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Abstract

Recent work has shown that the training of a one-hidden-layer, scalar-output fully-
connected ReLU neural network can be reformulated as a finite-dimensional convex
program. Unfortunately, the scale of such a convex program grows exponentially
in data size. In this work, we prove that a stochastic procedure with a linear
complexity well approximates the exact formulation. Moreover, we derive a convex
optimization approach to efficiently solve the “adversarial training” problem, which
trains neural networks that are robust to adversarial input perturbations. Our method
can be applied to binary classification and regression, and provides an alternative
to the current adversarial training methods, such as Fast Gradient Sign Method
(FGSM) and Projected Gradient Descent (PGD). We demonstrate in experiments
that the proposed method achieves a noticeably better adversarial robustness and
performance than the existing methods.

1 Introduction

Over the past decade, deep learning has become one of the most prominent subfields of machine
learning. Neural networks are used in various applications, ranging from natural language process-
ing to computer vision and reinforcement learning [Madry et al., 2018, Goodfellow et al., 2016,
Krizhevsky et al., 2012, Mnih et al., 2013]. They are also studied for safety-critical systems, such as
autonomous driving [Bojarski et al., 2016]. As neural networks form the backbone of modern-day
technology, it is critical to guarantee their safety while accelerating their training. One-hidden-layer
neural networks are the simplest form possessing the vast representation power of neural networks
[Hornik, 1991] and their theoretical analysis helps with understanding more complex networks [Du
et al., 2019, Venturi et al., 2019].

Adversarial robustness has emerged as a powerful framework for evaluating the safety of machine
learning models [Madry et al., 2018]. In the field of computer vision, for instance, it has been shown
that slight manipulations in the input images can elicit misclassifications in neural networks with
high confidence [Szegedy et al., 2014, Moosavi-Dezfooli et al., 2016, Goodfellow et al., 2015]. Thus,
adversarial robustness is crucial to safety-critical technologies such as autonomous driving, where
highly susceptible models could result in grave consequences [Kurakin et al., 2017].

1.1 Related work and overview

The training of neural networks usually relies on Stochastic Gradient Descent (SGD), which only
guarantees convergence to a local minimum for non-convex programs, including widely-used neural
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network training formulations. While it has been shown that gradient descent can converge to a global
optimizer for one-hidden-layer ReLU networks when they are wide enough [Lacotte and Pilanci,
2020, Du et al., 2019] or when the inputs follow a Gaussian distribution [Brutzkus and Globerson,
2017], spurious local minima can still exist in general applications.

Convex programs have the nice property that all local minima are global. To overcome the issue of
arriving at spurious local minima when training neural networks, existing works have considered
convexifying the neural network training problem [Bengio et al., 2006, Bach, 2017]. More recently,
[Pilanci and Ergen, 2020] proposed a convex optimization problem with the same global minimum as
the non-convex cost function for a one-hidden-layer fully-connected ReLU neural network. While the
explicit focus is on the case of squared loss, their analysis extends to arbitrary convex loss functions.

Unfortunately, the size of the convex program proposed in [Pilanci and Ergen, 2020] grows exponen-
tially with respect to the rank of the training data matrix, leading to an exponential overall complexity.
To address this issue, we analyze a practical stochastic approximation procedure that forms convex
training programs whose scales grow linearly with respect to the training data size. We provide a
bound on the level of suboptimality of this approximation and empirically show that the convex
approximation procedure returns a lower training cost than directly minimizing the non-convex cost
function with SGD back-propagation.

On the adversarial robustness side, while there have been studies on robustness certification [Anderson
et al., 2020, Ma and Sojoudi, 2020], researchers have also been working extensively on training
classifiers whose predictions are robust to input perturbations [Kurakin et al., 2017, Goodfellow
et al., 2015, Huang et al., 2015]. “Adversarial training” is one of the most effective methods to train
robust classifiers, compared with other methods such as obfuscated gradients [Athalye et al., 2018].
More recently, [Cohen et al., 2019] analyzed the feasibility of achieving robustness via “random
smoothing”. However, this method is more suitable for defending `2 attacks rather than the more
common `∞ attacks [Blum et al., 2020].

Optimizing the adversarial training cost function requires solving a highly non-convex minimax
problem, which is difficult to solve efficiently. In this work, we tackle the issue by building upon
aforementioned works to develop convex robust optimization problems for adversarial training,
specifically focusing on the cases of hinge loss (for binary classification) and squared loss (for
regression). We also offer experiment results to demonstrate the efficacy of the proposed adversarial
training formulation and its advantages over the traditional methods.

2 Background

2.1 Notations

Throughout this work, we focus on fully-connected neural networks with one ReLU-activated hidden
layer and a scalar output, defined as

ŷ =

m∑
j=1

(Xuj)+αj ,

where X ∈ Rn×d is the input data matrix with n data points in Rd and ŷ ∈ Rn is the output vector
of the neural network. We denote the target output used for training as y ∈ Rn. u1, . . . , um ∈ Rd are
the weight vectors of the m neurons in the hidden layer while α1, . . . , αm ∈ R are the weights of the
output layer. The symbol (·)+ = max{0, ·} indicates the ReLU activation function.

Furthermore, let ‖·‖p denote the `p-norm within Rn and � denote the Hadamard product. For
P ∈ N+, we define [P ] as the set {a ∈ N+|a ≤ P}, where N+ is the set of positive integer numbers.
For q ∈ Rn, sgn(q) ∈ Rn denotes the sign of each entry of q. [q ≥ 0] denotes a boolean vector in
{0, 1}n with ones at the locations of the nonnegative entries of q and zeros at the remaining locations.
The symbol diag(q) denotes a diagonal matrix Q ∈ Rn×n, where Qii = qi for all i, and Qij = 0 for
all i 6= j. The symbol 1 defines a column vector with all entries being 1. For a ∈ Rn and b ∈ R,
the inequality a ≥ b means that ai ≥ b for all i ∈ [n]. For a set S, the notation ΠS(·) denotes the
projection onto the set and |S| denotes the cardinality of the set. For a random variable r ∈ Rn, the
notation r ∼ N (0, In) indicates that r is a standard normal random vector.
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2.2 Convex neural-network training

We define the problem of training the above neural network with a regularized convex loss function
`(ŷ, y) as:

min
(uj ,αj)mj=1

`

( m∑
j=1

(Xuj)+αj , y

)
+
β

2

m∑
j=1

(
‖uj‖22 + α2

j

)
. (1)

where β > 0 is a regularization parameter. Consider a set of diagonal matrices {diag([Xu ≥ 0])|u ∈
Rd}, and let the distinct elements of this set be denoted as D1, . . . , DP . The constant P corresponds
to the total number of partitions of Rd by hyperplanes passing through the origin that are also
perpendicular to the rows of X [Pilanci and Ergen, 2020]. Intuitively, P can be regarded as the
number of possible ReLU activation patterns associated with X .

Consider the convex optimization problem

min
(vi,wi)Pi=1

`

( P∑
i=1

DiX(vi − wi), y
)

+ β

P∑
i=1

(
‖vi‖2 + ‖wi‖2

)
(2)

s. t. (2Di − In)Xvi ≥ 0, (2Di − In)Xwi ≥ 0, ∀i ∈ [P ]

and its dual formulation

max
v
−`∗(v) s. t. |v>(Xu)+| ≤ β, ∀u : ‖u‖2 ≤ 1 (3)

where `∗(v)
∆
= maxz z

>v − `(z, y) is the Fenchel conjugate function. Note that (3) is a convex
semi-infinite program. The next theorem borrowed from [Pilanci and Ergen, 2020] explains the
relationship between the non-convex training problem (1), the convex problem (2), and the dual
problem (3) when the neural network is sufficiently wide.

Theorem 1 ([Pilanci and Ergen, 2020]). Let (v?i , w
?
i )Pi=1 denote a solution of (2) and define m? as

|{i : v?i 6= 0}|+ |{i : w?i 6= 0}|. Given a convex loss function `(·, y), the non-convex problem (1) has
the same optimal objective as the convex problem (2) provided that the neural network width m is at
least m?, where m? is upper-bounded by n+ 1. Moreover, (3) is a strong dual to (1) and also attains
the same optimal objective. The optimal neural network weights (u?j , α

?
j )
m
j=1 can be recovered using

the formulas

(u?j1i , α
?
j1i) =

( v?i√
‖v?i ‖2

,
√
‖v?i ‖2

)
if v?i 6= 0;

(u?j2i , α
?
j2i) =

( w?i√
‖w?i ‖2

,−
√
‖w?i ‖2

)
if w?i 6= 0.

(4)

where the remaining m−m? neurons are chosen to have zero weights.

2.3 Adversarial training

[Goodfellow et al., 2015] proposes that a classifier is considered robust against adversarial perturba-
tions if it assigns the same label to all inputs within an `∞ bound with radius ε. The uncertainty set
can then be defined as

X =
{
X + ∆ ∈ Rn×d

∣∣∣ ∆ = [δ1, . . . , δn]>, δk ∈ Rd, ‖δk‖∞ ≤ ε,∀k ∈ [n]
}
.

As suggested in [Madry et al., 2018], one common method for training robust classifiers is to minimize
the maximum loss within the perturbation set by solving the following minimax problem:

min
(uj ,αj)mj=1

(
max

∆:X+∆∈X
`

( m∑
j=1

(
(X + ∆)uj

)
+
αj , y

)
+
β

2

m∑
j=1

(
‖uj‖22 + α2

j

))
(5)

This process of “training with adversarial data” is often referred to as “adversarial training”, as
opposed to “standard training” that trains on clean data. In the prior literature, Fast Gradient Sign
Method (FGSM) and Projected Gradient Descent (PGD) are commonly used to numerically solve the

3



inner maximization of (5) and generate adversarial examples in practice [Madry et al., 2018]. More
specifically, FGSM generates adversarial examples x̃ using

x̃ = x+ ε · sgn
(
∇x`

( m∑
j=1

(x>uj)+αj , y
))
. (6)

Since FGSM is a one-shot method that assumes linearity, it may miss the worst-case adversarial input.
PGD better explores the nonlinear landscape of the problem and is capable of generating “universal”
first-order adversaries by running the iterations

x̃t+1 = ΠX

(
x̃t + γ · sgn

(
∇x`

( m∑
j=1

(x>uj)+αj , y
)))

, x̃0 = x (7)

for t = 0, 1, . . . , where xt is the perturbed data vector at iteration t, ΠX denotes the projection onto
the set X , and γ > 0 is the step size.

3 Practical Convex Training

The worst-case computational complexity of solving (2) for the case of squared loss isO
(
d3r3(nr )3r

)
using standard interior-point solvers [Pilanci and Ergen, 2020]. Here, r is the rank of the data matrix
X and in many cases r = d. Such a complexity is polynomial in n, a significant improvement
over previous algorithms, but is exponential in r and is thus prohibitively high for many practical
applications. For example, d = 3 × 32 × 32 = 3072 for the CIFAR-10 and CIFAR-100 image
classification datasets. Such high complexity is due to the large number of Di matrices, which
is upper-bounded by 2r

( e(n−1)
r

)r
[Pilanci and Ergen, 2020]. To tackle this issue, we introduce

Algorithm 1 that approximately solves (2) by independently sampling a subset of the Di matrices.
Alg 1 can train networks with widths much less than m?.

Algorithm 1 Practical training
1: Generate Ps distinct diagonal matrices via Di ← diag([Xai ≥ 0]), where ai ∼ N (0, Id) i.i.d.

for all i ∈ [Ps].
2: Solve

p?s1 = min
(vi,wi)

Ps
i=1

`
( Ps∑
i=1

DiX(vi − wi), y
)

+ β

Ps∑
i=1

(
‖vi‖2 + ‖wi‖2

)
(8)

s. t. (2Di − In)Xvi ≥ 0, (2Di − In)Xwi ≥ 0, ∀i ∈ [Ps].

;3: Recover u1, . . . , ums
and α1, . . . , αms

from the solution (v?si , w
?
si)

Ps
i=1 of (8) using (4).

The following theorem provides a probabilistic bound on the level of suboptimality of the neural
network trained using Alg 1.

Theorem 2. Consider an additional diagonal matrix DPs+1 sampled independently via the process
described in Alg 1, and then construct

p?s2 = min
(vi,wi)

Ps+1
i=1

`
( Ps+1∑

i=1

DiX(vi − wi), y
)

+ β

Ps+1∑
i=1

(
‖vi‖2 + ‖wi‖2

)
(9)

s. t. (2Di − In)Xvi ≥ 0, (2Di − In)Xwi ≥ 0, ∀i ∈ [Ps + 1].

If Ps ≥ n+1
ψξ − 1, where ψ and ξ are preset confidence level constants between 0 and 1, then with

probability no smaller than 1− ξ, it holds that P{p?s2 < p?s1} ≤ ψ.

The proof of Theorem 2 is presented in section A.2. Intuitively, Theorem 2 shows that independently
sampling an additional DPs+1 matrix will not reduce the training cost with high probability.

Compared with the exponential relationship between P and r, a satisfactory value of Ps should be on
the order of n

ξφ and therefore it has a linear relationship with n and is independent of r. Thus, when
r is large, solving the approximated formulation (8) is significantly (exponentially) more efficient
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than solving the exact formulation (2). On the other hand, Alg 1 is no longer deterministic due to the
stochastic sampling of the Di matrices, and yields solutions that upper-bound those of (2). While
Alg 1 is not exact, we have verified empirically (shown in Appendix A.1.1) that even when Ps is
significantly smaller than P , Alg 1 still reliably returns a low training cost.

4 Convex Adversarial Training

While PGD adversaries have been considered as “universal”, adversarial training with PGD adver-
saries has several limitations. Since the optimization landscapes of neural networks are generally
non-concave over ∆, there is no guarantee that PGD will find the true worst-case adversary within
the perturbation bound. Our experiments show that back propagation gradient methods can struggle
to solve (5) and can be very sensitive to initializations. Moreover, iteratively solving the bi-level
optimization (5) requires an algorithm with a nested loop structure, which is computationally cumber-
some. To conquer such difficulties, we leverage Theorem 1 to re-characterize (5) as robust, convex
upper-bound problems that can be efficiently minimized globally.

We first develop a result about adversarial training involving general convex loss functions. The proof
is provided in section A.3. Consider the optimization problem

min
(vi,wi)P̂i=1

(
max

∆:X+∆∈U
`

( P̂∑
i=1

Di(X + ∆)(vi − wi), y
)

+ β

P̂∑
i=1

(
‖vi‖2 + ‖wi‖2

))
(10a)

s. t. min
∆:X+∆∈U

(2Di − In)(X + ∆)vi ≥ 0, min
∆:X+∆∈U

(2Di − In)(X + ∆)wi ≥ 0, ∀i ∈ [P̂ ]

(10b)
where U is any convex additive perturbation set and D1, . . . , DP̂ denote all distinct diagonal matrices
diag([(X + ∆)u ≥ 0]) that can be obtained for all u ∈ Rd and all ∆ : X + ∆ ∈ U (note that the
number of such matrices is shown by P̂ ).

Theorem 3. Let (v?robi , w
?
robi)

P̂
i=1 denote a solution of (10) and define m̂? as |{i : v?robi 6= 0}|+ |{i :

w?robi 6= 0}|. When the neural network width m satisfies m ≥ m̂?, the optimization problem (10)
provides an upper-bound on the non-convex adversarial training problem (5). The robust neural
network weights (u?robj , α

?
robj )m̂j=1 can be recovered using (4).

When the uncertainty set is zero, Theorem 3 reduces to Theorem 1. In light of Theorem 3, we use
optimization (10) as a surrogate for optimization (5) to train the neural network. We will show that
the new problem can be efficiently solved in important cases. By the analogy to Theorem 2, an
approximation to (10) can be applied to train neural networks with width much less than m̂?. Since
(10) includes all Di matrices in (2), we have P̂ ≥ P . While P̂ is at most 2n in the worst case, since ε
is often small, we expect P̂ to be relatively close to P , where P ≤ 2r

( e(n−1)
r

)r
as discussed above.

The robust constraints in (10b) force all points within the perturbation set to be feasible. Intuitively,
for every j ∈ [m̂?], (10b) forces the ReLU activation pattern sgn

(
(X + ∆)u?robj

)
to stay the same for

all ∆ such that X + ∆ ∈ U . Moreover, if ∆?
rob denote a solution to the inner maximization in (10a),

then X + ∆?
rob corresponds to the worst-case adversarial inputs for the recovered neural network.

Corollary 3.1. For the perturbation set X , the constraints in (10b) can be equivalently replaced by

(2Di − In)Xvi ≥ ε‖vi‖1, (2Di − In)Xwi ≥ ε‖wi‖1, ∀i ∈ [P̂ ] (11)

The proof of the corollary is provided in section A.4. Each vector element in the left-hand-sides
should be greater than or equal to the corresponding scalar in the right-hand-sides.

5 Convex Hinge Loss Adversarial Training

While the inner maximization of the robust problem (10) is still hard to solve in general, it is tractable
for some loss functions. The simplest case is the piecewise-linear hinge loss `(ŷ, y) = (1− ŷ � y)+,
which is widely used for classification. Here, we focus on binary classification with y ∈ {−1, 1}n.1

1Other `p norm-bounded additive perturbation sets can be similarly analyzed, as shown in A.8. It is also
straightforward to extend the analysis in this section to any convex piecewise-affine loss functions.
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Consider the training problem for a one-hidden-layer neural network with `2 regularized hinge loss:

min
(uj ,αj)mj=1

(
1

n
· 1>

(
1− y �

m∑
j=1

(Xuj)+αj

)
+

+
β

2

m∑
j=1

(
‖uj‖22 + α2

j

))
(12)

The adversarial training problem considering the `∞-bounded adversarial data uncertainty X is:

min
(uj ,αj)mj=1

(
max

∆:X+∆∈X

1

n
· 1>

(
1− y �

m∑
j=1

(
(X + ∆)uj

)
+
αj

)
+

+
β

2

m∑
j=1

(
‖uj‖22 + α2

j

))
(13)

Applying Theorem 3 and Corollary 3.1 leads to the following formulation as an upper bound on (13):

min
(vi,wi)P̂i=1

(
max

∆:X+∆∈X

1

n
· 1>

(
1− y �

P̂∑
i=1

Di(X + ∆)(vi − wi)
)

+

+ β

P̂∑
i=1

(
‖vi‖2 + ‖wi‖2

))
s. t. (2Di − In)Xvi ≥ ε‖vi‖1, (2Di − In)Xwi ≥ ε‖wi‖1, ∀i ∈ [P̂ ] (14)

Instead of enumerating an infinite number of points in X , we only need to enumerate all vertices
of X , which is finite. This is because the solution ∆?

hinge to the inner maximum always occurs at a
vertex of X , as will be shown in Theorem 4. Solving the inner maximization of (14) in closed form
leads us to the next theorem, whose proof is provided in section A.5.

Theorem 4. For the binary classification problem, the inner maximum of (14) is attained at ∆?
hinge =

−ε · sgn
(∑P̂

i=1Diy(vi − wi)>
)

, and the bi-level optimization problem (14) is equivalent to the
classic optimization:

min
(vi,wi)P̂i=1

 1

n

n∑
k=1

(
1− yk

P̂∑
i=1

dikx
>
k (vi − wi) + ε

∥∥∥∥ P̂∑
i=1

dik(vi − wi)
∥∥∥∥

1

)
+

+β
∑P̂
i=1

(
‖vi‖2 + ‖wi‖2

)
 (15)

s. t. (2Di − In)Xvi ≥ ε‖vi‖1, (2Di − In)Xwi ≥ ε‖wi‖1, ∀i ∈ [P̂ ]

where dik denotes the kth diagonal element of Di.

The problem (15) is a finite-dimensional convex program that provides an upper bound on (13), which
can be considered as the robust counterpart of (12). We can thus solve (15) to robustly train the neural
network. The `1 norm term in (15) explains the regularization effect of adversarial training.

5.1 Practical algorithm for convex adversarial training

In light of Theorem 2, similar to the strategy rendered in Alg 1, we use a subset of Di matrices
for practical adversarial training. For adversarial training, since the Di matrices depend on the
perturbation ∆, we also add randomness to the data matrix X in the sampling process to cover all
Di matrices, leading to Algorithm 2. By the analogy between Alg 1 and Alg 2, we expect that even
when the cardinality of the subset, denoted as Ps, is significantly less than P̂ , Alg 2 still provides a
good approximation to (15). Pa and S are preset parameters that determine the number of random
weight samples, with Pa · S ≥ Ps.

6 Convex Squared Loss Adversarial Training

Squared loss `(ŷ, y) = 1
2‖ŷ − y‖

2
2 is another commonly used loss function in machine learning. It is

widely used for regression tasks, but can also be used for classification.

Consider the non-convex training problem of a one-hidden-layer ReLU neural network trained with
the `2-regularized squared loss:

min
(uj ,αj)mj=1

1

2

∣∣∣∣∣∣∣∣ m∑
j=1

(Xuj)+αj − y
∣∣∣∣∣∣∣∣2

2

+
β

2

m∑
j=1

(
‖uj‖22 + α2

j

)
. (17)

6



Algorithm 2 Practical adversarial training
1: Generate Ps distinct diagonal matrices via the following iterations:
2: for i = 1 to Pa do
3: ai ∼ N (0, Id) i.i.d.
4: Di1 ← diag([Xai ≥ 0])
5: for j = 2 to S do
6: Rij ← [r1, . . . , rd], where rh ∼ N (0, In),∀h ∈ [d]

7: Dij ← diag([Xijai ≥ 0]), where Xij ← X + ε · sgn(Rij)
8: end for
9: end for

10: Solve

min
(vi,wi)

Ps
i=1

 1

n

n∑
k=1

(
1− yk

Ps∑
i=1

dikx
>
k (vi − wi) + ε

∣∣∣∣∣∣ Ps∑
i=1

dik(vi − wi)
∣∣∣∣∣∣

1

)
+

+β
∑Ps

i=1

(
‖vi‖2 + ‖wi‖2

)
 (16)

s. t. (2Di − In)Xvi ≥ ε‖vi‖1, (2Di − In)Xwi ≥ ε‖wi‖1, ∀i ∈ [Ps].

11: Recover u1, . . . , ums
and α1, . . . , αms

from the solution (v?robsi , w
?
robsi)

Ps
i=1 of (16) using (4).

Coupling this nominal problem with the uncertainty set X gives us the robust counterpart of (17) as

min
(uj ,αj)mj=1

(
max

∆:X+∆∈X

1

2

∣∣∣∣∣∣∣∣ m∑
j=1

(
(X + ∆)uj

)
+
αj − y

∣∣∣∣∣∣∣∣2
2

+
β

2

m∑
j=1

(
‖uj‖22 + α2

j

))
. (18)

Applying Theorem 3 and Corollary 3.1 leads to the following formulation as an upper bound on (18):

min
(vi,wi)P̂i=1

 max
∆:X+∆∈X

1

2

∣∣∣∣∣
∣∣∣∣∣
P̂∑
i=1

Di(X + ∆)(vi − wi)− y

∣∣∣∣∣
∣∣∣∣∣
2

2

+ β

P̂∑
i=1

(
‖vi‖2 + ‖wi‖2

) (19)

s. t. (2Di − In)Xvi ≥ ε‖vi‖1, (2Di − In)Xwi ≥ ε‖wi‖1, ∀i ∈ [P̂ ].

Solving the maximization over ∆ in closed form leads to the next result, with the proof provided in
Appendix A.6.
Theorem 5. The optimization problem (19) is equivalent to the convex program:

min
(vi,wi,bi,ci)P̂i=1,a,z

a+ β

P̂∑
i=1

(bi + ci) (20)

s. t. (2Di − In)Xvi ≥ ε‖vi‖1, (2Di − In)Xwi ≥ ε‖wi‖1, ‖vi‖2 ≤ bi, ‖wi‖2 ≤ ci, ∀i ∈ [P̂ ]

zk ≥
∣∣∣∣ P̂∑
i=1

Dikx
T
k (vi − wi)− yk

∣∣∣∣+ ε

∣∣∣∣∣∣∣∣ P̂∑
i=1

Dik(vi − wi)
∣∣∣∣∣∣∣∣

1

, ∀k ∈ [n]

zn+1 ≥
∣∣2a− 1

4

∣∣, ‖z‖2 ≤ 2a+ 1
4 .

Problem (20) is a convex optimization that can be used to train robust neural networks. However,
directly using (20) for adversarial training can be intractable due to the large number of constraints
that arise when we include all D matrices associated with all ∆ such that X + ∆ ∈ X . To this end,
the approximate training algorithm (Alg 2) can be used where we sample a subset of the diagonal
matrices D1, D2, . . . , DPs

. As before, the optimality gap can be measured similar to Theorem 2.

7 Numerical Experiments

In this section, we focus on the experiments with the proposed convex adversarial training method
for the hinge loss. Standard training experiment results that supports Theorem 2 are provided in
Appendix A.1.1 and experiment results with the squared loss convex adversarial training formulation
are provided in Appendix A.1.3.
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Figure 1: Visualization of binary decision boundaries in 1-dimensional space. The positive point in
the highlighted region was considered as an outlier and ignored by Alg 2.

Standard Training (Alg 1) Adversarial Training (Alg 2)

Figure 2: Visualization of binary decision boundaries in 2-dimensional space. The red crosses are
positive training points while the red circles are negative points. The region classified as positive is
in blue, whereas the negative region is in black. The white box around each training data is the `∞
perturbation bound. The white dot at a vertex of each box is the worst-case perturbation. Alg 2 fitted
the perturbation boxes, while the standard training fitted the points.

To analyze the behavior of the developed problem (15) and to visualize the decision boundaries, we
first ran Alg 1 and Alg 2 on contrived 1-dimensional data for binary classification. A bias term was
included by concatenating a column of ones to the data matrix X and the parameter ε = 0.03 was
used. X included 15 randomly generated points and the labels were randomly generated such that
y ∈ {−1,+1}15. For all experiments, CVX [Grant and Boyd, 2014] and CVXPY [Agrawal et al.,
2018, Diamond and Boyd, 2016] with MOSEK [ApS, 2019] and SeDuMi [Sturm, 1999] solvers
were used for solving optimization on a MacBook Pro laptop computer. Figure 1 shows that in the
1-dimensional space, Alg 2 ignores the points with conflicting perturbation sets, and ensures all points
in the perturbation set to be predicted as the same class.

Similar experiments were performed on a contrived 2-dimensional dataset. 34 random points were
generated in [−2, 2]× [−2, 2]. The algorithms were run with the parameters Ps = 360 and ε = 0.08
with the bias term again introduced. Figure 2 shows the decision boundary, confirming that adversarial
training (Alg 2) fits the perturbation boxes as designed.

We then verified the real-world performance of the proposed convex training methods on a subset of
the CIFAR-10 image classification dataset [Krizhevsky, 2012] for binary classification between the
second class and the eighth class. The subset consists of 600 images downsampled to d = 147. The
parameters were ε = 10, β = 10−4, and Ps = 36, corresponding to neural network widths of at most
72. We used the FGSM and PGD methods to generate adversarial examples and used both clean data
and adversarial data to compare the performance of Alg 1, Alg 2, the traditional standard training
method (standard backprop; abbreviated as GD-std in the tables), and the widely-used adversarial
training method: use FGSM or PGD to solve for the inner maximum of (13) and use gradient descent
back-propagation to solve the outer minimization (abbreviated as GD-FGSM and GD-PGD in the
tables). 2

2We used a modified version of [Tromgy, 2019] for the implementation of back-propagation algorithms.
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Table 1: Average optimal objective and accuracy on clean and adversarial data over 7 runs on the
CIFAR-10 database. The numbers in the parentheses are the standard deviations over the 7 runs.

METHOD CLEAN FGSM ADV. PGD ADV. OBJECTIVE

GD-STD 79.56 % (.4138%) 47.09 % (.4290%) 45.6 % (.4796%) .3146 (.01101)

GD-FGSM 75.3 % (3.104%) 61.03 % (4.763%) 60.99 % (4.769%) .8370 (6.681 × 10−2)

GD-PGD 76.56 % (.6038%) 62.48 % (.2215%) 62.44 % (.1988%) .8220 (3.933 × 10−3)

ALG 1 81.01 % (.8090%) .4857 % (.1842%) .3571 % (.1239%) 6.910× 10−3
(3.020 × 10−4)

ALG 2 78.36 % (.3250%) 66.95 % (.4564%) 66.81 % (0.4862%) .6511 (6.903 × 10−3)

Hinge loss has a flat part that has a zero gradient. To generate adversarial examples even in this part,
we treat it as “leaky hinge loss” via the model max(ζ(1− ŷ · y), 1− ŷ · y), where ζ → 0+. Hence,
the FGSM calculation (6) evaluates to

x̃ = x− ε · sgn
(
y ·
∑
j: x>uj≥0

(
ujαj

))
.

Similarly, the PGD method (7) evaluates to

x̃t+1 = ΠX

(
x̃t − γ · sgn

(
y ·
∑
j: x>uj≥0(ujαj)

))
, x̃0 = x.

where the projection step can be simply performed by clipping the coordinates that deviate more than
ε from x. In the following experiments, we used γ = ε/30 and ran PGD for 40 steps.

The results on the CIFAR-10 dataset are provided in Table 1. The convex standard training algorithm
(Alg 1) achieved a slightly higher clean accuracy compared with GD-std, and returned a much lower
training cost. Such behavior supports the findings of Theorem 2. The convex adversarial training
algorithm (Alg 2) achieved better accuracies on clean data and adversarial data compared with GD-
FGSM and GD-PGD. While Alg 2 solves the upper-bound problem (15), it returned a lower training
objective compared with GD-FGSM and GD-PGD, showing that the back-propagation methods
failed to find the optimal network. Moreover, the back-propagation methods are very sensitive to
initializations and hyperparameter choices. In contrast, since Alg 1 and Alg 2 solve convex programs,
they are much less sensitive to initializations and are guaranteed to converge to their global optima.

To further demonstrate the behavior of Alg 1 and Alg 2 and to highlight the improved training
efficiency of Alg 2 compared with GD-PGD, we conducted additional experiments on the smaller
“Mammographic Masses” dataset from the UCI Machine Learning Repository [Dua and Graff, 2017].
Furthermore, the presence of an `1 norm term in the upper-bound formulations (15) and (20) indicates
that adversarial training with a small ε has a regularizing effect, which can improve generalization,
supporting the finding of [Kurakin et al., 2017]. Additional experiments on the mammographic
masses dataset verify this regularization effect. These experiment results are presented in Appendix
A.1.2. In all experiments, Alg 2 vastly outperforms Alg 1 on adversarial data, highlighting the
contribution of Alg 2: a novel efficient convex adversarial training procedure that reliably trains
robust neural networks. Compared with Alg 1, Alg 2 retains the advantage in the absence of spurious
local minima while achieveing adversarial robustness.

8 Conclusion

In this work, we addressed the following two problems regarding the training of one-hidden-layer
fully-connected scalar-output ReLU neural networks:

First, the complexities of prior methods for globally optimizing neural networks are prohibitively
high, whereas local search methods often fail to find the global minimum of the cost function. We
addressed this issue by proposing a stochastic approximation procedure to form convex training
programs. This procedure provably improves the training efficiency exponentially compared with the
exact counterpart and outperforms the back-propagation method.

Second, prior adversarial training methods struggle to find optimal robust neural networks due to
optimization difficulties. We addressed this issue by deriving a new adversarial training formulation
and showed that this formulation is indeed convex and efficiently solvable for the case of hinge loss
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and squared losses. To the best of our knowledge, this is the first convex program for the adversarial
training problem. The structure of the proposed convex formulations explains the regularizing effect
of adversarial training. Through numerical experiments on various datasets, we demonstrated that
the proposed method fits the perturbation boxes around the training data points as designed and
noticeably improves the performance on adversarial test data compared with previous methods.
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Figure 3: The left figure is a randomized 2-dimensional dataset. The right figure is the optimized
training loss for each Ps. The red crosses are positive training points and the white circles are negative
training points. The region classified as positive is in blue, whereas the negative region is in black.
When Ps reaches 128, the mean and variance of the optimized loss become very small.

A Appendix

A.1 Additional experiments

A.1.1 Practical standard training experiments

In this part of the appendix, we use numerical experiments to demonstrate the efficacy of the practical
training algorithm (Alg 1) and to show the level of suboptimality of the neural network trained using
Alg 1. The experiment was performed on a randomly-generated dataset with n = 40 and d = 2. The
upper bound of the number of ReLU activation patterns is 4

( e(39)
2

)2
= 11239. We ran Alg 1 to train

neural networks using the hinge loss with the number of Di matrices equal to 4, 8, 16, . . . , 2048 3

and compared the optimized loss. We repeated this experiment 15 times for each setting, and plotted
the loss in Figure 3. The error bars show the loss values achieved in the best and the worst runs.
When there are more than 128 matrices (much less than the theoretical bound on P ), Alg 1 yields
consistent and favorable results. Further increasing the number of D matrices does not produce a
significantly lower loss. By Theorem 2, Ps = 128 corresponds to ψξ = 0.318.

A.1.2 Experiments on the “Mammographic Masses” dataset

In this part of the appendix, we use experiments on the smaller “Mammographic Masses” dataset to
further demonstrate the behavior of the networks trained with Alg 1 and Alg 2, as well as the superior
efficiency of the algorithms. Furthermore, we verify that when ε is small, adversarial training has a
regularization effect.

We removed instances containing NaNs and randomly selected 70% of the data for training and 30%
for testing, resulting in n = 581 and d = 5. The hyperparameters were ε = 0.12, β = 10−4, and
Ps = 120, corresponding to neural network widths of at most 240. z-score standardization was
performed before the neural networks were trained with the hinge loss via various methods. The
results are shown in Table 2.

As expected, Alg 1 returned a lower training cost than GD-std. However, such advantage in optimiza-
tion was not reflected in the prediction accuracy. Alg 2 returned a higher objective than GD-PGD
did, which is expected since Alg 2 solves the upper-bound problem. From a computational burden
standpoint, GD-PGD can be slow due to the iterative process of generating adversarial training
examples, whereas Alg 2 was noticeably faster. In terms of the prediction accuracy, Alg 2 slightly
outperformed GD-PGD on PGD adversaries. The explanation for the slightly lower accuracies of
Alg 2 on clean and FGSM data is that when the adversarial perturbation boxes of the training data

3Ps was set to 81920, and the sampling was terminated when a sufficient number of Di matrices was
generated. β was chosen as 10−4.
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Table 2: Average optimal objective, CPU time, and prediction accuracy on clean and adversarial data
over 20 runs on the Mammographic Masses dataset.

METHOD CLEAN FGSM ADV. PGD ADV. OBJECTIVE CPU TIME (S)

GD-STD 81.14 % 57.83 % 52.75 % .4144 4.996
GD-PGD 81.35 % 75.82 % 74.00 % .6955 143.0
ALG 1 79.80 % 43.41 % 31.14 % .2428 36.92
ALG 2 80.00 % 75.72 % 75.68 % .9663 38.26
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ple in Section A.1.3. Training (with n = 8
points) and test (with n = 100 points) sets
are uniformly sampled from the distribution.
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in Section A.1.3.

points overlap, there is a trade-off between “assigning the same class to a local neighborhood” and
“assigning the correct class to the most part of the neighborhood”. From experiments, we have
observed that Alg 2 prioritized the former, emphasizing robustness over clean accuracies. Figure 1
illustrates this property with a 1-dimensional example.

To empirically verify the regularization effect of adversarial training, we chose a small adversary
strength (ε = 0.005), and ran both algorithms 15 times with the number of Di matrices Ps equal to
80. The average accuracy on clean data was 82.97% for Alg 2 and 79.44% for Alg 1. This result
verifies that adversarial training with a small ε can be used as a regularizer to alleviate overfitting and
thereby improve accuracy even on clean test data, as suggested in [Kurakin et al., 2017].

A.1.3 Experiments with squared loss adversarial training

In this part of the appendix, the performance of the developed problem (20) was compared with
the standard training problem (2) on a contrived 1-dimensional dataset. Figure 4 shows the true
relationship between the data vector X and the target output y. Throughout this experiment, training
data were constructed by uniformly sampling 8 points from this distribution and test data were
similarly constructed by uniformly sampling 100 points. A bias term was included by concatenating
a column of ones to X .

The training and testing procedure was repeated for 100 trials with standard training (Alg 1). For
the adversarial training (Alg 2), we varied the perturbation radius ε = 0.1, . . . , 0.9. The training
and testing procedure was carried out for 10 trials for each ε. Figure 5 reports the average test mean
square error (MSE) for each setup.

The adversarial training procedure outperforms standard training for all ε choices. We further observe
that the average MSE is the lowest at ε ≈ 0.3. This behavior arises as the robust problem attempts to
account for all points within the uncertainty interval around the sampled training points. When ε is
too small, the robust problem approaches the standard training problem. Larger values of ε cause the
uncertainty interval to overestimate the constant regions of the true distribution, increasing the MSE.
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A.2 Proof of Theorem 2

We start by recasting the constraint of (3) as max‖u‖2≤1 |v>(Xu)+| ≤ β, and obtain

max
‖u‖2≤1

∣∣v>(Xu)+

∣∣ = max
‖u‖2≤1

∣∣v>diag([Xu ≥ 0])Xu
∣∣ = max

i∈[P ]

(
max
‖u‖2≤1

(2Di−In)Xu≥0

∣∣v>DiXu
∣∣),

where the last equality holds by the definition of the Di matrices: D1 . . . , DP are all distinct matrices
that can be formed by diag([Xu ≥ 0]) for some u ∈ Rd. The constraint (2Di − In)Xu ≥ 0 is
equivalent to DiXu ≥ 0 and (In −Di)Xu ≤ 0, which forces Di = diag([Xu ≥ 0]) to hold.

Therefore, (3) can be recast as

max
v
−`∗(v) s. t.

max
‖u‖2≤1

(2Di−In)Xu≥0

∣∣v>DiXu
∣∣ ≤ β, ∀i ∈ [P ]. (21)

To form a tractable convex program that provides an approximation to (21), one can independently
sample a subset of the diagonal matrices. One possible sampling procedure is presented in Alg 1.
The sampled matrices, denoted as D1, . . . , DPs

, can be used to construct the relaxed problem:

d?s1 = max
v
−`∗(v) s. t.

max
‖u‖2≤1

(2D−In)Xu≥0

∣∣v>DiXu
∣∣ ≤ β, ∀i ∈ [Ps]. (22)

The optimization problem (22) is convex with respect to v. [Pilanci and Ergen, 2020] has shown
that (21) has the same optimal objective as its dual problem (2). By following precisely the same
derivation, it can be shown that (22) has the same optimal objective as (8) and p?s1 = d?s1. Moreover,
if an additional diagonal matrix DPs+1 is independently randomly sampled to form (9), then we also
have p?s2 = d?s2, where

d?s2 = max
v
−`∗(v) s. t.

max
‖u‖2≤1

(2D−In)Xu≥0

∣∣v>DiXu
∣∣ ≤ β, ∀i ∈ [Ps + 1].

Thus, the level of suboptimality of (22) compared with (21) is the level of suboptimality of (8)
compared with (2). It can be concluded from [Calafiore and Campi, 2005, Theorem 1] that if
Ps ≥ n+1

ψξ − 1, then with probability no smaller than 1− ξ, the solution v? to the sampled convex
problem (22) satisfies

P
{
D ∈ D :

max
‖u‖2≤1

(2D−In)Xu≥0

∣∣v?>DXu∣∣ > β
}
≤ ψ.

where D denotes the set of all diagonal matrices that can be formed by diag([Xu ≥ 0]) for some
u ∈ Rd, which is the set formed by D1, . . . , DP .

Since DPs+1 is randomly sampled from D, we have

P
{
D ∈ D :

max
‖u‖2≤1

(2D−In)Xu≥0

∣∣v?>DXu∣∣ > β
}

= P
{ max

‖u‖2≤1
(2DPs+1−In)Xu≥0

∣∣v?>DPs+1Xu
∣∣ > β

}
Thus, with probability no smaller than 1− ξ,

P
{ max

‖u‖2≤1
(2DPs+1−In)Xu≥0

∣∣v?>DPs+1Xu
∣∣ > β

}
≤ ψ.

Moreover, d?s2 < d?s1 if and only if
∣∣v?>DPs+1Xu

∣∣ > β with d?s2 = d?s1 otherwise. The proof is
completed by noting that p?s1 = d?s1 and p?s2 = d?s2. �

A.3 Proof of Theorem 3

Before proceeding with the proof, we first present the following result borrowed from [Pilanci and
Ergen, 2020].
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Lemma 6. For a given data matrixX and (vi, wi)
P
i=1, if (2Di−In)Xvi ≥ 0 and (2Di−In)Xwi ≥

0 for all i ∈ [P ], then we can recover the corresponding neural network weights (uv,wj , αv,wj )m
?

j=1
using the formulas in (4), and

`

( P∑
i=1

DiX(vi − wi), y
)

+ β

P∑
i=1

(
‖vi‖2 + ‖wi‖2

)
=`

( m?∑
j=1

(Xuv,wj
)+αv,wj

, y

)
+
β

2

m?∑
j=1

(
‖uv,wj‖22 + α2

v,wj

)
. (23)

Theorem 1 implies that (1) has the same objective value as the following finite-dimensional convex
optimization problem:

q? = min
(vi,wi)Pi=1

`

( P∑
i=1

DiX(vi − wi), y
)

+ β

P∑
i=1

(
‖vi‖2 + ‖wi‖2

)
s. t. (2Di − In)Xvi ≥ 0, (2Di − In)Xwi ≥ 0, ∀i ∈ [P ]

(24)

where D1, . . . , DP are all of the matrices in the set of matrices D, which is defined as the set of all
distinct diagonal matrices diag([Xu ≥ 0]) that can be obtained for all possible u ∈ Rd. We recall
that the optimal neural network weights can be recovered using (4).

Consider the optimization problem (25)

q̃? = min
(vi,wi)P̃i=1

`

( P̃∑
i=1

DiX(vi − wi), y
)

+ β

P̃∑
i=1

(
‖vi‖2 + ‖wi‖2

)
s. t. (2Di − In)Xvi ≥ 0, (2Di − In)Xwi ≥ 0, ∀i ∈ [P̃ ]

(25)

where additional D matrices, denoted as DP+1, . . . , DP̃ , are introduced. These additional matrices
are still diagonal with each entry being either 0 or 1, while they do not belong to D. They represent
“infeasible hyperplanes” that cannot be achieved by the sign pattern of Xu for any u ∈ Rd.
Lemma 7. It holds that q̃? = q?, meaning that the optimization problem (25) has the same optimal
objective as (24).

The proof of Lemma 7 is given in section A.7.

The robust minimax training problem (5) considers an uncertain data matrix X + ∆. Different
values of X + ∆ within the uncertainty set U can result in different D matrices. Now, we define
D̂ =

⋃
∆D∆, where D∆ is the set of diagonal matrices for a particular ∆ such that X + ∆ ∈ U . By

construction, we have D∆ ⊆ D̂ for every ∆ such that X + ∆ ∈ U . Thus, if we define D1, . . . , DP̂

as all matrices in D̂, then for every ∆ with the property X + ∆ ∈ U , the optimization problem

min
(vi,wi)P̂i=1

`

( P̂∑
i=1

Di(X + ∆)(vi − wi), y
)

+ β

P̂∑
i=1

(‖vi‖2 + ‖wi‖2)

s. t. (2Di − In)(X + ∆)vi ≥ 0, (2Di − In)(X + ∆)wi ≥ 0, ∀i ∈ [P̂ ]

(26)

is equivalent to

min
(uj ,αj)mj=1

`

( m∑
j=1

((X + ∆)uj)+αj , y

)
+
β

2

m∑
j=1

(
‖uj‖22 + α2

j

)
as long as m ≥ m̂? with m̂? = |{i : v?i (∆) 6= 0}|+ |{i : w?i (∆) 6= 0}|, where (v?i (∆), w?i (∆))P̂i=1
denotes an optimal point to (26).

Now, we focus on the minimax training problem with a convex objective given by

min
(vi,wi)P̂i=1∈F

 max
∆:X+∆∈U

`

( P̂∑
i=1

Di(X + ∆)(vi − wi), y
)

+ β

P̂∑
i=1

(
‖vi‖2 + ‖wi‖2

)
s. t. (2Di − In)(X + ∆)vi ≥ 0, (2Di − In)(X + ∆)wi ≥ 0, ∀i ∈ [P̂ ]

 ,

(27)
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where F is defined as:{
(vi, wi)

P̂
i=1

∣∣∣∣ ∃∆ : X + ∆ ∈ U
s. t. (2Di − In)(X + ∆)vi ≥ 0, (2Di − In)(X + ∆)wi ≥ 0, ∀i ∈ [P̂ ]

}
.

The introduction of the feasible set F is to avoid the situation where the inner maximization over ∆
is infeasible and the objective becomes −∞, leaving the outer minimization problem unbounded.

Moreover, consider the following problem:

min
(vi,wi)P̂i=1

(
`

( P̂∑
i=1

Di(X + ∆?
v,w)(vi − wi), y

)
+ β

P̂∑
i=1

(
‖vi‖2 + ‖wi‖2

))
s. t. (2Di − In)(X + ∆?

v,w)vi ≥ 0, (2Di − In)(X + ∆?
v,w)wi ≥ 0, ∀i ∈ [P̂ ]

(28)

where ∆?
v,w is the optimal point for max

∆:X+∆∈U
`

( P̂∑
i=1

Di(X + ∆)(vi − wi), y

)
. Note that the

inequality constraints are dropped for the maximization here compared to (27).

The optimization problem (27) gives a lower bound on (28). To prove this, we first rewrite (28) as:

min
(vi,wi)P̂i=1

f
(
(vi, wi)

P̂
i=1

)
, where f

(
(vi, wi)

P̂
i=1

)
=

`
(∑P̂

i=1Di(X + ∆?
v,w)(vi − wi), y

)
(2Di − In)(X + ∆?

v,w)vi ≥ 0, ∀i ∈ [P̂ ]

+β
∑P̂
i=1

(
‖vi‖2 + ‖wi‖2

)
, (2Di − In)(X + ∆?

v,w)wi ≥ 0, ∀i ∈ [P̂ ]

+∞, otherwise.

Now, we analyze (27). Consider three cases:

Case 1: For some (vi, wi)
P̂
i=1, ∆?

v,w is optimal for the inner maximization of (27) and the inequal-
ity constraints are inactive. This happens whenever ∆?

v,w is feasible for the particular choice of

(vi, wi)
P̂
i=1. In other words, (2Di − In)(X + ∆?

v,w)vi ≥ 0 and (2Di − In)(X + ∆?
v,w)wi ≥ 0 hold

true for all i ∈ [P̂ ]. For these (vi, wi)
P̂
i=1, we have: max

∆:X+∆∈U
`

( P̂∑
i=1

Di(X + ∆)(vi − wi), y
)

+ β

P̂∑
i=1

(
‖vi‖2 + ‖wi‖2

)
s. t. (2Di − In)(X + ∆)vi ≥ 0, (2Di − In)(X + ∆)wi ≥ 0, ∀i ∈ [P̂ ]


= `

( P̂∑
i=1

Di(X + ∆?
v,w)(vi − wi), y

)
+ β

P̂∑
i=1

(
‖vi‖2 + ‖wi‖2

)
Case 2: For some (vi, wi)

P̂
i=1, ∆?

v,w is infeasible, while some ∆ within the perturbation bound
satisfies the inequality constraints. Suppose that among the feasible ∆’s,

∆̃?
v,w = arg max

∆:X+∆∈U
`

( P̂∑
i=1

Di(X + ∆)(vi − wi), y
)

+ β

P̂∑
i=1

(
‖vi‖2 + ‖wi‖2

)
s. t. (2Di − In)(X + ∆)vi ≥ 0, (2Di − In)(X + ∆)wi ≥ 0, ∀i ∈ [P̂ ].

In this case, max
∆:X+∆∈U

`

( P̂∑
i=1

Di(X + ∆)(vi − wi), y
)

+ β

P̂∑
i=1

(
‖vi‖2 + ‖wi‖2

)
s. t. (2Di − In)(X + ∆)vi ≥ 0, (2Di − In)(X + ∆)wi ≥ 0, ∀i ∈ [P̂ ]


= `

( P̂∑
i=1

Di(X + ∆̃?
v,w)(vi − wi), y

)
+ β

P̂∑
i=1

(
‖vi‖2 + ‖wi‖2

)
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Case 3: For all other (vi, wi)
P̂
i=1, the objective value is +∞ since they do not belong to F .

Therefore, (27) can be rewritten as

min
(vi,wi)P̂i=1

g
(
(vi, wi)

P̂
i=1

)
, where g

(
(vi, wi)

P̂
i=1

)
=

`
(∑P̂

i=1Di(X + ∆?
v,w)(vi − wi), y

)
(2Di − In)(X + ∆?

v,w)vi ≥ 0, ∀i ∈ [P̂ ]

+β
∑P̂
i=1

(
‖vi‖2 + ‖wi‖2

)
, (2Di − In)(X + ∆?

v,w)wi ≥ 0, ∀i ∈ [P̂ ]

∃j : (2Dj − In)(X + ∆?
v,w)vj < 0

`
(∑P̂

i=1Di(X + ∆̃?
v,w)(vi − wi), y

)
or (2Dj − In)(X + ∆?

v,w)wj < 0

+β
∑P̂
i=1

(
‖vi‖2 + ‖wi‖2

)
, ∃∆ : (2Di − In)(X + ∆)vi ≥ 0, ∀i ∈ [P̂ ]

(2Di − In)(X + ∆)wi ≥ 0, ∀i ∈ [P̂ ]

+∞, otherwise

Hence, g((vi, wi)
P̂
i=1) = f((vi, wi)

P̂
i=1) for all (vi, wi)

P̂
i=1 belonging to the first and the third

cases. g((vi, wi)
P̂
i=1) < f((vi, wi)

P̂
i=1) for all (vi, wi)

P̂
i=1 belonging to the second case. Thus,

min
(vi,wi)P̂i=1

g((vi, wi)
P̂
i=1) ≤ min

(vi,wi)P̂i=1
f((vi, wi)

P̂
i=1). This concludes that (27) is a lower

bound to (28).

Let (v?minimaxi , w
?
minimaxi)

P̂
i=1 denote an optimal point for (28). It is possible that for some ∆ : X+∆ ∈

U , the constraints (2Di − In)(X + ∆)v?minimaxi ≥ 0 and (2Di − In)(X + ∆)w?minimaxi ≥ 0 are not
satisfied for all i ∈ [P̂ ]. In light of Lemma 6, at those ∆ where such constraints are violated, the
convex problem (28) does not reflect the cost of the neural network. For these infeasible ∆, the
input-label pairs (X + ∆, y) can have a high cost in the neural network and potentially become the
worst-case adversary. However, these ∆ are ignored in (28) due to the infeasibility. Since adversarial
training aims to minimize the cost over the worst-case adversaries generated upon the training data
whereas (28) may sometimes miss the worst-case adversaries, (28) does not fully accomplish the task
of adversarial training. In fact, by applying Theorem 1 and Lemma 7, it can be verified that (27) and
(28) are lower bounds to (5) as long as m ≥ m̂?:

min
(uj ,αj)mj=1

(
max

∆:X+∆∈U
`

( m∑
j=1

(
(X + ∆)uj

)
+
αj , y

)
+
β

2

m∑
j=1

(
‖uj‖22 + α2

j

))

≥ min
(uj ,αj)mj=1

`

( m∑
j=1

(
(X + ∆?

v,w)uj
)

+
αj , y

)
+
β

2

m∑
j=1

(
‖uj‖22 + α2

j

)

=

 min
(vi,wi)P̂i=1

`

( P̂∑
i=1

Di(X + ∆?
v,w)(vi − wi), y

)
+ β

P̂∑
i=1

(
‖vi‖2 + ‖wi‖2

)
s. t. (2Di − In)(X + ∆?

v,w)vi ≥ 0, (2Di − In)(X + ∆?
v,w)wi ≥ 0, ∀i ∈ [P̂ ]

 .

To address the feasibility issue, we can apply robust optimization techniques ([Boyd and Vanden-
berghe, 2004] section 4.4.2) and replace the constraints in (28) with robust convex constraints, which
will lead to (10). Let

(
(v?robi , w

?
robi)

P̂
i=1,∆

?
rob

)
denote an optimal point of (10) and let (u?robj , α

?
robj )m̂

?

j=1

be the neural network weights recovered from (v?robi , w
?
robi)

P̂
i=1 with (4), where m̂? is the number

of nonzero weights. In light of Lemma 6, since the constraints (2Di − In)(X + ∆)v?robi ≥ 0 and
(2Di − In)(X + ∆)w?robi ≥ 0 for all i ∈ [P̂ ] apply to all X + ∆ ∈ U , all X + ∆ ∈ U satisfy the
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equality

`

( P̂∑
i=1

Di(X + ∆)(v?robi − w
?
robi), y

)
+ β

P̂∑
i=1

(
‖v?robi‖2 + ‖w?robi‖2

)
= `

( m̂?∑
j=1

(
(X + ∆)u?robj

)
+
α?robj , y

)
+
β

2

m̂?∑
j=1

(
‖u?robj‖

2
2 + α?2robj

)
.

Thus, since

∆?
rob = arg max

∆:X+∆∈U
`

( P̂∑
i=1

Di(X + ∆)(v?robi − w
?
robi), y

)
+ β

P̂∑
i=1

(
‖v?robi‖2 + ‖w?robi‖2

)
,

we have

∆?
rob = arg max

∆:X+∆∈U
`

( m̂?∑
j=1

(
(X + ∆)u?robj

)
+
α?robj , y

)
+
β

2

m̂?∑
j=1

(
‖u?robj‖

2
2 + α?2robj

)
,

giving rise:

`

( P̂∑
i=1

Di(X + ∆?
rob)(v?robi − w

?
robi), y

)
+ β

P̂∑
i=1

(
‖v?robi‖2 + ‖w?robi‖2

)
= `

( m̂?∑
j=1

(
(X + ∆?

rob)u?robj

)
+
α?robj , y

)
+
β

2

m̂?∑
j=1

(
‖u?robj‖

2
2 + α?2robj

)
= max

∆:X+∆∈U
`

( m̂?∑
j=1

(
(X + ∆)u?robj

)
+
α?robj , y

)
+
β

2

m̂?∑
j=1

(
‖u?robj‖

2
2 + α?2robj

)
≥ min

(uj ,αj)m̂
?

j=1

(
max

∆:X+∆∈U
`

( m̂?∑
j=1

(
(X + ∆)uj

)
+
αj , y

)
+
β

2

m̂?∑
j=1

(
‖uj‖22 + α2

j

))

Therefore, (10) is an upper bound to (5).

While there are an infinite number of points in the uncertainty set, which makes enumerating all points
intractable, one can only enumerate all possible locations of the worst-case adversarial perturbation
∆??
v,w. For some loss functions, the possible locations are finitely many points. Moreover, note that

the number of D matrices is trivially upper-bounded by 2n.

A.4 Proof of Corollary 3.1

Define Ei = 2Di − In for all i ∈ [P̂ ]. Note that each Ei is a diagonal matrix, and its diagonal
elements are either -1 or 1. Therefore, for each i ∈ [P̂ ], we can analyze the robust constraint
min∆:X+∆∈U Ei(X + ∆)vi ≥ 0 element-wise (for each data point). Let eik denote the kth diagonal
element of Ei and δ>ik denote the kth element of ∆ that appears in the ith constraint. We then have:(

min
‖δik‖∞≤ε

eik(x>k + δ>ik)vi
)

=
(
eikx

>
k vi + min

‖δik‖∞≤ε
eikδ

>
ikvi

)
≥ 0 (29)

The minima of the above optimization problems are achieved at δ??ik = ε ·sgn(eikvi) = ε ·eik ·sgn(vi).

Note that as ε approaches 0, δ??ik and ∆?
rob in Theorem 3 both approach 0, which means that the

gap between the convex robust problem (15) and the non-convex adversarial training problem (13)
diminishes. Plugging δ??k into (29) yields that(

eikx
>
k vi − ε‖eikvi‖1

)
=
(
eikx

>
k vi − ε‖vi‖1

)
≥ 0.

Vertically concatenating eikx>k vi − ε‖vi‖1 ≥ 0 for all i ∈ [P̂ ] gives the vectorized representation
EiXvi − ε‖vi‖1 ≥ 0, which leads to (11).

Since the constraints on w are exactly the same, we also have that min∆:X+∆∈U Ei(X + ∆)wi ≥ 0

is equivalent to EiXwi − ε‖wi‖1 ≥ 0 for every i ∈ [P̂ ].
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A.5 Proof of Theorem 4

The regularization term is independent from ∆. Thus, it can be ignored for the purpose of analyzing
the inner maximization. Note that each Di is diagonal, and its diagonal elements are either 0 or 1.
Therefore, the inner maximization of (5) can be analyzed element-wise (cost of each data point).

The maximization problem of the loss at each data point is:

max
‖δk‖∞≤ε

(
1− yk

P∑
i=1

dik(x>k + δ>k )(vi − wi)
)

+

(30)

where dik is the kth diagonal element of Di and δ>k is the kth row of ∆. One can write:

max
‖δk‖∞≤ε

(
1− yk

P∑
i=1

dik(x>k + δ>k )(vi − wi)
)

+

=

(
max
‖δk‖∞≤ε

1− yk
P∑
i=1

dik(x>k + δ>k )(vi − wi)
)

+

=

(
1− yk

P∑
i=1

dikx
>
k (vi − wi)− min

‖δk‖∞≤ε
δ>k yk

P∑
i=1

dik(vi − wi)
)

+

.

The optimal solution to min
‖δk‖∞≤ε

δ>k yk

P∑
i=1

dik(vi−wi) is δ?hingek
= −ε · sgn

(
yk

P∑
i=1

dik(vi−wi)>
)

,

or equivalently:

∆?
hinge = −ε · sgn

( P∑
i=1

Diy(vi − wi)>
)
.

By substituting δ?hingek
into (30), the optimization problem (30) reduces to:(

1− yk
P∑
i=1

dikx
>
k (vi − wi) + ε

∣∣∣∣∣∣∣∣yk P∑
i=1

dik(vi − wi)
∣∣∣∣∣∣∣∣

1

)
+

=

(
1− yk

P∑
i=1

dikx
>
k (vi − wi) + ε|yk|

∣∣∣∣∣∣∣∣ P∑
i=1

dik(vi − wi)
∣∣∣∣∣∣∣∣

1

)
+

.

Therefore, the overall loss function is:

1

n

n∑
k=1

(
1− yk

P∑
i=1

dikx
>
k (vi − wi) + ε|yk|

∣∣∣∣∣∣∣∣ P∑
i=1

dik(vi − wi)
∣∣∣∣∣∣∣∣

1

)
+

.

In the case of binary classification, y = {−1, 1}n, and thus |yk| = 1 for all k ∈ [n]. Therefore, the
above is equivalent to

1

n

n∑
k=1

(
1− yk

P∑
i=1

dikx
>
k (vi − wi) + ε

∣∣∣∣∣∣∣∣ P∑
i=1

dik(vi − wi)
∣∣∣∣∣∣∣∣

1

)
+

(31)

which is the objective of (15). This completes the proof.

A.6 Proof of Theorem 5

We first exploit the structure of (19) and reformulate it as the following robust second-order cone
program (SOCP):

19



min
(vi,wi,bi,ci)P̂i=1,a

a+ β

P̂∑
i=1

(bi + ci) (32)

s. t. (2Di − In)Xvi ≥ ε‖vi‖1, (2Di − In)Xwi ≥ ε‖wi‖1, ‖vi‖2 ≤ bi, ‖wi‖2 ≤ ci, ∀i ∈ [P̂ ]

max
∆:X+∆∈X

∥∥∥∥∥
[∑P̂

i=1Di(X + ∆)(vi − wi)− y
2a− 1

4

]∥∥∥∥∥
2

≤ 2a+ 1
4 , ∀i ∈ [P̂ ].

Then, we need to establish the equivalence between (32) and (20). To this end, we consider the
constraints of (32) and argue that these can be recast as the constraints given in (20). One can write:

max
∆:X+∆∈X

∣∣∣∣∣
∣∣∣∣∣
[∑P̂

i=1Di(X + ∆)(vi − wi)− y
2a− 1

4

] ∣∣∣∣∣
∣∣∣∣∣
2

≤ 2a+
1

4

⇐⇒ max
‖δk‖∞≤ε, ∀k∈[n]

∥∥∥∥∥∥∥∥∥∥∥∥



∑P̂
i=1 di1(x>1 − δ>1 )(vi − wi)− y1∑P̂
i=1 di2(x>2 − δ>2 )(vi − wi)− y2

...∑P̂
i=1 din(x>n − δ>n )(vi − wi)− yn

2a− 1
4



∥∥∥∥∥∥∥∥∥∥∥∥
2

≤ 2a+
1

4

⇐⇒ max
‖δk‖∞≤ε, ∀k∈[n]

( n∑
k=1

( P̂∑
i=1

dik(x>k − δ>k )(vi − wi)− yk
)2

+
(

2a− 1

4

)2
) 1

2

≤ 2a+
1

4

where dik is the kth diagonal element of Di and δ>k is the kth row of ∆. The above constraints can be
rewritten by introducing slack variables z ∈ Rn+1 as

zk ≥
∣∣∣∑P̂

i=1 dikx
>
k (vi − wi)− yk

∣∣∣+ ε
∣∣∣∣∣∣∑P̂

i=1 dik(vi − wi)
∣∣∣∣∣∣

1
, ∀k ∈ [n]

zn+1 ≥
∣∣2a− 1

4

∣∣, ‖z‖2 ≤ 2a+ 1
4 .

�

A.7 Proof of Lemma 7

According to [Pilanci and Ergen, 2020], recovering the neural network weights by plugging (4) in
(24) leads to

q? = min
(vi,wi)Pi=1

`

(
P∑
i=1

DiX(vi − wi), y

)
+ β

P∑
i=1

(
‖vi‖2 + ‖wi‖2

)

= min
(uj ,αj)m

?
j=1

`

(
m?∑
j=1

(Xuj)+αj , y

)
+
β

2

m?∑
j=1

(
‖uj‖22 + α2

j

)

Similarly, we can recover the neural network weights from the solution (ṽ?i , w̃
?
i )P̃i=1 of (25) using:

(ũj1i , α̃j1i) =

(
ṽ?i√
‖ṽ?i ‖2

,
√
‖ṽ?i ‖2

)
, (ũj2i , α̃j2i) =

(
w̃?i√
‖w̃?i ‖2

,−
√
‖w̃?i ‖2

)
, ∀i ∈ [P̃ ].

(33)

Unlike (4), zero weights are not discarded in (33). For simplicity, we use ũ1, . . . , ũm̃? to refer to the
hidden layer weights and use α̃1, . . . , α̃m̃? to refer to the output layer weights recovered using (33).
Since (ṽ?i , w̃

?
i )P̃i=1 is a solution to (25), it satisfies (2Di − In)Xṽ?i ≥ 0 and (2Di − In)Xw̃?i ≥ 0 for
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all i ∈ [P̃ ]. Thus, we can apply Lemma 6 to obtain:

q̃? =`

( P̃∑
i=1

DiX(ṽ?i − w̃?i ), y

)
+ β

P̃∑
i=1

(
‖ṽ?i ‖2 + ‖w̃?i ‖2

)

=`

( m̃?∑
j=1

(Xũ?j )+αj , y

)
+
β

2

m̃?∑
j=1

(
‖ũ?j‖22 + α̃?2j

)

≥ min
(uj ,αj)m̃

?
j=1

`

( m̃?∑
j=1

(Xuj)+αj , y

)
+
β

2

m̃?∑
j=1

(
‖uj‖22 + α2

j

)
Since P̃ ≥ P , m? ≤ 2P and m̃? = 2P̃ , we have m̃? ≥ m?. Therefore, according to Section 2 and
Theorem 6 of [Pilanci and Ergen, 2020], we have

q? = min
(uj ,αj)m

?
j=1

`

( m?∑
j=1

(Xuj)+αj , y

)
+
β

2

m?∑
j=1

(
‖uj‖22 + α2

j

)

= min
(uj ,αj)m̃

?
j=1

`

( m̃?∑
j=1

(Xuj)+αj , y

)
+
β

2

m̃?∑
j=1

(
‖uj‖22 + α2

j

)
≤ q̃?

The above inequality shows that a neural network with more than m neurons in the hidden layer will
yield the same loss as the neural network with m neurons when optimized.

Note that (25) can always attain q? by simply plugging in the optimal solution of (24) and assigning 0
to all other additional vi and wi, implying that q? ≥ q̃?. Since q? is both an upper bound and a lower
bound on q̃?, we have q̃? = q?, proving that as long as all matrices in D are included, the existence
of redundant matrices does not change the optimal objective value.

A.8 `p norm-bounded perturbation set for hinge loss

Theorem 4 can be extended to the following `p norm-bounded perturbation set:

X̃ =
{
X + ∆ ∈ Rn×d

∣∣∆ = [δ>1 ; . . . ; δ>n ], ‖δk‖p ≤ ε, ∀k ∈ [n]
}

In the case of performing binary classification with a hinge-lossed neural network, the convex
adversarial training problem then becomes:

min
(vi,wi)P̂i=1


1

n

n∑
k=1

(
1− yk

P∑
i=1

dikx
>
k (vi − wi) + ε

∣∣∣∣∣∣∣∣ P∑
i=1

dik(vi − wi)
∣∣∣∣∣∣∣∣
p∗

)
+

+β
∑P̂
i=1

(
‖vi‖2 + ‖wi‖2

)
 (34)

s. t. (2Di − In)Xvi ≥ ε‖vi‖p∗, (2Di − In)Xwi ≥ ε‖wi‖p∗, ∀i ∈ [P̂ ]

where D1, . . . , DP̂ are all distinct diagonal matrices associated with diag([Xu ≥ 0]) for all possible
u ∈ Rd and all X + ∆ at the boundary of X̃ . Moreover, ‖·‖p∗ is the dual norm of ‖·‖p.
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