.4 Convex adversarial training

6.4.1 Hinge loss convex adversarial training – 2D illustration

To analyze the decision boundaries obtained from convex adversarial training, we ran
Algorithm 1 and Algorithm 5 on 34 random points in 2-dimensional space for binary
classification. The algorithms were run with the parameters β = 10−9, Ps = 360 and
ε = 0.08. A bias term was included by concatenating a column of ones to the data matrix X.

34

Efficient Global Optimization of Two-layer ReLU Networks: Adversarial Training and Quadratic-time Algorithms

Standard Training (Alg 1) Adversarial Training (Alg 2)

Figure 8: Visualization of the binary decision boundaries in a 2-dimensional space. The
red crosses are positive training points while the red circles are negative points. The region
classified as positive is in blue, whereas the negative region is in black. The white box
around each training data is the `∞ perturbation bound. The white dot at a vertex of each
box is the worst-case perturbation. Algorithm 5 fitted the perturbation boxes, while the
standard training fitted the points.

The decision boundaries shown in Figure 8 confirm that Algorithm 5 fits the perturbation
boxes as designed, coinciding with the theoretical prediction (Madry et al., 2018, Figure 3).

The decision boundaries obtained from various methods with different regularization strengths
are shown in Figure 9. The two standard training methods (Algorithm 1 and GD-std) learned
decision boundaries that separated the training points but failed to separate the perturbation
boxes. Note that Algorithm 1 learned slightly more sophisticated boundaries while GD-std
learned near-linear boundaries that were very close to one of the positive training points ×.

The convex adversarial training method given by Algorithm 5 learned boundaries that
separated all perturbation boxes when β was 10−3, 10−6, or 10−9. This behavior matches the
theoretical illustration of adversarial training (Madry et al., 2018, Figure 3), and verifies that
Algorithm 5 works as intended. When the regularization is too strong (β = 10−2), the robust
boundary becomes smoothed out and very similar to the standard training boundaries. The
traditional adversarial training method GD-PGD learned boundaries that separated most
perturbation boxes. However, the boundaries cut through the box at around (1,−1) when β
is 10−3, 10−6, or 10−9. This behavior is likely caused by GD-PGD’s worse convergence due
to the non-convexity. When β is too large, the GD-PGD boundary also becomes smoothed
out.

6.4.2 Hinge loss convex adversarial training – the optimization landscape

This subsection shows that the convex landscape and the non-convex landscape overlap for
an `∞ norm bounded perturbation δ added upon a training point xk, and thereby verify that
the convex objective (21a) provides an exact certification of the non-convex loss function.

The visualizations are based on the 2-dimensional experiment described in Section 6.4.1.
We use Algorithm 5 to train a robust neural network on the 2-dimensional dataset with

35

Bai, Gautam, and Sojoudi

Figure 9: Decision boundaries obtained from various methods with β set to 10−9, 10−6,
10−3, and 10−2.

36

Efficient Global Optimization of Two-layer ReLU Networks: Adversarial Training and Quadratic-time Algorithms

Figure 10: FIXITLeft: the loss landscape of the convex objective `convex for ‖δ‖∞ ≤ 0.3;
right: the loss landscape of the non-convex objective `nonconvex for ‖δ‖∞ ≤ 0.3.

ε = 0.08, Ps = 360, and β = 10−9. We then randomly select one of the training points xk
and plot the loss around xk for the convex objective (21a) and the non-convex objective
(18). Specifically, for ‖δ‖∞ ≤ 0.3, we plot

`convex =
(

1−yk ·
P∑
i=1

dik(xk+δ)>(v?i −w?i)
)

and `nonconvex =
(

1−yk ·
m∑
j=1

(
(xk+δ)>u?j

)
+
α?j

)
,

where dik is the kth entry of Di, yk is the training label corresponding to xk. Moreover,
v?i , w

?
i are the optimizers returned by Algorithm 5 and u?j and α?j are the neural network

weights recovered from v?i and w?i with (4). The plots are shown in Figure 10.

For a clearer visualization, we plot `convex − `nonconvex in Figure 11, and zoom in to the
`∞ norm ball with radius ε = 0.08. When `convex − `nonconvex is zero, the convex objective
provides an exact certificate for the non-convex loss function. FIXITThe right figure shows
that for ‖δ‖∞ ≤ 0.08, the difference is zero, supporting the finding that for neural networks
trained with Algorithm 5, the convex objective offers an exact certificate around the training
points.

6.4.3 Hinge loss convex adversarial training – image classification

We now verify the real-world performance of the proposed convex training methods on a subset
of the CIFAR-10 image classification dataset (Krizhevsky, 2012) for binary classification
between the second class and the eighth class. The subset consists of 600 images downsampled
to d = 147. The parameters are ε = 10, β = 10−4, and Ps = 36, corresponding to neural
network widths of at most 72. We used the FGSM and PGD methods to generate adversarial
examples and used both clean data and adversarial data to compare the performances
of Algorithm 1, Algorithm 5, the traditional standard training method (standard back-
propagation; abbreviated as GD-std in the tables), and the widely-used adversarial training
method: use FGSM or PGD to solve for the inner maximum of (25) and use gradient descent

37

Bai, Gautam, and Sojoudi

Figure 11: `convex − `nonconvex for ‖δ‖∞ ≤ 0.3 (left) and zoomed in to ‖δ‖∞ ≤ 0.08 (right).

Table 4: Average optimal objective and accuracy on clean and adversarial data over seven
runs on the CIFAR-10 database. The numbers in the parentheses are the standard deviations
over the seven runs.

Method Clean FGSM adv. PGD adv. Objective

GD-std 79.56% (.4138%) 47.09% (.4290%) 45.60% (.4796%) .3146 (.01101)

GD-FGSM 75.30% (3.104%) 61.03% (4.763%) 60.99% (4.769%) .8370 (6.681× 10−2)

GD-PGD 76.56% (.6038%) 62.48% (.2215%) 62.44% (.1988%) .8220 (3.933× 10−3)

Algorithm 1 81.01% (.8090%) .4857% (.1842%) .3571% (.1239%) 6.910× 10−3 (3.020× 10−4)

Algorithm 5 78.36% (.3250%) 66.95% (.4564%) 66.81% (0.4862%) .6511 (6.903× 10−3)

back-propagation to solve the outer minimization (abbreviated as GD-FGSM and GD-PGD
in the tables).

Hinge loss has a flat part that has a zero gradient. To generate adversarial examples even in
this part, we treat it as “leaky hinge loss” via the model max(ζ(1− ŷ · y), 1− ŷ · y), where
ζ → 0+. Hence, the FGSM calculation (19) evaluates to

x̃ = x− ε · sgn
(
y ·
∑

j: x>uj≥0

(
ujαj

))
.

Similarly, the PGD method (20) evaluates to

x̃t+1 = ΠX

(
x̃t − γp · sgn

(
y ·
∑

j: x>uj≥0(ujαj)
))
, x̃0 = x.

where the projection step can be performed by clipping the coordinates that deviate more
than ε from x. In the following experiments, we use γp = ε/30 and run PGD for 40 steps.

The results on the CIFAR-10 subset are provided in Table 4. Convex standard training
(Algorithm 1) achieved a slightly higher clean accuracy compared with GD-std and returned
a much lower training cost. Such a behavior supports the findings of Theorem 2. The

38

Efficient Global Optimization of Two-layer ReLU Networks: Adversarial Training and Quadratic-time Algorithms

convex adversarial training algorithm (Algorithm 5) achieved better accuracies on clean data
and adversarial data compared with GD-FGSM and GD-PGD. While Algorithm 5 solves
the upper-bound problem (27), it returned a lower training objective compared with GD-
FGSM and GD-PGD, showing that the back-propagation methods failed to find an optimal
network. Moreover, the back-propagation methods are very sensitive to initializations and
hyperparameter choices. In contrast, since Algorithm 1 and Algorithm 5 solve convex
programs, they are much less sensitive to initializations and are guaranteed to converge to
their global optima.

We also experimentally compare the aforementioned SDP relaxation adversarial training
method (Raghunathan et al., 2018) and the LP relaxation method (Wong and Kolter, 2018)
against our work on the CIFAR-10 subset. We observe that an iteration of the LP or the
SDP method is faster than a GD-PGD iteration. However, the ANNs trained with the LP
or SDP method achieve worse accuracies and robustness than those trained with Algorithm
5: the LP method achieves a 74.05% clean accuracy and a 58.65% PGD accuracy, whereas
the SDP method achieves 73.35% on clean data and 40.45% on PGD adversaries. For SDP,
the robustness parameter is chosen as λ = .04, and larger λ causes the algorithm to fail.
These results support the speculation that Algorithm 5 trains more robust ANNs and that
the LP and SDP relaxations can be extremely loose. The LP and SDP formulations are also
significantly less stable than Algorithm 5, and training often fails. As discussed before, while
(Raghunathan et al., 2018; Wong and Kolter, 2018) applies the convex relaxation method to
the adversarial training problem, their resulted training formulations are non-convex.

Furthermore, the presence of an `1 norm term in the upper-bound formulations (27) and (31)
indicates that adversarial training with a small ε has a regularizing effect, which can improve
generalization, supporting the finding of (Kurakin et al., 2017). In the above experiments,
Algorithm 5 outperforms Algorithm 1 on adversarial data, highlighting the contribution
of Algorithm 5: a novel efficient convex adversarial training procedure that reliably trains
robust neural networks. Compared with Algorithm 1, Algorithm 5 retains the advantage in
the absence of spurious local minima while achieving adversarial robustness.

6.4.4 Squared loss convex adversarial training

The performance of the proposed robust optimization problem (31) is compared with the
standard training problem (2) on a contrived 1-dimensional dataset. Figure 12 shows the
true relationship between the data vector X and the target output y. Throughout this
experiment, training data are constructed by uniformly sampling eight points from this
distribution, and test data are similarly constructed by uniformly sampling 100 points. A
bias term is included by concatenating a column of ones to X.

The training and test procedure are repeated for 100 trials with convex standard training
(Algorithm 1). For convex adversarial training (Algorithm 5), we varied the perturbation
radius ε = 0.1, . . . , 0.9. The training and test procedure was carried out for ten trials for
each ε. Figure 13 reports the average test mean square error (MSE) for each setup.

The adversarial training procedure outperforms standard training for all ε choices. We
further observe that the average MSE is the lowest at ε ≈ 0.3. This behavior arises as the

39

Bai, Gautam, and Sojoudi

0 0.5 1 1.5 2 2.5 3 3.5 4

x

1

1.5

2

2.5

3

3.5

4

y

Illustrative Example: True Distribution

Figure 12: The true relationship between
the data x and the targets y used in the
illustrative example in Section 6.4.4. The
training (n = 8 points) and test (n = 100
points) sets are uniformly sampled from the
distribution.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

 Value

0

0.2

0.4

0.6

0.8

1

A
v
e
ra

g
e
 M

S
E

 o
n
 T

e
s
t
S

e
t

Nominal v Adversarial Training applied to Illustrative Example

Robust Training

Nominal Training

Figure 13: The robust training approach (31)
outperforms the standard approach for differ-
ent ε ∈ {0.1, ..., 0.9} on the dataset studied in
Section 6.4.4.

robust problem attempts to account for all points within the uncertainty interval around the
sampled training points. When ε is too small, the robust problem approaches the standard
training problem. Larger values of ε cause the uncertainty interval to overestimate the
constant regions of the true distribution, increasing the MSE.

7. Concluding Remarks

We used the sampled convex program theory to characterize the quality of the solution
obtained from an approximation heuristic, providing theoretical insights into practical convex
training. We then showed that a separating scheme enables the application of the ADMM
algorithm to the convex training formulation, achieving a quadratic per-iteration compu-
tational complexity and a linear convergence rate when combined with the approximation
scheme. We also introduced a simpler convex training formulation based on SCP relaxation
and characterized its solution quality. This simpler formulation solves more efficient uncon-
strained convex programs, and show that ELMs are in fact convex relaxations to ANNs.
Compared to the traditional back-propagation algorithms, our proposed training algorithms
have theoretical convergence rate guarantees. Compared with naively solving the convex
training formulation using general-purpose solvers, the improved computational complexities
of our algorithms make a significant step towards convex training in practice.

We also used the robust convex optimization analysis to derive convex programs that
train adversarially robust ANNs. Compared with traditional adversarial training methods,
including GD-FGSM and GD-PGD, the favorable properties of convex optimization endow
convex adversarial training with the following advantages:

• Global convergence to an upper-bound: For the case of hinge loss and squared
loss, convex adversarial training provably converges to an upper-bound to the global
optimum cost, offering superior interpretability.

40

Efficient Global Optimization of Two-layer ReLU Networks: Adversarial Training and Quadratic-time Algorithms

• Guaranteed adversarial robustness on training data: As shown in Theorem 7,
the inner maximization over the robust loss function is solved exactly.

• Hyperparameter-free: In practice, Algorithm 5 can automatically determine its step
size with line search, not requiring any preset parameters.

• Immune to vanishing / exploding gradients: The convex training method avoids
this problem completely because it does not rely on back-propagation.

Overall, the analysis of this work makes it easier and more efficient to train interpretable
and robust ANNs with global convergence guarantees, potentially facilitating the application
of ANNs in safety-critical applications.

References

Akshay Agrawal, Robin Verschueren, Steven Diamond, and Stephen Boyd. A rewriting
system for convex optimization problems. Journal of Control and Decision, 5(1), 2018.

Brendon G. Anderson, Ziye Ma, Jingqi Li, and Somayeh Sojoudi. Tightened convex
relaxations for neural network robustness certification. In 59th IEEE Conference on
Decision and Control, 2020.

MOSEK ApS. The MOSEK optimization toolbox for MATLAB manual. Version 9.0, 2019.

Raman Arora, Amitabh Basu, Poorya Mianjy, and Anirbit Mukherjee. Understanding
deep neural networks with rectified linear units. In International Conference on Learning
Representations, 2018.

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense
of security: Circumventing defenses to adversarial examples. In Proceedings of the 35th
International Conference on Machine Learning, 2018.

Francis Bach. Breaking the curse of dimensionality with convex neural networks. Journal of
Machine Learning Research, 18(19), 2017.

Yatong Bai, Tanmay Gautam, Yu Gai, and Somayeh Sojoudi. Practical convex formulation
of robust one-hidden-layer neural network training. CoRR, 2021.

A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM Journal on Imaging Sciences, 2, 2009.

Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Greedy layerwise learning
can scale to ImageNet. In Proceedings of the 36th International Conference on Machine
Learning, 2019.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-wise
training of deep networks. In Proceedings of the Twentieth Annual Conference on Neural
Information Processing Systems, 2006a.

41

Bai, Gautam, and Sojoudi

Yoshua Bengio, Nicolas Roux, Pascal Vincent, Olivier Delalleau, and Patrice Marcotte. In
Advances in Neural Information Processing Systems, 2006b.

Yoshua Bengio, Nicolas Roux, Pascal Vincent, Olivier Delalleau, and Patrice Marcotte.
Convex neural networks. In Advances in Neural Information Processing Systems, 2006c.

Avrim Blum, Travis Dick, Naren Manoj, and Hongyang Zhang. Random smoothing might
be unable to certify `∞ robustness for high-dimensional images. Journal of Machine
Learning Research, 21(211), 2020.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press,
2004.

Stephen P. Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed
optimization and statistical learning via the alternating direction method of multipliers.
Foundations and Trends in Machine Learning, 3(1), 2011.

Alon Brutzkus and Amir Globerson. Globally optimal gradient descent for a convnet with
gaussian inputs. In Proceedings of the 34th International Conference on Machine Learning,
ICML, 2017.

Giuseppe Calafiore and M. C. Campi. Uncertain convex programs: randomized solutions
and confidence levels. Mathematical Programming, 102(1), 2005.

Marco C. Campi, Simone Garatti, and Maria Prandini. The scenario approach for systems
and control design. Annual Reviews in Control, 33(2), 2009.

Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness via
randomized smoothing. In Proceedings of the 36th International Conference on Machine
Learning, 2019.

Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling language for
convex optimization. Journal of Machine Learning Research, 17(83), 2016.

Simon S. Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably
optimizes over-parameterized neural networks. In International Conference on Learning
Representations, 2019.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

Jonathan Eckstein and Wang Yao. Approximate ADMM algorithms derived from lagrangian
splitting. Computational Optimization and Applications, 68(2), 2017.

Tolga Ergen and Mert Pilanci. Implicit convex regularizers of {cnn} architectures: Convex
optimization of two- and three-layer networks in polynomial time. In International
Conference on Learning Representations, 2021a.

Tolga Ergen and Mert Pilanci. Global optimality beyond two layers: Training deep relu
networks via convex programs. In Proceedings of the 38th International Conference on
Machine Learning, 2021b.

42

Efficient Global Optimization of Two-layer ReLU Networks: Adversarial Training and Quadratic-time Algorithms

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. In 3rd International Conference on Learning Representations, 2015.

Michael Grant and Stephen Boyd. CVX: Matlab software for disciplined convex programming,
version 2.1, March 2014.

Magnus R. Hestenes. Multiplier and gradient methods. Journal of Optimization Theory and
Applications, 4(5), 1969.

Mingyi Hong and Zhi-Quan Luo. On the linear convergence of the alternating direction
method of multipliers. Mathematical Programming, 162(1-2), 2017.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural
Networks, 4(2), 1991.

Ruitong Huang, Bing Xu, Dale Schuurmans, and Csaba Szepesvári. Learning with a strong
adversary. CoRR, 2015.

Sandy H. Huang, Nicolas Papernot, Ian J. Goodfellow, Yan Duan, and Pieter Abbeel.
Adversarial attacks on neural network policies. In 5th International Conference on
Learning Representations, 2017.

Mahesh Jangid and Sumit Srivastava. Handwritten devanagari character recognition using
layer-wise training of deep convolutional neural networks and adaptive gradient methods.
Journal of Imaging, 4(2), 2018.

Alex Krizhevsky. Learning multiple layers of features from tiny images. University of
Toronto, 05 2012.

Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial machine learning at scale.
In 5th International Conference on Learning Representations, 2017.

Jonathan Lacotte and Mert Pilanci. All local minima are global for two-layer relu neural
networks: The hidden convex optimization landscape. CoRR, 2020.

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs
[Online], 2, 2010.

Zhaosong Lu and Lin Xiao. On the complexity analysis of randomized block-coordinate
descent methods. Mathematical Programming, 152(1-2), 2015.

Ziye Ma and Somayeh Sojoudi. Strengthened SDP verification of neural network robustness
via non-convex cuts. CoRR, 2020.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian
Vladu. Towards deep learning models resistant to adversarial attacks. In International
Conference on Learning Representations, 2018.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: A simple
and accurate method to fool deep neural networks. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition, 2016.

43

Bai, Gautam, and Sojoudi

Mert Pilanci and Tolga Ergen. Neural networks are convex regularizers: Exact polynomial-
time convex optimization formulations for two-layer networks. In Proceedings of the 37th
International Conference on Machine Learning, 2020.

Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Certified defenses against adversarial
examples. In International Conference on Learning Representations, 2018.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations
by back-propagating errors. Nature, 323(6088), 1986.

Arda Sahiner, Tolga Ergen, John M. Pauly, and Mert Pilanci. Vector-output re{lu} neural
network problems are copositive programs: Convex analysis of two layer networks and
polynomial-time algorithms. In International Conference on Learning Representations,
2021.

Maurice Sion. On general minimax theorems. Pacific Journal of Mathematics, 8(1), 1958.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J.
Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In 2nd International
Conference on Learning Representations, 2014.

Gavin Taylor, Ryan Burmeister, Zheng Xu, Bharat Singh, Ankit Patel, and Tom Goldstein.
Training neural networks without gradients: A scalable admm approach. In Proceedings
of The 33rd International Conference on Machine Learning, 2016.

Luca Venturi, Afonso S. Bandeira, and Joan Bruna. Spurious valleys in one-hidden-layer
neural network optimization landscapes. Journal of Machine Learning Research, 20(133),
2019.

Junxiang Wang, Fuxun Yu, Xiang Chen, and Liang Zhao. ADMM for efficient deep
learning with global convergence. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2019.

Eric Wong and Zico Kolter. Provable defenses against adversarial examples via the convex
outer adversarial polytope. In Proceedings of the 35th International Conference on Machine
Learning, 2018.

44

Efficient Global Optimization of Two-layer ReLU Networks: Adversarial Training and Quadratic-time Algorithms

Table 5: Average optimal objective, CPU time, and prediction accuracy on clean and
adversarial test data over seven runs on the CIFAR-10 dataset.

Ps = 24 and m = 48

Method Clean FGSM adv. PGD adv. Objective

GD-std 81.40 % 54.72 % 54.66 % .1486
GD-FGSM 77.75 % 64.53 % 64.46 % .7038
GD-PGD 76.49 % 64.70 % 64.64 % .7363
Algorithm 1 80.51 % .2500 % .1357 % .007516
Algorithm 5 78.54 % 66.91 % 66.75 % .7123

Ps = 18 and m = 36

Method Clean FGSM adv. PGD adv. Objective

GD-std 81.04 % 54.86 % 54.82 % .1550
GD-FGSM 77.29 % 64.69 % 64.56 % .7131
GD-PGD 76.44 % 64.76 % 64.74 % .7365
Algorithm 1 79.71 % .3571 % .2714 % .008953
Algorithm 5 78.71 % 63.89 % 63.67 % .8049

Appendix A. Additional Experiments

A.1 Adversarial training on the CIFAR-10 dataset with different Ps

In this section, we repeat the experiments in Section 6.4.3 on the CIFAR-10 dataset with
different numbers of sampled Dh matrices. Compared with Table 4, which used ε = 10,
β = 10−4, and Ps = 36, these additional experiments keep the same ε and β settings but
reduce Ps to 24 and 18. For fair comparisons, we set the ANN width m equal to 2Ps for
back-propagation implementations in all experiments. Each experiment was repeated seven
times and the results are shown in Table 5.

Table 5 shows that the effect of the neural network width on the prediction performance is
not significant for all methods, but Algorithm 1 and Algorithm 5 are affected more: when Ps
is 36 or 24, Algorithm 5 outperforms GD-FGSM and GD-PGD, but when Ps is 18, Algorithm
5 achieves a lower accuracy than FGSM and PGD. Our explanation is that the constraints
in the convex training formulations become more restrictive when Ps is small, worsening the
suboptimalities of the solutions. Therefore, Algorithm 1 and Algorithm 5 are more suitable
for ANN that are not too narrow.

Appendix B. Extensions

B.1 Extending the analysis to CNNs

The paper (Ergen and Pilanci, 2021a) shows that the convex ANN training approach extends
to various convolutional neural network (CNN) architectures. Taking advantage of this

45

Bai, Gautam, and Sojoudi

result, the convex adversarial training formulations similarly generalize. In this part of the
appendix, we change our notations to align with (Ergen and Pilanci, 2021a). For example,
the robust counterpart of the average pooling two-layer CNN convex training formulation
(cf. Equations (4) and (26) in (Ergen and Pilanci, 2021a)) is: FIXIT

min
{ci,c′i}

Pconv
i=1

(
max
Xk∈Xk

`

(Pconv∑
i=1

K∑
k=1

D(Ski)Xk(c
′
i − ci),y

)
+ β

Pconv∑
i=1

(
‖ci‖2 + ‖c′i‖2

))
s.t. min

Xk∈Xk

(
2D(Ski)− In

)
Xkc

′
i ≥ 0, min

Xk∈Xk

(
2D(Ski)− In

)
Xkci ≥ 0, ∀i, k,

where Xk is the corresponding perturbation set of the patch Xk.

The next step would be to show that the above formulation is equivalent to a classic convex
optimization. Note that each robust constraint is an LP subproblem that can be solved
in closed form, which means that the robust constraints can be cast as equivalent classic
constraints. When `(·) is the squared loss, the above equation becomes a robust second-order
cone program (SOCP), which is known to be a convex optimization (similar to (30) of this
work). Otherwise, if `(·) is monotonously increasing or decreasing in the CNN output ŷ
(examples include the hinge loss and the binary cross-entropy loss), the inner maximization
problem

arg max
Xk∈Xk

`

(Pconv∑
i=1

K∑
k=1

D(Ski)Xk(c
′
i − ci),y

)
reduces to

arg max
Xk∈Xk

Pconv∑
i=1

K∑
k=1

D(Ski)Xk(c
′
i − ci) or arg min

Xk∈Xk

Pconv∑
i=1

K∑
k=1

D(Ski)Xk(c
′
i − ci),

which are LPs that can be solved in closed form. Substituting the closed-form solution yields
the desired convex adversarial training formulations.

Similarly, for max pooling two-layer CNNs, the robust counterpart becomes (cf. Equation
(7) of (Ergen and Pilanci, 2021a)):

min
{ci,c′i}

Pconv
i=1

(
max
Xk∈Xk

`

(Pconv∑
i=1

K∑
k=1

D(Ski)Xk(c
′
i − ci),y

)
+ β

Pconv∑
i=1

(
‖ci‖2 + ‖c′i‖2

))
s.t. min

Xk∈Xk

(
2D(Ski)− In

)
Xkc

′
i ≥ 0, min

Xk∈Xk

(
2D(Ski)− In

)
Xkci ≥ 0, ∀i, k.

min
Xk∈Xk

D(Ski)Xkci ≥ max
Xj∈Xj

D(Ski)Xjci, ∀i, j, k,

min
Xk∈Xk

D(Ski)Xkc
′
i ≥ max

Xj∈Xj
D(Ski)Xjc

′
i, ∀i, j, k.

where each additional robust constraint is an LP subproblem that can be solved in closed
form.

The same robust optimization techniques can be applied to three-layer CNNs (cf. Equation
(11) in (Ergen and Pilanci, 2021a)) and derive corresponding convex adversarial training

46

Efficient Global Optimization of Two-layer ReLU Networks: Adversarial Training and Quadratic-time Algorithms

formulations. In general, the convex standard training formulations for different NNs / CNNs
share very similar structures. Therefore, many convex standard training formulations can be
“robustified” by recasting as mini-max formulations. Whether these mini-max formulations
can be reformed into classic convex optimizations depends on the specific structures of the
problems. For CNNs with two or three layers considered in (Ergen and Pilanci, 2021a), such
classic convex formulations can be derived.

Similarly, the ADMM splitting scheme, discussed in Section 3, also applies to the above
CNN formulations. The CNN training formulations can be similarly split into loss function
terms, regularization terms, and linear inequality constraints.

B.2 The vector-output counterpart of Theorem 4

For vector-output networks, the output Ŷ becomes a matrix in Rn×c. Specifically, Ŷ =∑m
j=1(Xuj)+α

>
j , where αj ∈ Rc for all j ∈ [m] and c is the dimension of the output (the

number of classes). The target (label) matrix Y also has the dimension of n× c.

When an arbitrary convex loss function `(Ŷ , Y) is considered, the minimization of the
non-convex training cost, expressed as

p? = min
(uj ,αj)mj=1

`
(m∑
j=1

(Xuj)+α
>
j , Y

)
+
β

2

m∑
j=1

(
‖uj‖22 + ‖αj‖22

)
is equivalent to the following problem: (Sahiner et al., 2021, Lemma 4):

p? = min
(uj ,αj)mj=1

`
(m∑
j=1

(Xuj)+α
>
j , Y

)
+ β

m∑
j=1

‖αj‖2 s. t. ‖uj‖2 ≤ 1, ∀j ∈ [m]. (36)

When the width m is not smaller than m?, where m? is defined in the same manner as for
the scalar-output case, strong duality holds between (36) and the following dual formulation
(Sahiner et al., 2021, Lemma 5 and Appendix 6):

d? = max
Z∈Rn×c

−`∗(Z) s. t. ‖Z>(Xu)+‖2 ≤ β, ∀‖u‖2 ≤ 1,

where `∗(·) is again the Fenchel conjugate function of `(·).

Similarly, one can sample u1, . . . , uN ∈ Rd on the unit Euclidean norm sphere via a uniform
distribution and construct the following SCP as an approximation to p?:

p?s3 = min
(αi)Ni=1

`
(N∑
i=1

(Xui)+α
>
i , Y

)
+ β

N∑
i=1

‖αi‖2, (37)

which has a strong dual

d? = max
Z∈Rn×c

−`∗(Z) s. t. ‖Z>(Xui)+‖2 ≤ β, ∀i ∈ [N].

47

Bai, Gautam, and Sojoudi

The rest of the proof of Theorem 4 readily applies to characterize the level of subuptimality
of the SCP (37) compared with the UCP (36), and (37) is a finite-dimensional convex
optimization that can be solved to train vector-output ReLU networks. Note that the group
sparse regularization is used for vector-output networks in place of the `1 regularization for
the scalar-output case.

B.3 `p norm-bounded perturbation set for hinge loss

Theorem 7 can be extended to the following `p norm-bounded perturbation set:

X̃ =
{
X + ∆ ∈ Rn×d

∣∣ ∆ = [δ1 · · · δn]>, ‖δk‖p ≤ ε, ∀k ∈ [n]
}

.

In the case of performing binary classification with a hinge-lossed neural network, the convex
adversarial training problem then becomes:

min
(vi,wi)P̂i=1

 1

n

n∑
k=1

(
1− yk

P̂∑
i=1

dikx
>
k (vi − wi) + ε ·

∥∥∥∥ P̂∑
i=1

dik(vi − wi)
∥∥∥∥
p∗

)
+

+β
∑P̂

i=1

(
‖vi‖2 + ‖wi‖2

)
 (38)

s. t. (2Di − In)Xvi ≥ ε‖vi‖p∗, (2Di − In)Xwi ≥ ε‖wi‖p∗, ∀i ∈ [P̂]

where D1, . . . , DP̂
are all distinct diagonal matrices associated with diag([Xu ≥ 0]) for all

possible u ∈ Rd and all X + ∆ at the boundary of X̃ . Note that ‖·‖p∗ is the dual norm of
‖·‖p.

Appendix C. Proofs

C.1 Proof of Theorem 2

We start by recasting the semi-infinite constraint of the dual formulation (3) as
max‖u‖2≤1 |v>(Xu)+| ≤ β, and obtain

max
‖u‖2≤1

∣∣v>(Xu)+

∣∣ = max
‖u‖2≤1

∣∣v>diag([Xu ≥ 0])Xu
∣∣ = max

i∈[P]

(
max
‖u‖2≤1

(2Di−In)Xu≥0

∣∣v>DiXu
∣∣),

where the last equality holds by the definition of the Di matrices: D1 . . . , DP are all
distinct matrices that can be formed by diag([Xu ≥ 0]) for some u ∈ Rd. The constraint
(2Di − In)Xu ≥ 0 is equivalent to DiXu ≥ 0 and (In − Di)Xu ≤ 0, which forces Di =
diag([Xu ≥ 0]) to hold.

Therefore, the dual formulation (3) can be recast as

max
v
−`∗(v) s. t.

max
‖u‖2≤1

(2Di−In)Xu≥0

∣∣v>DiXu
∣∣ ≤ β, ∀i ∈ [P]. (39)

48

Efficient Global Optimization of Two-layer ReLU Networks: Adversarial Training and Quadratic-time Algorithms

To form a tractable convex program that provides an approximation to (39), one can
independently sample a subset of the diagonal matrices. One possible sampling procedure is
presented in Algorithm 1. The sampled matrices, denoted as D1, . . . , DPs , can be used to
construct the relaxed problem:

d?s1 = max
v
−`∗(v) s. t.

max
‖u‖2≤1

(2Dh−In)Xu≥0

∣∣v>DhXu
∣∣ ≤ β, ∀h ∈ [Ps]. (40)

The optimization problem (40) is convex with respect to v. (Pilanci and Ergen, 2020) has
shown that (39) has the same optimal objective as its dual problem (2). By following
precisely the same derivation, it can be shown that (40) has the same optimal objective
as (5) and p?s1 = d?s1. Moreover, if an additional diagonal matrix DPs+1 is independently
randomly sampled to form (6), then we also have p?s2 = d?s2, where

d?s2 = max
v
−`∗(v) s. t.

max
‖u‖2≤1

(2Dh−In)Xu≥0

∣∣v>DhXu
∣∣ ≤ β, ∀h ∈ [Ps + 1].

Thus, the level of suboptimality of (40) compared with (39) is the level of suboptimality
of (5) compared with (2). Notice that by introducing a slack variable w ∈ R, (39) can be
represented as an instance of the uncertain convex program (UCP) with n+ 1 optimization
variables, defined in (Calafiore and Campi, 2005):

max
v,w: w≤−`∗(v)

w s. t.
max
‖u‖2≤1

(2Di−In)Xu≥0

∣∣v>DiXu
∣∣ ≤ β, ∀i ∈ [P].

The relaxed problem (40) can be regarded as a corresponding SCP. Suppose that w?, v? is
a solution to the sampled convex problem (40). It can be concluded from (Calafiore and
Campi, 2005, Theorem 1) and (Campi et al., 2009, Theorem 1) that if Ps ≥ min

{
n+1
ψξ −

1, 2
ξ (n + 1 − logψ)

}
, then v? satisfies the original constraints of the UCP (39) with high

probability. Specifically, with probability no smaller than 1− ξ,

P
{
D ∈ D :

max
‖u‖2≤1

(2D−In)Xu≥0

∣∣v?>DXu∣∣ > β
}
≤ ψ.

where D denotes the set of all diagonal matrices that can be formed by diag([Xu ≥ 0]) for
some u ∈ Rd, which is the set formed by D1, . . . , DP .

Since DPs+1 is randomly sampled from D, we have

P
{
D ∈ D :

max
‖u‖2≤1

(2D−In)Xu≥0

∣∣v?>DXu∣∣ > β
}

= P
{ max

‖u‖2≤1
(2DPs+1−In)Xu≥0

∣∣v?>DPs+1Xu
∣∣ > β

}
Thus, with probability no smaller than 1− ξ, it holds that

P
{ max

‖u‖2≤1
(2DPs+1−In)Xu≥0

∣∣v?>DPs+1Xu
∣∣ > β

}
≤ ψ.

Moreover, d?s2 < d?s1 if and only if
∣∣v?>DPs+1Xu

∣∣ > β with d?s2 = d?s1 otherwise. The proof
is completed by noting that p?s1 = d?s1 and p?s2 = d?s2. �

49

Bai, Gautam, and Sojoudi

C.2 Proof of Theorem 3

We start by rewriting (8) as

min
v,s,u: s≥0

f1(u) + f2(v, s) s. t. E1u− E2

[
v
s

]
= 0, (41)

where f1(u) = `(Fu, y), f2(v, s) = β‖v‖2,1, E1 =

[
I
G

]
, and E2 = I.

Furthermore, let L(u, v, s, ν, λ) denote the augmented Lagrangian:

L(u, v, s, ν, λ) :=

f1(u) + β‖v‖2,1 + I≥0(s) +
γa
2

(
‖u− v + λ‖22 − ‖λ‖22

)
+
γa
2

(
‖Gu− s+ ν‖22 − ‖ν‖22

)
(Hong and Luo, 2017, Theorem 3.1) shows that the ADMM algorithm converges linearly
when the objective satisfies seven conditions. We show that these conditions are all satisfied
for (41) given the assumptions of Theorem 3:

(a) It can be easily shown that (41) attains a global solution because the feasible set of
the equivalent problem (2) is non-empty.

(b) We can then decompose f1(u) into g1(Fu) =: `(Fu, y) and h1(u) =: 0 and define
h2(·) =: f2(·). When the loss `(ŷ, y) is convex with respect to ŷ, the functions
g1(·), h1(·), h2(·) are all convex and continuous.

(c) When `(ŷ, y) is strictly convex and continuously differentiable with a uniform Lips-
chitz continuous gradient with respect to ŷ, the function g1(·) is strictly convex and
continuously differentiable with a uniform Lipschitz continuous gradient.

(d) The epigraph of h1(·) = 0 is a polyhedral set. Moreover, h2(v, s) = ‖v‖2,1 =∑P
i=1(‖vi‖2 + ‖wi‖2) by definition.

(e) The constant function h1(·) is trivially finite. Furthermore, for all u, v, s that make
L(u, v, s, ν, λ) finite, it must hold that f1(u) < +∞, v < +∞, and s ≥ 0. Therefore,
h2(·) must be finite.

(f) E1 and E2 both have full column rank since the identity matrix has full column rank.

(g) When u→∞, we have L(u, v, s, ν, λ)→∞. Hence, the solution to (9a) must be finite
as long as the initial points u0, v0, s0, λ0, ν0 are finite. The solutions to (9b) and (9c)
are also finite, since the closed-form solutions are derived in Section 3.1. Therefore, the
sequence {(uk, vk, sk, λk, νk)} is finite. Thus, there exist finite umax, vmax, smax such
that (41) is equivalent to the formulation below:

min
v,s,u

f1(u) + f2(v, s) (42)

s. t. E1u− E2

[
v
s

]
= 0, ‖u‖∞ ≤ umax, ‖v‖∞ ≤ vmax, ‖s‖∞ ≤ smax.

50

Efficient Global Optimization of Two-layer ReLU Networks: Adversarial Training and Quadratic-time Algorithms

Furthermore, the ADMM algorithm that solves (42) is equivalent to Algorithm 2. The
feasible set of (42) is a compact polyhedral set formed by the `∞ norm constraints.

Thus, by the application of (Hong and Luo, 2017, Theorem 3.1), the desired result holds
true when the step size γa is sufficiently small FIXIT. �

C.3 Proof of Theorem 4

As discussed in Section 4.2, strong duality holds between (13) and (16), as well as between
(14) and (17). Here, we introduce a slack variable w and cast (16) as a canonical uncertain
convex program with n + 1 optimization variables and a linear objective, where n is the
number of training data points:

min
(v,w)∈F

w

s. t. f(v, w, u) := |v>(Xu)+| − β ≤ 0, ∀u ∈ G
F =

{
v ∈ Rn, w ∈ R

∣∣ ‖y − v‖22 − 2w ≤ 0
}

G =
{
u
∣∣ ‖u‖2 = 1

}
.

By leveraging (Calafiore and Campi, 2005, Theorem 1) and (Campi et al., 2009, Theorem
1), we can conclude that if N ≥ min

{
n+1
ψγ − 1, 2

γ (n+ 1− logψ)
}

, then with probability no
smaller than 1− γ, the solution v? to the randomized problem (17) satisfies P{u : ‖u‖2 =
1, |v?>(Xu)+| > β} ≤ ψ. Since uN+1 is randomly generated on the Euclidean norm sphere
via a uniform distribution, it holds that P{|v?>(XuN+1)+| > β} ≤ ψ.

Consider the following dual formulation with the newly sampled hidden neuron uN+1

included:

d?s4 = max
v∈Rn

−`∗(v) s. t. |v>(Xui)+| ≤ β, ∀i ∈ [N + 1]. (43)

Since (43) and (17) share the same objective, it holds that d?s4 < d?s3 if and only if
|v?>(XuN+1)+| > β with d?s4 = d?s3 otherwise. The proof is completed by recalling that
p?s3 = d?s3 and p?s4 = d?s4 due to strong duality. �

C.4 Details about the strong duality between (17) and (14)

C.4.1 General loss functions

In this part of the appendix, we explicitly derive the relationship between the optimal
solutions (α?i)

N
i=1 and v? for the purpose of recovering the dual optimizers from the primal

optimizers.

The SCP training formulation (14) is equivalent to the following constrained optimization:

min
r,(αi)Ni=1

`(r, y) + β

N∑
i=1

|αi| s. t. r =

N∑
i=1

(
Xui

)
+
αi, (44)

51

Bai, Gautam, and Sojoudi

and a solution to (14) is also optimal for (44). The optimization (44) is then equivalent to
the minimax problem

min
r,(αi)Ni=1

(
max
v
`(r, y) + β

N∑
i=1

|αi|+ v>
(N∑
i=1

(Xui)+αi − r
))

. (45)

The outer minimization is convex over r and (αi)
N
i=1, while the inner maximization is concave

over v. Thus, by the Sion’s minimax theorem (Sion, 1958), the optimization (45) is equivalent
to:

max
v

(
min
r

(
`(r, y)− v>r

)
+ min

(αi)Ni=1

(
β

N∑
i=1

|αj |+ v>
N∑
i=1

(Xuj)+αj

))
= max

v

(
−max

r

(
v>r − `(r, y)

)
s. t.

∣∣v>(Xui)+

∣∣ ≤ β, ∀i ∈ [N]

)
= max

v
−`∗(v) s. t.

∣∣v>(Xui)+

∣∣ ≤ β, ∀i ∈ [N],

which is (17). The first equality holds because

min
(αi)Ni=1

(
β

N∑
i=1

|αj |+ v>
N∑
i=1

(Xuj)+αj

)
=

{
0,

∣∣v>(Xui)+

∣∣ ≤ β, ∀i ∈ [N],

∞, otherwise.

Therefore, with the optimal (α?i)
N
i=1, one can calculate r? via r? =

∑N
i=1

(
Xui

)
+
α?i , and

recover v? by solving the following LP:

v? = arg max
v

−v>r? s. t.
∣∣v>(Xui)+

∣∣ ≤ β, ∀i ∈ [N].

C.4.2 Squared loss

In this part, we prove the relationship between (α?i)
N
i=1 and v? by deriving the Karush–Kuhn–

Tucker (KKT) conditions for the special case when the squared loss is considered. In this
case, the SCP training formulation (14) reduces to

min
(αi)Ni=1

1

2

∥∥∥ N∑
i=1

(
Xui

)
+
αi − y

∥∥∥2

2
+ β

N∑
i=1

|αi|,

which is equivalent to

min
r,(αi)Ni=1

1

2
‖r‖22 + β

N∑
i=1

|αi| s. t. r =
N∑
i=1

(
Xui

)
+
αi − y. (46)

By introducing a dual vector variable v ∈ Rn, we can write the Lagrangian of (46) as:

LSCP

(
v, r, (αi)

N
i=1

)
=

1

2
‖r‖22 + β

N∑
i=1

|αi|+ v>
(N∑
i=1

(
Xui

)
+
αi − y − r

)
=
(1

2
r> + v>

)
r +

(
β

N∑
i=1

|αi|+ v>
N∑
i=1

(
Xui

)
+
αi

)
+ v>y

52

Efficient Global Optimization of Two-layer ReLU Networks: Adversarial Training and Quadratic-time Algorithms

LSCP

(
v, r, (αi)

N
i=1

)
is smooth with respect to r. Thus, by the Lagrangian stationarity

condition, at optimum, we must have ∇rL
(
v?, r?, (α?i)

N
i=1

)
= r? + v? = 0. By the primal

feasibility condition, we must have r? =
∑N

i=1

(
Xui

)
+
α?i − y. Thus, at the optimum,

v? = y −
∑N

i=1

(
Xui

)
+
α?i .

C.5 Proof of Theorem 5

Before proceeding with the proof, we first present the following result borrowed from (Pilanci
and Ergen, 2020).

Lemma 10 For a given data matrix X and (vi, wi)
P
i=1, if (2Di − In)Xvi ≥ 0 and (2Di −

In)Xwi ≥ 0 for all i ∈ [P], then we can recover the corresponding neural network weights
(uv,wj , αv,wj)

m?
j=1 using the formulas in (4), and it holds that

`

(P∑
i=1

DiX(vi − wi), y
)

+ β
P∑
i=1

(
‖vi‖2 + ‖wi‖2

)
=`

(m?∑
j=1

(Xuv,wj)+αv,wj , y

)
+
β

2

m?∑
j=1

(
‖uv,wj‖22 + α2

v,wj

)
. (47)

Theorem 1 implies that the non-convex cost function (1) has the same objective value as the
following finite-dimensional convex optimization problem:

q? = min
(vi,wi)Pi=1

`

(P∑
i=1

DiX(vi − wi), y
)

+ β

P∑
i=1

(
‖vi‖2 + ‖wi‖2

)
s. t. (2Di − In)Xvi ≥ 0, (2Di − In)Xwi ≥ 0, ∀i ∈ [P]

(48)

where D1, . . . , DP are all of the matrices in the set of matrices D, which is defined as the set
of all distinct diagonal matrices diag([Xu ≥ 0]) that can be obtained for all possible u ∈ Rd.
We recall that the optimal neural network weights can be recovered using (4).

Consider the following optimization problem:

q̃? = min
(vi,wi)P̃i=1

`

(P̃∑
i=1

DiX(vi − wi), y
)

+ β

P̃∑
i=1

(
‖vi‖2 + ‖wi‖2

)
s. t. (2Di − In)Xvi ≥ 0, (2Di − In)Xwi ≥ 0, ∀i ∈ [P̃]

(49)

where additional D matrices, denoted as DP+1, . . . , DP̃
, are introduced. These additional

matrices are still diagonal with each entry being either 0 or 1, while they do not belong to
D. They represent “infeasible hyperplanes” that cannot be achieved by the sign pattern of
Xu for any u ∈ Rd.

Lemma 11 It holds that q̃? = q?, meaning that the optimization problem (49) has the same
optimal objective as (48).

53

Bai, Gautam, and Sojoudi

The proof of Lemma 11 is given in Section C.10.

The robust minimax training problem (18) considers an uncertain data matrix X + ∆.
Different values of X + ∆ within the perturbation set U can result in different D matrices.
Now, we define D̂ =

⋃
∆D∆, where D∆ is the set of diagonal matrices for a particular ∆

such that X + ∆ ∈ U . By construction, we have D∆ ⊆ D̂ for every ∆ such that X + ∆ ∈ U .
Thus, if we define D1, . . . , DP̂

as all matrices in D̂, then for every ∆ with the property
X + ∆ ∈ U , the optimization problem

min
(vi,wi)P̂i=1

`

(P̂∑
i=1

Di(X + ∆)(vi − wi), y
)

+ β
P̂∑
i=1

(‖vi‖2 + ‖wi‖2)

s. t. (2Di − In)(X + ∆)vi ≥ 0, (2Di − In)(X + ∆)wi ≥ 0, ∀i ∈ [P̂]

(50)

is equivalent to

min
(uj ,αj)mj=1

`

(m∑
j=1

((X + ∆)uj)+αj , y

)
+
β

2

m∑
j=1

(
‖uj‖22 + α2

j

)
as long as m ≥ m̂? with m̂? = |{i : v?i (∆) 6= 0}|+ |{i : w?i (∆) 6= 0}|, where (v?i (∆), w?i (∆))P̂i=1

denotes an optimal point to (50).

Now, we focus on the minimax training problem with a convex objective given by

min
(vi,wi)P̂i=1∈F

 max
∆:X+∆∈U

`

(P̂∑
i=1

Di(X + ∆)(vi − wi), y
)

+ β
P̂∑
i=1

(
‖vi‖2 + ‖wi‖2

)
s. t. (2Di − In)(X + ∆)vi ≥ 0, (2Di − In)(X + ∆)wi ≥ 0, ∀i ∈ [P̂]

 ,

(51)
where F is defined as:{

(vi, wi)
P̂
i=1

∣∣∣∣ ∃∆ : X + ∆ ∈ U
s. t. (2Di − In)(X + ∆)vi ≥ 0, (2Di − In)(X + ∆)wi ≥ 0, ∀i ∈ [P̂]

}
.

The introduction of the feasible set F is to avoid the situation where the inner maximization
over ∆ is infeasible and the objective becomes −∞, leaving the outer minimization problem
unbounded.

Moreover, consider the following problem:

min
(vi,wi)P̂i=1

`(P̂∑
i=1

Di(X + ∆?
v,w)(vi − wi), y

)
+ β

P̂∑
i=1

(
‖vi‖2 + ‖wi‖2

)
s. t. (2Di − In)(X + ∆?

v,w)vi ≥ 0, (2Di − In)(X + ∆?
v,w)wi ≥ 0, ∀i ∈ [P̂]

(52)

where ∆?
v,w is the optimal point for max

∆:X+∆∈U
`

(P̂∑
i=1

Di(X + ∆)(vi − wi), y
)

. Note that the

inequality constraints are dropped for the maximization here compared to (51).

54

Efficient Global Optimization of Two-layer ReLU Networks: Adversarial Training and Quadratic-time Algorithms

The optimization problem (51) gives a lower bound on (52). To prove this, we first rewrite
(52) as:

min
(vi,wi)P̂i=1

f
(
(vi, wi)

P̂
i=1

)
, where f

(
(vi, wi)

P̂
i=1

)
=

`
(∑P̂

i=1Di(X + ∆?
v,w)(vi − wi), y

)
(2Di − In)(X + ∆?

v,w)vi ≥ 0, ∀i ∈ [P̂]

+β
∑P̂

i=1

(
‖vi‖2 + ‖wi‖2

)
, (2Di − In)(X + ∆?

v,w)wi ≥ 0, ∀i ∈ [P̂]

+∞, otherwise.

Now, we analyze (51). Consider three cases:

Case 1: For some (vi, wi)
P̂
i=1, ∆?

v,w is optimal for the inner maximization of (51) and the
inequality constraints are inactive. This happens whenever ∆?

v,w is feasible for the particular

choice of (vi, wi)
P̂
i=1. In other words, (2Di−In)(X+∆?

v,w)vi ≥ 0 and (2Di−In)(X+∆?
v,w)wi ≥

0 hold true for all i ∈ [P̂]. For these (vi, wi)
P̂
i=1, we have: max

∆:X+∆∈U
`

(P̂∑
i=1

Di(X + ∆)(vi − wi), y
)

+ β

P̂∑
i=1

(
‖vi‖2 + ‖wi‖2

)
s. t. (2Di − In)(X + ∆)vi ≥ 0, (2Di − In)(X + ∆)wi ≥ 0, ∀i ∈ [P̂]


= `

(P̂∑
i=1

Di(X + ∆?
v,w)(vi − wi), y

)
+ β

P̂∑
i=1

(
‖vi‖2 + ‖wi‖2

)

Case 2: For some (vi, wi)
P̂
i=1, ∆?

v,w is infeasible, while some ∆ within the perturbation bound
satisfies the inequality constraints. Suppose that among the feasible ∆’s,

∆̃?
v,w = arg max

∆:X+∆∈U
`

(P̂∑
i=1

Di(X + ∆)(vi − wi), y
)

+ β
P̂∑
i=1

(
‖vi‖2 + ‖wi‖2

)
s. t. (2Di − In)(X + ∆)vi ≥ 0, (2Di − In)(X + ∆)wi ≥ 0, ∀i ∈ [P̂].

In this case, max
∆:X+∆∈U

`

(P̂∑
i=1

Di(X + ∆)(vi − wi), y
)

+ β
P̂∑
i=1

(
‖vi‖2 + ‖wi‖2

)
s. t. (2Di − In)(X + ∆)vi ≥ 0, (2Di − In)(X + ∆)wi ≥ 0, ∀i ∈ [P̂]


= `

(P̂∑
i=1

Di(X + ∆̃?
v,w)(vi − wi), y

)
+ β

P̂∑
i=1

(
‖vi‖2 + ‖wi‖2

)

Case 3: For all other (vi, wi)
P̂
i=1, the objective value is +∞ since they do not belong to F .

55

Bai, Gautam, and Sojoudi

Therefore, (51) can be rewritten as

min
(vi,wi)P̂i=1

g
(
(vi, wi)

P̂
i=1

)
, where g

(
(vi, wi)

P̂
i=1

)
=

`
(∑P̂

i=1Di(X + ∆?
v,w)(vi − wi), y

)
(2Di − In)(X + ∆?

v,w)vi ≥ 0, ∀i ∈ [P̂]

+β
∑P̂

i=1

(
‖vi‖2 + ‖wi‖2

)
, (2Di − In)(X + ∆?

v,w)wi ≥ 0, ∀i ∈ [P̂]

∃j : (2Dj − In)(X + ∆?
v,w)vj < 0

`
(∑P̂

i=1Di(X + ∆̃?
v,w)(vi − wi), y

)
or (2Dj − In)(X + ∆?

v,w)wj < 0

+β
∑P̂

i=1

(
‖vi‖2 + ‖wi‖2

)
, ∃∆ : (2Di − In)(X + ∆)vi ≥ 0, ∀i ∈ [P̂]

(2Di − In)(X + ∆)wi ≥ 0, ∀i ∈ [P̂]

+∞, otherwise

Hence, g((vi, wi)
P̂
i=1) = f((vi, wi)

P̂
i=1) for all (vi, wi)

P̂
i=1 belonging to the first and the third

cases. g((vi, wi)
P̂
i=1) < f((vi, wi)

P̂
i=1) for all (vi, wi)

P̂
i=1 belonging to the second case. Thus,

min
(vi,wi)P̂i=1

g((vi, wi)
P̂
i=1) ≤ min

(vi,wi)P̂i=1
f((vi, wi)

P̂
i=1). This concludes that (51) is a lower

bound to (52).

Let (v?minimaxi
, w?minimaxi

)P̂i=1 denote an optimal point for (52). It is possible that for some ∆ :
X+∆ ∈ U , the constraints (2Di−In)(X+∆)v?minimaxi

≥ 0 and (2Di−In)(X+∆)w?minimaxi
≥ 0

are not satisfied for all i ∈ [P̂]. In light of Lemma 10, at those ∆ where such constraints
are violated, the convex problem (52) does not reflect the cost of the neural network. For
these infeasible ∆, the input-label pairs (X + ∆, y) can have a high cost in the neural
network and potentially become the worst-case adversary. However, these ∆ are ignored in
(52) due to the infeasibility. Since adversarial training aims to minimize the cost over the
worst-case adversaries generated upon the training data whereas (52) may sometimes miss
the worst-case adversaries, (52) does not fully accomplish the task of adversarial training.
In fact, by applying Theorem 1 and Lemma 11, it can be verified that (51) and (52) are
lower bounds to (18) as long as m ≥ m̂?:

min
(uj ,αj)mj=1

(
max

∆:X+∆∈U
`

(m∑
j=1

(
(X + ∆)uj

)
+
αj , y

)
+
β

2

m∑
j=1

(
‖uj‖22 + α2

j

))

≥ min
(uj ,αj)mj=1

`

(m∑
j=1

(
(X + ∆?

v,w)uj
)

+
αj , y

)
+
β

2

m∑
j=1

(
‖uj‖22 + α2

j

)

=

 min
(vi,wi)P̂i=1

`

(P̂∑
i=1

Di(X + ∆?
v,w)(vi − wi), y

)
+ β

P̂∑
i=1

(
‖vi‖2 + ‖wi‖2

)
s. t. (2Di − In)(X + ∆?

v,w)vi ≥ 0, (2Di − In)(X + ∆?
v,w)wi ≥ 0, ∀i ∈ [P̂]

 .

To address the feasibility issue, we can apply robust optimization techniques ((Boyd and
Vandenberghe, 2004) section 4.4.2) and replace the constraints in (52) with robust convex

56

Efficient Global Optimization of Two-layer ReLU Networks: Adversarial Training and Quadratic-time Algorithms

constraints, which will lead to (21). Let
(
(v?robi

, w?robi
)P̂i=1,∆

?
rob

)
denote an optimal point of

(21) and let (u?robj
, α?robj

)m̂
?

j=1 be the neural network weights recovered from (v?robi
, w?robi

)P̂i=1

with (4), where m̂? is the number of nonzero weights. In light of Lemma 10, since the
constraints (2Di− In)(X + ∆)v?robi

≥ 0 and (2Di− In)(X + ∆)w?robi
≥ 0 for all i ∈ [P̂] apply

to all X + ∆ ∈ U , all X + ∆ ∈ U satisfy the equality

`

(P̂∑
i=1

Di(X + ∆)(v?robi
− w?robi

), y

)
+ β

P̂∑
i=1

(
‖v?robi

‖2 + ‖w?robi
‖2
)

= `

(m̂?∑
j=1

(
(X + ∆)u?robj

)
+
α?robj

, y

)
+
β

2

m̂?∑
j=1

(
‖u?robj

‖22 + α?2robj

)
.

Thus, since

∆?
rob = arg max

∆:X+∆∈U
`

(P̂∑
i=1

Di(X + ∆)(v?robi
− w?robi

), y

)
+ β

P̂∑
i=1

(
‖v?robi

‖2 + ‖w?robi
‖2
)
,

we have

∆?
rob = arg max

∆:X+∆∈U
`

(m̂?∑
j=1

(
(X + ∆)u?robj

)
+
α?robj

, y

)
+
β

2

m̂?∑
j=1

(
‖u?robj

‖22 + α?2robj

)
,

giving rise to:

`

(P̂∑
i=1

Di(X + ∆?
rob)(v?robi

− w?robi
), y

)
+ β

P̂∑
i=1

(
‖v?robi

‖2 + ‖w?robi
‖2
)

= `

(m̂?∑
j=1

(
(X + ∆?

rob)u?robj

)
+
α?robj

, y

)
+
β

2

m̂?∑
j=1

(
‖u?robj

‖22 + α?2robj

)
= max

∆:X+∆∈U
`

(m̂?∑
j=1

(
(X + ∆)u?robj

)
+
α?robj

, y

)
+
β

2

m̂?∑
j=1

(
‖u?robj

‖22 + α?2robj

)
≥ min

(uj ,αj)m̂
?

j=1

(
max

∆:X+∆∈U
`

(m̂?∑
j=1

(
(X + ∆)uj

)
+
αj , y

)
+
β

2

m̂?∑
j=1

(
‖uj‖22 + α2

j

))

Therefore, (21) is an upper bound to (18). �

C.6 Proof of Corollary 6

Define Ei = 2Di− In for all i ∈ [P̂]. Note that each Ei is a diagonal matrix, and its diagonal
elements are either -1 or 1. Therefore, for each i ∈ [P̂], we can analyze the robust constraint
min∆:X+∆∈U Ei(X + ∆)vi ≥ 0 element-wise (for each data point). Let eik denote the kth

57

Bai, Gautam, and Sojoudi

diagonal element of Ei and δ>ik denote the kth element of ∆ that appears in the ith constraint.
We then have: (

min
‖δik‖∞≤ε

eik(x
>
k + δ>ik)vi

)
=
(
eikx

>
k vi + min

‖δik‖∞≤ε
eikδ

>
ikvi
)
≥ 0 (53)

The minima of the above optimization problems are achieved at δ??ik = ε · sgn(eikvi) =
ε · eik · sgn(vi).

Note that as ε approaches 0, δ??ik and ∆?
rob in Theorem 5 both approach 0, which means that

the gap between the convex robust problem (27) and the non-convex adversarial training
problem (25) diminishes. Substituting δ??k into (53) yields that(

eikx
>
k vi − ε‖eikvi‖1

)
=
(
eikx

>
k vi − ε‖vi‖1

)
≥ 0.

Vertically concatenating eikx
>
k vi−ε‖vi‖1 ≥ 0 for all i ∈ [P̂] gives the vectorized representation

EiXvi − ε‖vi‖1 ≥ 0, which leads to (22). Since the constraints on w are exactly the same,
we also have that min∆:X+∆∈U Ei(X + ∆)wi ≥ 0 is equivalent to EiXwi − ε‖wi‖1 ≥ 0 for
all i ∈ [P̂].

C.7 Proof of Theorem 7

The regularization term is independent of ∆. Thus, it can be ignored for the purpose of
analyzing the inner maximization. Note that each Di is diagonal, and its diagonal elements
are either 0 or 1. Therefore, the inner maximization of (26) can be analyzed element-wise
(cost of each data point).

The maximization problem of the loss at each data point is:

max
‖δk‖∞≤ε

(
1− yk

P∑
i=1

dik(x
>
k + δ>k)(vi − wi)

)
+

(54)

where dik is the kth diagonal element of Di and δ>k is the kth row of ∆. One can write:

max
‖δk‖∞≤ε

(
1− yk

P∑
i=1

dik(x
>
k + δ>k)(vi − wi)

)
+

=

(
max
‖δk‖∞≤ε

1− yk
P∑
i=1

dik(x
>
k + δ>k)(vi − wi)

)
+

=

(
1− yk

P∑
i=1

dikx
>
k (vi − wi)− min

‖δk‖∞≤ε
δ>k yk

P∑
i=1

dik(vi − wi)
)

+

.

The optimal solution to min
‖δk‖∞≤ε

δ>k yk

P∑
i=1

dik(vi−wi) is δ?hingek
= −ε·sgn

(
yk

P∑
i=1

dik(vi−wi)>
)

,

or equivalently:

∆?
hinge = −ε · sgn

(P∑
i=1

Diy(vi − wi)>
)
.

58

Efficient Global Optimization of Two-layer ReLU Networks: Adversarial Training and Quadratic-time Algorithms

By substituting δ?hingek
into (54), the optimization problem (54) reduces to:

(
1− yk

P∑
i=1

dikx
>
k (vi − wi) + ε

∣∣∣∣∣∣∣∣yk P∑
i=1

dik(vi − wi)
∣∣∣∣∣∣∣∣

1

)
+

=

(
1− yk

P∑
i=1

dikx
>
k (vi − wi) + ε|yk|

∣∣∣∣∣∣∣∣ P∑
i=1

dik(vi − wi)
∣∣∣∣∣∣∣∣

1

)
+

.

Therefore, the overall loss function is:

1

n

n∑
k=1

(
1− yk

P∑
i=1

dikx
>
k (vi − wi) + ε|yk|

∣∣∣∣∣∣∣∣ P∑
i=1

dik(vi − wi)
∣∣∣∣∣∣∣∣

1

)
+

.

In the case of binary classification, y = {−1, 1}n, and thus |yk| = 1 for all k ∈ [n]. Therefore,
the above is equivalent to

1

n

n∑
k=1

(
1− yk

P∑
i=1

dikx
>
k (vi − wi) + ε

∣∣∣∣∣∣∣∣ P∑
i=1

dik(vi − wi)
∣∣∣∣∣∣∣∣

1

)
+

(55)

which is the objective of (27). This completes the proof. �

C.8 Proof of Theorem 8

We first exploit the structure of (30) and reformulate it as the following robust second-order
cone program (SOCP) by introducing a slack variable a ∈ R:

min
(vi,wi)P̂i=1,a

a+ β

P̂∑
i=1

(‖vi‖2 + ‖wi‖2) (56)

s. t. (2Di − In)Xvi ≥ ε‖vi‖1, (2Di − In)Xwi ≥ ε‖wi‖1, ∀i ∈ [P̂]

max
∆:X+∆∈X

∥∥∥∥∥
[∑P̂

i=1Di(X + ∆)(vi − wi)− y
2a− 1

4

]∥∥∥∥∥
2

≤ 2a+ 1
4 , ∀i ∈ [P̂].

Then, we need to establish the equivalence between (56) and (31). To this end, we consider
the constraints of (56) and argue that these can be recast as the constraints given in (31).

59

Bai, Gautam, and Sojoudi

One can write:

max
∆:X+∆∈X

∣∣∣∣∣
∣∣∣∣∣
[∑P̂

i=1Di(X + ∆)(vi − wi)− y
2a− 1

4

] ∣∣∣∣∣
∣∣∣∣∣
2

≤ 2a+
1

4

⇐⇒ max
‖δk‖∞≤ε, ∀k∈[n]

∥∥∥∥∥∥∥∥∥∥∥∥



∑P̂
i=1 di1(x>1 − δ>1)(vi − wi)− y1∑P̂
i=1 di2(x>2 − δ>2)(vi − wi)− y2

...∑P̂
i=1 din(x>n − δ>n)(vi − wi)− yn

2a− 1
4



∥∥∥∥∥∥∥∥∥∥∥∥
2

≤ 2a+
1

4

⇐⇒ max
‖δk‖∞≤ε, ∀k∈[n]

(
n∑
k=1

(P̂∑
i=1

dik(x
>
k − δ>k)(vi − wi)− yk

)2
+
(

2a− 1

4

)2
) 1

2

≤ 2a+
1

4

where dik is the kth diagonal element of Di and δ>k is the kth row of ∆. The above constraints
can be rewritten by introducing slack variables z ∈ Rn+1 as

zk ≥
∣∣∣∑P̂

i=1 dikx
>
k (vi − wi)− yk

∣∣∣+ ε
∥∥∥∑P̂

i=1 dik(vi − wi)
∥∥∥

1
, ∀k ∈ [n]

zn+1 ≥
∣∣2a− 1

4

∣∣, ‖z‖2 ≤ 2a+ 1
4 .

�

C.9 Proof of Theorem 9

The inner maximization of (33) can be analyzed separately for each yk. For every index
k such that yk = 0, it holds that

∑n
k=1

(
− 2ŷkyk + log(e2ŷk + 1)

)
monotonously increases

with respect to ŷk. Thus, we need to find δk that maximizes ŷk in order to maximize the
objective. Therefore, the worst-case adversary δ?k is

δ?
k:yk=0

= arg max
‖δk‖∞≤ε

(P̂∑
i=1

dikδ
>
k (vi − wi)

)
= ε · sgn

(P̂∑
i=1

dik(vi − wi)>
)
. (57)

For each index k such that yk = 1, it holds that
∑n

k=1

(
−2ŷkyk+log(e2ŷk +1)

)
monotonously

decreases with respect to ŷk. Thus, we need to minimize ŷk. Therefore,

δ?
k:yk=1

= arg min
‖δk‖∞≤ε

(P̂∑
i=1

dikδ
>
k (vi − wi)

)
= −ε · sgn

(P̂∑
i=1

dik(vi − wi)>
)
. (58)

The two cases can be combined as δ?k = −ε·sgn
(

(2yk−1)
∑P̂

i=1 dik(vi−wi)>
)

. Concatenating

δ?1 , . . . , δ
?
n back into the matrix form yields the worst-case perturbation matrix ∆?

BCE =

−ε · sgn
(

(2y − 1)
∑P̂

i=1Di(vi − wi)>
)

.

60

Efficient Global Optimization of Two-layer ReLU Networks: Adversarial Training and Quadratic-time Algorithms

Moreover, notice that the objective is separable based on those k such that yk = 0 and those
k such that yk = 1:

n∑
k=1

(
− 2ŷkyk + log(e2ŷk + 1)

)
=
∑
k:yk=1

(
− 2ŷk + log(e2ŷk + 1)

)
+
∑
k:yk=0

log
(
e2ŷk + 1

)
=
∑
k:yk=1

log
(e2ŷk + 1

e2ŷk

)
+
∑
k:yk=0

log
(
e2ŷk + 1

)
=
∑
k:yk=1

log
(
e−2ŷk + 1

)
+
∑
k:yk=0

log
(
e2ŷk + 1

)

=
∑
k:yk=1

log

(
exp

(
− 2

P̂∑
i=1

dikx
>
k (vi − wi) + 2ε ·

∥∥∥ P̂∑
i=1

dik(vi − wi)
∥∥∥

1

)
+ 1

)
(59)

+
∑
k:yk=0

log

(
exp

(
2

P̂∑
i=1

dikx
>
k (vi − wi) + 2ε ·

∥∥∥ P̂∑
i=1

dik(vi − wi)
∥∥∥

1

)
+ 1

)
(60)

=
n∑
k=1

log

(
exp

(
2
(

(2yk − 1)
P̂∑
i=1

dikx
>
k (vi − wi) + ε ·

∥∥∥ P̂∑
i=1

dik(vi − wi)
∥∥∥

1

))
+ 1

)

=

n∑
k=1

f ◦ gk
(
{vi, wi}P̂i=1

)
where (59) and (60) are obtained by substituting in (57) and (58), and f(·), g(·) are defined
in (34). Substituting the term

∑n
k=1

(
− 2ŷkyk + log(e2ŷk + 1)

)
in (33) with the term∑n

k=1 f ◦ gk
(
{vi, wi}P̂i=1

)
yields the formulation (34). Since the function f(·) is convex

non-decreasing and g(·) is convex, the optimization (34) is convex. �

C.10 Proof of Lemma 11

According to (Pilanci and Ergen, 2020), recovering the neural network weights by substituting
(4) into (48) leads to

q? = min
(vi,wi)Pi=1

`

(
P∑
i=1

DiX(vi − wi), y

)
+ β

P∑
i=1

(
‖vi‖2 + ‖wi‖2

)
= min

(uj ,αj)m
?

j=1

`

(
m?∑
j=1

(Xuj)+αj , y

)
+
β

2

m?∑
j=1

(
‖uj‖22 + α2

j

)

Similarly, we can recover the network weights from the solution (ṽ?i , w̃
?
i)
P̃
i=1 of (49) using

(ũj1i , α̃j1i) =

(
ṽ?i√
‖ṽ?i ‖2

,
√
‖ṽ?i ‖2

)
, (ũj2i , α̃j2i) =

(
w̃?i√
‖w̃?i ‖2

,−
√
‖w̃?i ‖2

)
, ∀i ∈ [P̃]. (61)

61

Bai, Gautam, and Sojoudi

Unlike in (4), zero weights are not discarded in (61). For simplicity, we use ũ1, . . . , ũm̃? to
refer to the hidden layer weights and use α̃1, . . . , α̃m̃? to refer to the output layer weights

recovered using (61). Since (ṽ?i , w̃
?
i)
P̃
i=1 is a solution to (49), it satisfies (2Di − In)Xṽ?i ≥ 0

and (2Di − In)Xw̃?i ≥ 0 for all i ∈ [P̃]. Thus, we can apply Lemma 10 to obtain:

q̃? =`

(P̃∑
i=1

DiX(ṽ?i − w̃?i), y
)

+ β

P̃∑
i=1

(
‖ṽ?i ‖2 + ‖w̃?i ‖2

)
=`

(m̃?∑
j=1

(Xũ?j)+αj , y

)
+
β

2

m̃?∑
j=1

(
‖ũ?j‖22 + α̃?2j

)

≥ min
(uj ,αj)m̃

?
j=1

`

(m̃?∑
j=1

(Xuj)+αj , y

)
+
β

2

m̃?∑
j=1

(
‖uj‖22 + α2

j

)

Since P̃ ≥ P , m? ≤ 2P and m̃? = 2P̃ , we have m̃? ≥ m?. Therefore, according to Section 2
and Theorem 6 of (Pilanci and Ergen, 2020), we have:

q? = min
(uj ,αj)m

?
j=1

`

(m?∑
j=1

(Xuj)+αj , y

)
+
β

2

m?∑
j=1

(
‖uj‖22 + α2

j

)

= min
(uj ,αj)m̃

?
j=1

`

(m̃?∑
j=1

(Xuj)+αj , y

)
+
β

2

m̃?∑
j=1

(
‖uj‖22 + α2

j

)
≤ q̃?.

The above inequality q? ≤ q̃? shows that a neural network with more than m neurons in the
hidden layer will yield the same loss as the neural network with m neurons when optimized.

Note that (49) can always attain q? by simply substituting in the optimal solution of (48)
and assigning zeros to all other additional vi and wi, implying that q? ≥ q̃?. Since q? is
both an upper bound and a lower bound on q̃?, we have q̃? = q?, proving that as long as all
matrices in D are included, the existence of redundant matrices does not change the optimal
objective value. �

62

	Introduction
	Notations
	Practical Convex Neural Network Training
	Prior work – convex ANN training
	A practical algorithm for convex training
	An ADMM Algorithm for Global Neural Network Training
	s and v updates
	u updates
	Squared loss
	General convex loss functions

	SCP-based Layer-wise Convex Training
	One-shot sampling of hidden-layer weights
	Iterative sampling of hidden-layer weights

	Convex Adversarial Training
	Background about adversarial training
	The convex adversarial training formulation
	Practical algorithm for convex adversarial training
	Convex hinge loss adversarial training
	Convex squared loss adversarial training
	Convex binary cross-entropy loss adversarial training
	More complex ANN structures

	Numerical Experiments
	Approximated convex standard training
	The ADMM convex training algorithm
	Squared loss (closed form u updates) – convergence
	Squared loss (closed form u updates) – complexity
	Squared loss (closed form u updates) – MNIST prediction
	Binary cross-entropy loss (iterative u updates) – MNIST prediction
	Choosing the ADMM step size a

	The SCP convex training formulation
	Convex adversarial training
	Hinge loss convex adversarial training – 2D illustration
	Hinge loss convex adversarial training – the optimization landscape
	Hinge loss convex adversarial training – image classification
	Squared loss convex adversarial training

	Concluding Remarks
	Additional Experiments
	Adversarial training on the CIFAR-10 dataset with different Ps
	Extensions
	Extending the analysis to CNNs
	The vector-output counterpart of Theorem 4
	p norm-bounded perturbation set for hinge loss
	Proofs
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Details about the strong duality between (17) and (14)
	General loss functions
	Squared loss

	Proof of Theorem 5
	Proof of Corollary 6
	Proof of Theorem 7
	Proof of Theorem 8
	Proof of Theorem 9
	Proof of Lemma 11

