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Abstract
There has been much research devoted to improving the
performance of data analytics frameworks, but compara-
tively little effort has been spent systematically identify-
ing the performance bottlenecks of these systems. In this
paper, we develop blocked time analysis, a methodology
for quantifying performance bottlenecks in distributed
computation frameworks, and use it to analyze the Spark
framework’s performance on two SQL benchmarks and
a production workload. Contrary to our expectations, we
find that (i) CPU (and not I/O) is often the bottleneck, (ii)
improving network performance can improve job comple-
tion time by a median of at most 2%, and (iii) the causes
of most stragglers can be identified.

1 Introduction
Large-scale data analytics frameworks such as
Hadoop [13] and Spark [51] are now in widespread
use. As a result, both academia and industry have
dedicated significant effort towards improving the
performance of these frameworks.

Much of this performance work has been motivated by
three widely-accepted mantras about the performance of
data analytics:

1. The network is a bottleneck. This has moti-
vated work on a range of network optimizations,
including load balancing across multiple paths,
leveraging application semantics to prioritize traffic,
aggregating data to reduce traffic, isolation, and
more [6, 14, 17–21, 27, 28, 41, 42, 48, 53].

2. The disk is a bottleneck. This has led to work on
using the disk more efficiently [43] and caching data
in memory [9, 30, 47, 51].

3. Straggler tasks significantly prolong job comple-
tion times and have largely unknown underlying
causes. This has driven work on mitigation using
task speculation [8, 10, 11, 52] or running shorter
tasks to improve load balancing [39]. Researchers
have been able to identify and target a small number
of underlying causes such as data skew [11, 26, 29]
and popularity skew [7].

Most of this work focuses on a particular aspect of the
system in isolation, leaving us without a comprehensive
understanding of which factors are most important to the
end-to-end performance of data analytics workloads.

This paper makes two contributions towards a more
comprehensive understanding of performance. First, we
develop a methodology for analyzing end-to-end per-
formance of data analytics frameworks; and second, we
use our methodology to study performance of two SQL
benchmarks and one production workload. Our results
run counter to all three of the aforementioned mantras.

The first contribution of this paper is blocked time

analysis, a methodology for quantifying performance
bottlenecks. Identifying bottlenecks is challenging for
data analytics frameworks because of pervasive paral-
lelism: jobs are composed of many parallel tasks, and
each task uses pipelining to parallelize the use of network,
disk, and CPU. One task may be bottlenecked on different
resources at different points in execution, and at any
given time, tasks for the same job may be bottlenecked on
different resources. Blocked time analysis uses extensive
white-box logging to measure how long each task spends
blocked on a given resource. Taken alone, these per-task
measurements allow us to understand straggler causes
by correlating slow tasks with long blocked times. Taken
together, the per-task measurements for a particular job
allow us to simulate how long the job would have taken to
complete if the disk or network were infinitely fast, which
provides an upper bound on the benefit of optimizing
network or disk performance.

The second contribution of this paper is using blocked
time analysis to understand Spark’s performance on two
industry benchmarks and one production workload. In
studying the applicability of the three aforementioned
claims to these workloads, we find:

1. Network optimizations can only reduce job
completion time by a median of at most 2%. The
network is not a bottleneck because much less data is
sent over the network than is transferred to and from
disk. As a result, network I/O is mostly irrelevant to
overall performance, even on 1Gbps networks.

2. Optimizing or eliminating disk accesses can only
reduce job completion time by a median of at
most 19%. CPU utilization is typically much higher
than disk utilization; as a result, engineers should be
careful about trading off I/O time for CPU time by,
for example, using more sophisticated serialization
and compression techniques.

3. Optimizing stragglers can only reduce job com-
pletion time by a median of at most 10%, and in
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Workload name Total queries Cluster size Data size
Big Data Benchmark [46],
Scale Factor 5 (BDBench)

50 (10 unique queries, each run 5
times)

40 cores (5 machines) 60GB

TPC-DS [45], Scale Factor 100 140 (7 users, 20 unique queries) 160 cores (20 machines) 17GB
TPC-DS [45], Scale Factor 5000 260 (13 users, 20 unique queries) 160 cores (20 machines) 850GB
Production 30 (30 unique queries) 72 cores (9 machines) tens of GB

Table 1: Summary of workloads run. We study one larger workload in §6.

75% of queries, we can identify the cause of more
than 60% of stragglers. Blocked-time analysis
illustrates that the two leading causes of Spark strag-
glers are Java’s garbage collection and time to trans-
fer data to and from disk. We found that targeting
the underlying cause of stragglers could reduce non-
straggler runtimes as well, and describe one example
where understanding stragglers in early experiments
allowed us to identify a bad configuration that, once
fixed, reduced job completion time by a factor of two.

These results question the prevailing wisdom about the
performance of data analytics frameworks. By necessity,
our study does not look at a vast range of workloads nor
a wide range of cluster sizes, because the ability to add
finer-grained instrumentation to Spark was critical to our
analysis. As a result, we cannot claim that our results
are broadly representative. However, the fact that the
prevailing wisdom about performance is so incorrect on
the workloads we do consider suggests that there is much
more work to be done before our community can claim to
understand the performance of data analytics frameworks.

To facilitate performing blocked time analysis on a
broader set of workloads, we have added almost all1 of our
instrumentation to Spark and made our analysis tools pub-
licly available. We have also published the detailed bench-
mark traces that we collected so that other researchers
may reproduce our analysis or perform their own [37].

The remainder of this paper begins by describing
blocked time analysis and the associated instrumentation
(§2). Next, we explore the importance of disk I/O (§3),
the importance of network I/O (§4), and the importance
and causes of stragglers (§5); in each of these sections,
we discuss the relevant related work and contrast it with
our results. We explore the impact of cluster and data size
on our results in §6. We end by arguing that future system
designs should consider performance measurement as a
first-class concern (§7).

2 Methodology
This section describes the workloads we ran, the blocked
time analysis we used to understand performance, and
our experimental setup.

1Some of our logging needed to be added outside of Spark, as we
elaborate on in §2.3.1, because it could not be implemented in Spark
with sufficiently low overhead.

2.1 Workloads

Our analysis centers around fine-grained instrumentation
of two benchmarks and one production workload running
on Spark, summarized in Table 1.

The big data benchmark (BDBench) [46] was de-
veloped to evaluate the differences between analytics
frameworks and was derived from a benchmark devel-
oped by Pavlo et al. [40]. The input dataset consists of
HTML documents from the Common Crawl document
corpus [2] combined with SQL summary tables generated
using Intel’s Hadoop benchmark tool [50]. The bench-
mark consists of four queries including two exploratory
SQL queries, one join query, and one page-rank-like
query. The first three queries have three variants that each
use the same input data size but have different result sizes
to reflect a spectrum between business-intelligence-like
queries (with result sizes that could fit in memory on a
business intelligence tool) and ETL-like queries with
large result sets that require many machines to store. We
run the queries in series and run five iterations of each
query. We use the same configuration that was used in
published results [46]: we use a scale factor of five (which
was designed to be run on a cluster with five worker
machines), and we run two versions of the benchmark.
The first version operates on data stored in-memory
using SparkSQL’s columnar cache (cached data is not
replicated) and the second version operates on data stored
on-disk using Hadoop Distributed File System (HDFS),
which triply replicates data for fault-tolerance.

Our second benchmark is a variant of the Transaction
Processing Performance Council’s decision-support
benchmark (TPC-DS) [45]. The TPC-DS benchmark was
designed to model multiple users running a variety of
decision-support queries including reporting, interactive
OLAP, and data mining queries. All of the users run in
parallel; each user runs the queries in series in a random
order. The benchmark models data from a retail product
supplier about product purchases. We use a subset of 20
queries that was selected in an existing industry bench-
mark that compares four analytics frameworks [25].
Similar to with the big data benchmark, we run two
variants. The first variant stores data on-disk using
Parquet [1], a compressed columnar storage format that
is the recommended storage format for high performance
with Spark SQL, and uses a scale factor of 5000. The
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(a) Pipelined execution of a typical Spark task
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Figure 1: Each Spark task pipelines use of network, CPU, and disk, as shown in (a). To understand the importance of disk and
network, we measure times when a task’s compute thread blocks on the network or disk, as shown in (b). To determine the best-case
task runtime resulting from network (or disk) optimizations, we subtract time blocked on network (or disk), as shown in (c).

second, in-memory variant uses a smaller scale factor
of 100; this small scale factor is necessary because
SparkSQL’s cache is not well optimized for the type of
data used in the TPC-DS benchmark, so while the data
only takes up 17GB in the compressed on-disk format, it
occupies 200GB in memory. We run both variants of the
benchmark on a cluster of 20 machines.

The final Spark workload described by the results in this
paper is a production workload from Databricks that uses
their cloud product [3] to submit ad-hoc Spark queries.
Input data for the queries includes a large fact table with
over 50 columns. The workload includes a small number
of ETL queries that read input data from an external file
system into the memory of the cluster; subsequent queries
operate on in-memory data and are business-intelligence-
style queries that aggregate and summarize data. Data
shown in future graphs breaks the workload into the in-
memory and on-disk components. For confidentiality rea-
sons, further details of the workload cannot be disclosed.

2.2 Framework architecture

All three workloads are SQL workloads that use Spark-
SQL [4] to compile SQL queries into Spark jobs. Spark
jobs are broken down into stages composed of many paral-
lel tasks. The tasks in a stage each perform the same com-
putation using different subsets of the stage’s input data.
Early stages read input data from a distributed file system
(e.g., HDFS) or Spark’s cache, whereas later stages
typically read input data using a network shuffle, where
each task reads a subset of the output data from all of the
previous stage’s tasks. In the remainder of this paper, we
use “map task” to refer to tasks that read blocks of input
data stored in a distributed file system, and “reduce task”
to refer to tasks that read data shuffled from the previous
stage of tasks. Each Spark job is made up of a directed
acyclic graph of one or more stages. As a result, a single
Spark job may contain multiple stages of reduce tasks;
for example, to compute the result of a SQL query that
includes multiple joins (in contrast, with MapReduce, all
jobs include exactly one map and optionally one reduce).

2.3 Blocked time analysis

The goal of this paper is to understand performance of
workloads running on Spark; this is a challenging goal for
two reasons. First, understanding the performance of a
single task is challenging because tasks use pipelining, as
shown in Figure 1(a). As a result, tasks often use multiple
resources simultaneously, and different resources may be
the bottleneck at different times in task execution. Sec-
ond, understanding performance is challenging because
jobs are composed of many tasks that run in parallel, and
each task in a job may have a unique performance profile.

To make sense of performance, we focus on blocked

time analysis, which allows us to quantify how much
more quickly a job would complete if tasks never blocked
on the disk or the network (§3.3 explains why we cannot
use blocked time analysis to understand CPU use). The
resulting job completion time represents a best-case
scenario of the possible job completion time after imple-
menting a disk or network optimization. Blocked time
analysis lacks the sophistication and generality of general
purpose distributed systems performance analysis tools
(e.g., [5, 15]), and unlike black-box approaches, requires
adding instrumentation within the application. We
use blocked-time analysis because unlike existing ap-
proaches, it provides a single, easy to understand number
to characterize the importance of disk and network use.

2.3.1 Instrumentation

To understand the performance of a particular task, we fo-
cus on blocked time: time the task spends blocked on the
network or the disk (shown in Figure 1(b)). We focus on
blocked time from the perspective of the compute thread
because it provides a single vantage point from which to
measure. The task’s computation runs as a single thread,
whereas network requests are issued by multiple threads
that operate in the background, and disk I/O is pipelined
by the OS, outside of the Spark process. We focus on
blocked time, rather than measuring all time when the
task is using the network or the disk, because network or
disk performance improvements cannot speed up parts of
the task that execute in parallel with network or disk use.
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Figure 2: To compute a job’s completion time (JCT) without time blocked on network, we subtract the time blocked on the network
from each task, and then simulate how the tasks would have been scheduled, given the number of slots used by the original runtime
and the new task runtimes. We perform the same computation for disk.

Obtaining the measurements shown in Figure 1(b)
required significant improvements to the instrumentation
in Spark and in HDFS.While some of the instrumentation
required was already available in Spark, our detailed
performance analysis revealed that existing logging was
often incorrect or incomplete [33–36, 38, 44]. Where
necessary, we fixed existing logging and pushed the
changes upstream to Spark.

We found that cross validation was crucial to validating
that our measurements were correct. In addition to
instrumentation for blocked time, we also added instru-
mentation about the CPU, network, and disk utilization
on the machine while the task was running (per-task
utilization cannot be measured in Spark, because all
tasks run in a single process). Utilization measurements
allowed us to cross validate blocked times; for example,
by ensuring that when tasks spent little time blocked on
I/O, CPU utilization was correspondingly high.

As part of adding instrumentation, we measured
Spark’s performance before and after the instrumentation
was added to ensure the instrumentation did not add to
job completion time. To ensure logging did not affect
performance, we sometimes had to add logging outside
of Spark. For example, to measure time spent reading
input data, we needed to add logging in the HDFS client
when the client reads large “packets” of data from disk, to
ensure that timing calls were amortized over a relatively
time-consuming read from disk.2 Adding the logging in
Spark, where records are read one at a time from the HDFS
client interface, would have degraded performance.

2.3.2 Simulation
Spark instrumentation allowed us to determine how long
each task was blocked on network (or disk) use; sub-
tracting these blocked times tells us the shortest possible
task runtime that would result from optimizing network
(or disk) performance, as shown in Figure 1(c).3 Next,
we used a simulation to determine how the shorter task

2This logging is available in a modified version of Hadoop at
https://github.com/kayousterhout/hadoop-common/tree/

2.0.2-instrumented

3The task runtime resulting from subtracting all time blocked on
the network may be lower than the runtime that would result even if
the network were infinitely fast, because eliminating network blocked
time might result in more time blocked on disk. As we emphasize
throughout the paper, our results represent a bound on the largest
possible improvement from optimizing network or disk performance.

completion times would affect job completion time. The
simulation replays the execution of the scheduling of the
job’s tasks, based on the number of slots used by the origi-
nal job and the new task runtimes. Figure 2 shows a simple
example. The example on the far right illustrates why
we need to replay execution rather than simply use the
original task completion times minus blocked time: that
approach underestimates improvements because it does
not account for multiple waves of tasks (task 2 should start
when the previous task finishes, not at its original start
time) and does not account for the fact that tasks might
have been scheduled on different machines given differ-
ent runtimes of earlier tasks (task 2 should start on the slot
freed by task 1 completing). We replay the job based only
on the number of slots used by the original job, and do not
take into account locality constraints that might have af-
fected the scheduling of the original job. This simplifying
assumption does not significantly impact the accuracy
of our simulation: at the median, the time predicted by
our simulation is within 4% of the runtime of the original
job. The ninety-fifth percentile error is at most 7% for
the benchmark workloads and 27% for the production
workload.4 In order to minimize the effect of this error
on our results, we always compare the simulated time
without network (or disk) to the simulated original time.
For example, in the example shown in Figure 2, we would
report the improvement as t

n

/t

s

, rather than as t

n

/t

o

. This
focuses our results on the impact of a particular resource
rather than on error introduced by our simulation.

2.4 Cluster setup
For the benchmark workloads, we ran experiments using a
cluster of Amazon EC2 m2.4xlarge instances, which each
have 68.4GB of memory, two disks, and eight cores. Our
experiments use Apache Spark version 1.2.1 and Hadoop
version 2.0.2. Spark runs queries in long-running pro-
cesses, meaning that production users of Spark will run
queries in a JVM that has been running for a long period
of time. To emulate that environment, before running each
benchmark, we ran a single full trial of all of the bench-
mark queries to warm up the JVM. For the big data bench-
mark, where only one query runs at a time, we cleared the

4 The production workload has higher error because we don’t model
pauses between stages that occur when SparkSQL is updating the query
plan. If we modeled these pauses, the impact of disk and network I/O
would be lower.
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OS buffer cache on all machines before launching each
query, to ensure that input data is read from disk. While
our analysis focuses on one cluster size and data size
for each benchmark, we illustrate that scaling to larger
clusters does not significantly impact our results in §6.

The production workload ran on a 9-machine cluster
with 250GB of memory; further details about the clus-
ter configuration are proprietary. The cluster size and
hardware is representative of Databricks’ users.

2.5 Production traces

Where possible, we sanity-checked our results with
coarse-grained analysis of traces from Facebook, Google,
and Microsoft. The Facebook trace includes 54K jobs
run during a contiguous period in 2010 on a cluster of
thousands of machines (we use a 1-day sample from this
trace). The Google data includes all MapReduce jobs run
at Google during three different one month periods in
2004, 2006, and 2007, and the Microsoft data includes
data from an analytics cluster with thousands of servers on
a total of eighteen different days in 2009 and 2010. While
our analysis would ideally have used only data from
production analytics workloads, all data made available
to us includes insufficient instrumentation to compute
blocked time. For example, the default logs written by
Hadoop (available for the Facebook cluster) include only
the total time for each map task, but do not break map task
time into how much time was spent reading input data
and how much time was spent writing output data. This
has forced researchers to rely on estimation techniques
that can be inaccurate, as we show in §4.4. Therefore, our
analysis begins with a detailed instrumentation of Spark,
but in most cases, we demonstrate that our high-level
takeaways are compatible with production data.

3 How important is disk I/O?
Previous work has suggested that reading input data from
disk can be a bottleneck in analytics frameworks; for
example, Spark describes speedups of 40⇥ for generating
a data analytics report as a result of storing input and
output data in memory using Spark, compared to storing
data on-disk and using Hadoop for computation [51].
PACMan reported reducing average job completion times
by 53% as a result of caching data in-memory [9]. The
assumption that many data analytics workloads are I/O
bound has driven numerous research proposals (e.g.,
Themis [43], Tachyon [30]) and the implementation of
in-memory caching in industry [47]. Based on this work,
our expectation was that time blocked on disk would
represent the majority of job completion time.

3.1 How much time is spent blocked on disk I/O?

Using blocked time analysis, we compute the improve-
ment in job completion time if tasks did not spend any
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Figure 3: Improvement in job completion time (JCT) as a result
of eliminating all time spent blocked on disk I/O. Boxes depict
25th, 50th, and 75th percentiles; whiskers depict 5th and 95th
percentiles.

time blocked on disk I/O.5 This involved measuring
time blocked on disk I/O at four different points in task
execution:

1. Reading input data stored on-disk (this only applies
for the on-disk workloads; in-memory workloads
read input from memory).

2. Writing shuffle data to disk. Spark writes all shuffle
data to disk, even when input data is read from
memory.

3. Reading shuffle data from a remote disk. This time
includes both disk time (to read data from disk) and
network time (to send the data over the network).
Network and disk use is tightly coupled and thus
challenging to measure separately; we measure the
total time as an upper bound on the improvement
from optimizing disk performance.

4. Writing output data to local disk and two remote
disks (this only applies for the on-disk workloads).
Again, the time to write data to remote disks includes
network time as well; we measure both the network
and disk time, making our results an upper bound on
the improvement from optimizing disk.

Using blocked time analysis, we find that the median
improvement from eliminating all time blocked on disk is
at most 19% across all workloads, as shown in Figure 3.
The y-axis in Figure 3 describes the relative reduction in
job completion time; a reduction of 0.1 means that the job
could complete 10% faster as a result of eliminating time
blocked on the disk. The figure illustrates the distribution
over jobs, including all trials of each job in each workload.
Boxes depict 25th, 50th, and 75th percentiles; whiskers

5 This measurement includes only time blocked on disk requests,
and does not include CPU time spent deserializing byte buffers into
Java objects. This time is sometimes considered disk I/O because it is
a necessary side effect of storing data outside of the JVM; we consider
only disk hardware performance here, and discuss serialization time
separately in §3.5.
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(a) Big data benchmark, disk
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(b) Big data benchmark, memory
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(c) TPC-DS, disk
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(d) TPC-DS, in-memory
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(e) Production, in-memory
Figure 4: Comparison of original runtimes of Spark jobs to
runtimes when all time blocked on the disk has been eliminated.

depict 5th and 95th percentiles. The variance stems from
the fact that different jobs are affected differently by
disk. The on-disk queries in the production workload are
not shown in Figure 3 because, as described in §2.3.1,
instrumenting time to read input data required adding
instrumentation to HDFS, which was not possible to
do for the production cluster. We show the same results
in Figure 4, which instead plots the absolute runtime
originally and the absolute runtime once time blocked
on disk has been eliminated. The scatter plots illustrate
that long jobs are not disproportionately affected by time
reading data from disk.

For in-memory workloads, the median improvement
from eliminating all time blocked on disk is 2-5%; the
fact that this improvement is non-zero is because even
in-memory workloads store shuffle data on disk.

A median improvement in job completion time of 19%
is a respectable improvement in runtime, but is lower than
we expected for workloads that read input data and store
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Figure 5: Average network, disk, and CPU utilization while
tasks were running. CPU utilization is the total fraction of
non-idle CPU milliseconds while the task was running, divided
by the eight total cores on the machine. Network utilization is
the bandwidth usage divided by the machine’s 1Gbps available
bandwidth. All utilizations are obtained by reading the counters
in the /proc file system at the beginning and end of each task.
The distribution is across all tasks in each workload, weighted
by task duration.

output data on-disk. The following two subsections make
more sense of this number, first by considering the effect
of our hardware setup, and then by examining alternate
metrics to put this number in the context of how tasks
spend their time.

3.2 How does hardware configuration affect these
results?

Hardware configuration impacts blocked time: tasks run
on machines with fewer disks relative to the number of
CPU cores would have spent more time blocked on disk,
and vice versa. In its hardware recommendations for
users purchasing Hadoop clusters, one vendor recom-
mends machines with at least a 1:3 ratio of disks to CPU
cores [31]. In 2010, Facebook’s Hadoop cluster included
machines with between a 3:4 and 3:1 ratio of disks to
CPU cores [16]. Thus, our machines, with a 1:4 ratio of
disks to CPU cores, have relatively under-provisioned I/O
capacity. As a result, I/O may appear more important in
our measurements than it would in the wild, so our results
on time blocked on disk represent even more of an upper
bound on the importance of I/O.

The second aspect of our setup that affects results is
the number of concurrent tasks run per machine; we run
one task per core, consistent with the Spark default.

3.3 How does disk utilization compare to CPU
utilization?

Our result that eliminating time blocked on disk I/O
can only improve job completion time by a median of
at most 19% suggests that jobs may be CPU bound.
Unfortunately, we cannot use blocked time analysis to
understand the importance of compute time, because we
cannot measure when task I/O is blocked waiting for
computation. The operating system often performs disk
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Figure 6: Average megabytes transferred to or from disk per
non-idle CPU second for all jobs we ran. The median job
transfers less than 10 megabytes to/from disk per CPU second;
given that effective disk throughput was approximately 90
megabytes per second per disk while running our benchmarks,
this demand can easily be met by the two disks on each machine.

I/O in the background, while the task is also using the
CPU. Measuring when a task is using only a CPU versus
when background I/O is occurring is thus difficult, and is
further complicated by the fact that all Spark tasks on a
single machine run in the same process.

Because we can’t use blocked time analysis to under-
stand the importance of CPU use, we instead examine
CPU and disk utilization. Figure 5 plots the distribution
across all tasks in the big data benchmark and TPC-DS
benchmark of the CPU utilization compared to disk
utilization. For this workload, the plot illustrates that on
average, queries are more CPU bound than I/O bound.
Hence, tasks are likely blocked waiting on computation
to complete more often than they are blocked waiting for
disk I/O. On clusters with more typical ratios of disk to
CPU use, the disk utilization will be even lower relative
to CPU utilization.

3.4 Sanity-checking our results against production
traces

The fact that the disk is not the bottleneck in our work-
loads left us wondering whether our workloads were
unusually CPU bound, which would mean that our
results were not broadly representative. Unfortunately,
production data analytics traces available to us do not
include blocked time or disk utilization information.
However, we were able to use aggregate statistics about
the CPU and disk use of jobs to compare the I/O demands
of our workloads to the I/O demands of larger production
workloads. In particular, we measured the I/O demands of
our workloads by measuring the ratio of data transferred
to disk to non-idle CPU seconds:

MB / CPU second=
Total MB transferred to/from disk

Total non-idle CPU seconds

This metric is imperfect because it looks at the CPU
and disk requirements of the job as a whole, and does
not account for variation in resource usage during a job.

Nonetheless, it allows us to understand how the aggregate
disk demands of our workloads compare to large-scale
production workloads.

Using this metric, we found that the I/O demands of the
three workloads we ran do not differ significantly from
I/O demands of production workloads. Figure 6 illustrates
that for the benchmarks and production workload we
instrumented, the median MB / CPU second is less than
10. Figure 6 also illustrates results for the trace from
Facebook’s Hadoop cluster. The MB / CPU second metric
is useful in comparing to Hadoop performance because
it relies on the volume of data transferred to disk and the
CPU milliseconds to characterize the job’s demand on
I/O, so abstracts away many inefficiencies in Hadoop’s
implementation (for example, it abstracts away the fact
that a CPU-bound query may take much longer than
the CPU milliseconds used due to inefficient resource
use). The number of megabytes transferred to disk per
CPU second is lower for the Facebook workload than for
our workloads: the median is just 3MB/s, compared to
a median of 9MB/s for the big data benchmark on-disk
workload and 8MB/s for the TPC-DS workload.

We also examined aggregate statistics published about
Microsoft’s Cosmos cluster and Google’s MapReduce
cluster, shown in Tables 2 and 3. Unlike the Facebook
trace, those statistics do not include a measurement of the
CPU time spent by jobs, and instead quote the total time
that tasks were running, aggregated across all jobs [23]. In
computing the average rate at which tasks transfer data to
and from disk, we assume that the input data is read once
from disk, intermediate data is written once (by map tasks
that generate the data) and read once (by reduce tasks that
consume the data), and output data is written to disk three
times (assuming the industry standard triply-replicated
output data). As shown in Tables 2 and 3, based on this
estimate, Google jobs transfer an average of 0.787 to 1.47
MB/s to disk, and Microsoft jobs transfer an average of
6.61 to 10.58 MB/s to disk. These aggregate numbers
reflect an estimate of average I/O use so do not reflect
tail behavior, do not include additional I/O that may have
occurred (e.g., to spill intermediate data), and are not
directly comparable to our results because unlike the CPU
milliseconds, the total task time includes time when the
task was blocked on network or disk I/O.6 The takeaway
from these results should not be the precise value of these
aggregate metrics, but rather that sanity checking our re-
sults against production traces does not lead us to believe
that production workloads have dramatically different

6 For the Google traces, the aggregate numbers are skewed by the
fact that, at the time, a few MapReduce jobs that consumed significant
resources were also very CPU intensive (in particular, the final phase of
the indexing pipeline involved significant computation). These jobs also
performed some additional disk I/O from within the user-defined map
and reduce functions [23]. We lack sufficient information to quantify
these factors, so they are not included in our estimate of MB/s.

7



Aug. ’04 Mar. ’06 Sep. ’07
Map input data (TB) [24] 3,288 52,254 403,152
Map output data (TB) [24] 758 6,743 34,774
Reduce output data (TB) [24] 193 2,970 14,018
Task years used [24] 217 2,002 11,081
Total data transferred to/from disk (TB) 5383 74,650 514,754
Avg. MB transferred to/from disk per task second (MB/s) .787 1.18 1.47
Avg. Mb sent over the network per task second (Mbps) 1.34 1.61 1.44

Table 2: Disk use for all MapReduce jobs run at Google.

May Jun Jul Aug Sep Oct Nov Dec Jan
Input Data (PB) [11] 12.6 22.7 14.3 18.7 22.8 25.3 25.0 18.6 21.5
Intermediate Data (PB) [11] 0.66 1.22 0.67 0.76 0.73 0.86 0.68 0.72 1.99
Compute (years) [11] 49.1 88.0 51.6 60.6 73.0 84.1 88.4 96.2 79.5
Avg. MB read/written per task second 8.99 9.06 9.61 10.58 10.54 10.19 9.46 6.61 10.16
Avg. Mb shuffled per task second 3.41 3.52 3.29 3.18 2.54 2.59 1.95 1.90 6.35

Table 3: Disk use for a cluster with tens of thousands of machines, running Cosmos. Compute (years) describes the sum of runtimes
across all tasks [12]. The data includes jobs from two days of each month; see [11] for details.

I/O requirements than the workloads we measure.

3.5 Why isn’t disk I/O more important?

We were surprised at the results in §3.3 given the oft-
quoted mantra that I/O is often the bottleneck, and also
the fact that fundamentally, the computation done in data
analytics job is often very simple. For example, queries
1a, 1b, and 1c in the big data benchmark select a filtered
subset of a table. Given the simplicity of that computation,
we would not have expected the query to be CPU bound.
One reason for this result is that today’s frameworks often
store compressed data (in increasingly sophisticated
formats, e.g. Parquet [1]), trading CPU time for I/O time.
We found that if we instead ran queries on uncompressed
data, most queries became I/O bound. A second reason
that CPU time is large is an artifact of the decision to write
Spark in Scala, which is based on Java: after being read
from disk, data must be deserialized from a byte buffer to
a Java object. Figure 7 illustrates the distribution of the
total non-idle CPU time used by queries in the big data
benchmark under 3 different scenarios: when input data,
shuffle data, and output data are compressed and serial-
ized; when input data, shuffle data, and output data are not
deserialized but are decompressed; and when input and
output data are stored as deserialized, in-memory objects
(shuffle data must still be serialized in order to be sent over
the network). The CDF illustrates that for some queries,
as much as half of the CPU time is spent deserializing and
decompressing data. This result is consistent with Figure
9 from the Spark paper, which illustrated that caching
deserialized data significantly reduced job completion
time relative to caching data that was still serialized.

Spark’s relatively high CPU time may also stem from
the fact that Spark was written Scala, as opposed to a
lower-level language such at C++. For one query that we
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Figure 7: Comparison of total non-idle CPU milliseconds
consumed by the big data benchmark workload, with and
without compression and serialization.

re-wrote in C++, we found that the CPU time reduced by
a factor of more than 2⇥. Existing work has illustrated
that writing analytics in C++ instead can significantly
improve performance [22], and the fact that Google’s
MapReduce is written in C++ is an oft-quoted reason for
its superior performance.

3.6 Are these results inconsistent with past work?

Prior work has shown significant improvements as a result
of storing input data for analytics workloads in memory.
For example, Spark [51] was demonstrated to be 20⇥
to 40⇥ faster than Hadoop [51]. A close reading of that
paper illustrates that much of that improvement came not
from eliminating disk I/O, but from other improvements
over Hadoop, including eliminating serialization time.

The PACMan work described improvements in average
job completion time of more than a factor of two as a result
of caching input data [9], which, similar to Spark, seems
to potentially contradict our results. The 2⇥ improve-
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Figure 8: Improvement in job completion time as a result of
eliminating all time blocked on network.

ments were shown for two workloads. The first workload
was based on the Facebook trace, but because the Face-
book trace does not include enough information to replay
the exact computation used by the jobs, the authors used
a mix of compute-free (jobs that do not perform any com-
putation), sort, and word count jobs [12]. This synthetic
workload was generated based on the assumption that
analytics workloads are I/O bound, which was the pre-
vailing mentality at the time. Our measurements suggest
that jobs are not typically I/O bound, so this workload
may not have been representative. The second workload
was based on a Bing workload (rewritten to use Hive),
where the 2⇥ improvement represented the difference in
reading data from a serialized, on-disk format compared
to reading de-serialized, in-memory data. As discussed
in §3.5, serialization times can be significant, so the
2⇥ improvement likely came as much from eliminating
serialization as it did from eliminating disk I/O.

3.7 Summary

We found that job runtime cannot improve by more
than 19% as a result of optimizing disk I/O. To shed
more light on this measurement,we compared resource
utilization while tasks were running, and found that CPU
utilization is typically close to 100% whereas median disk
utilization is at most 25%. One reason for the relatively
high use of CPU by the analytics workloads we studied is
deserialization and compression; the shift towards more
sophisticated serialization and compression formats has
decreased the I/O and increased the CPU requirements of
analytics frameworks. Because of high CPU times, opti-
mizing hardware performance by using more disks, using
flash storage, or storing serialized in-memory data will
yield only modest improvements to job completion time;
caching deserialized data has the potential for much larger
improvements due to eliminating deserialization time.

Serialization and compression formats will inevitably
evolve in the future, rendering the numbers presented in
this paper obsolete. The takeaway from our measurements
should be that CPU usage is currently much higher than
disk use, and that detailed performance instrumentation

like our blocked time analysis is critical to navigating the
tradeoff between CPU and I/O time going forward.

4 How important is the network?
Researchers have used the argument that data-intensive
application performance is closely tied to datacenter net-
work performance to justify a wide variety of network op-
timizations [6,14,17–21,27,28,41,42,48,53]. We there-
fore expected to find that optimizing the network could
yield significant improvements to job completion time.

4.1 How much time is spent blocked on network I/O?

To understand the importance of the network, we first use
blocked time analysis to understand the largest possible
improvement from optimizing the network. As shown in
Figure 8, none of the workloads we studied could improve
by a median of more than 2% as a result of optimizing
network performance. We did not use especially high
bandwidth machines in getting this result: the m2.4xlarge
instances we used have a 1Gbps network link.

Our blocked time instrumentation for the network
included time to read shuffle data over the network, and
for on-disk workloads, the time to write output data to one
local machine and two remote machines. Both of these
times include disk use as well as network use, because
disk and network are interlaced in a manner that makes
them difficult to measure separately. As a result, 2%
represents an upper bound on the possible improvement
from network optimizations.

To shed more light on the network demands of the
workloads we ran, Figure 5 plots the network utilization
along with CPU and disk utilization. Consistent with the
fact that blocked times are very low, median network
utilization is lower than median disk utilization and
much lower than median CPU utilization for all of the
workloads we studied.

4.2 Sanity-checking our results against production
traces

We were surprised at the low impact of the network on
job completion time, given the large body of work tar-
geted at improving network performance for analytics
workloads. Similar to what we did in §3.3 to understand
disk performance, we computed the network data sent per
non-idle CPU second, to facilitate comparison to large-
scale production workloads, as shown in Figure 9. Sim-
ilar to what we found for disk I/O, the Facebook work-
load transfers less data over the network per CPU sec-
ond than the workloads we ran. Thus, we expect that run-
ning our blocked time analysis on the Facebook work-
load would yield smaller potential improvements from
network optimizations than for the workloads we ran. Ta-
bles 2 and 3 illustrate this metric for the Google and Mi-
crosoft traces, using the machine seconds or task seconds
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Figure 9: Megabits sent over the network per non-idle CPU
second.
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Figure 10: Ratio of shuffle bytes to input bytes and output bytes
to input bytes. The median ratio of shuffled data to input data is
less than 0.35 for all workloads, and the median ratio of output
data to input data is less than 0.2 for all workloads.

in place of CPU milliseconds as with the disk results.7 For
Google, the average megabits sent over the network per
machine second ranges from 1.34 to 1.61; Microsoft net-
work use is higher (1.90-6.35 megabits are shuffled per
task second) but still far below the network use seen in our
workload.Thus, this sanity check does not lead us to be-
lieve that production workloads have dramatically differ-
ent network requirements than the workloads we measure.

4.3 Why isn’t the network more important?

One reason that network performance is relatively unim-
portant is that the amount of data sent over the network is
often much less than the data transferred to disk, because
analytics queries often shuffle and output much less data
than they read. Figure 10 plots the ratio of shuffle data to
input data and the ratio of output data to input data across
our benchmarks, the Facebook trace (the production
workload did not have sufficient instrumentation to
capture these metrics), and for the Microsoft and Google
aggregate data (averaged over all of the samples). Across
all workloads, the amount of data shuffled is less than
the amount of input data, by as much as a factor of 5-10,
which is intuitive considering that data analysis often

7The Microsoft data does not include output size, so network data
only includes shuffle data.
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Figure 11: Cumulative distribution across tasks (weighted by
task duration) of the fraction of task time spent writing output
data, measured using our fine grained instrumentation and
estimated using the technique employed by prior work [17].
The previously used metric far overestimates time spent writing
output data.

centers around aggregating data to derive a business con-
clusion. In evaluating the efficacy of optimizing shuffle
performance, many papers have used workloads with
ratios of shuffled data to input data of 1 or more, which
these results demonstrate is not widely representative.

4.4 Are these results inconsistent with past work?
Past work has reported high effects of the network on
job completion time because the effect of the network
has been estimated based on Hadoop traces rather than
precisely measured. Many existing traces do not include
sufficient metrics to understand the impact of the network.
For example, Sinbad [17] asserted that writing output
data can take a significant amount of time for analytics
jobs, but used a heuristic to understand time to write
output data: it defined the write phase of a task as the time
from when the shuffle completes until the completion
time of the task. This metric is an estimate, which was
necessary because Hadoop does not log time blocked on
output writes separately from time spent in computation.
We instrumented Hadoop to log time spent writing output
data and ran the big data benchmark (using Hive to con-
vert SQL queries to Map Reduce jobs) and compared the
result from the detailed instrumentation to the estimation
previously used. Unfortunately, as shown in Figure 11, the
previously used metric significantly overestimates time
spent writing output data, meaning that the importance of
the network was significantly overestimated.

A second problem with past estimations of the im-
portance of the network is that they have conflated
inefficiencies in Hadoop with network performance
problems. One commonly cited work quotes the percent
of job time spent in shuffle, measured using a Facebook
Hadoop workload [19]. We repeated this measurement
using the Facebook trace, shown in Table 4. Previous
measurements looked at the fraction of jobs that spent a
certain percent of time in shuffle (i.e., the first two lines of
Table 4); by this metric, 16% of jobs spent more than 75%
of time shuffling data. We dug into this data and found that
a typical job that spends more than 75% of time in its shuf-
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Shuffle Dur. <25% 25-49% 50-74% >=75%
% of Jobs 46% 20% 18% 16%
% of time 91% 7% 2% 1%
% of bytes 83% 16% 1% 0.3%

Table 4: The percent of jobs, task time, and bytes in jobs that
spent different fractions of time in shuffle for the Facebook
workload.

fle phase takes tens of seconds to shuffle kilobytes of data,
suggesting that framework overhead and not network
performance is the bottleneck. We also found that only
1% of all jobs spend less than 4 seconds shuffling data,
which suggests that the Hadoop shuffle includes fixed
overheads to, for example, communicate with the master
to determine where shuffle data is located. For such tasks,
shuffle is likely bottlenecked on inefficiencies and fixed
overheads in Hadoop, rather than by network bottlenecks.

Table 4 includes data not reported in prior work: for
each bucket, we compute not only the percent of jobs that
fall into that bucket, but also the percent of total time and
percent of total bytes represented by jobs in that category.
While 16% of jobs spend more than 75% of the time in
shuffle, these jobs represent only 1% of the total bytes
sent across the network, and 0.3% of the total time taken
by all jobs. This further suggests that the jobs reported as
spending a large fraction of time in shuffle are small jobs
for which the shuffle time is dominated by framework
overhead rather than by network performance.

4.5 Summary

We found that, for the three workloads we studied,
network optimizations can only improve job completion
time by a median of at most 2%. One reason network
performance has little effect on job completion time is
that the data transferred over the network is a subset of
data transferred to disk, so jobs bottleneck on the disk
before bottlenecking on the network. We found this to
be true in a cluster with 1Gbps network links; in clusters
with 10Gbps or 100Gbps networks, network performance
will be even less important.

Past work has found much larger improvements from
optimizing network performance for two reasons. First,
some past work has focused only on workloads where
shuffle data is equal to the amount of input data, which we
demonstrated is not representative of typical workloads.
Second, some past work relied on estimation to under-
stand trace data, which led to misleading conclusions
about the importance of the network.

5 The Role of Stragglers
A straggler is a task that takes much longer to complete
than other tasks in the stage. Because the stage cannot
complete until all of its tasks have completed, straggler
tasks can significantly delay the completion time of
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Figure 12: Potential improvement in job completion time as a
result of eliminating all stragglers. Results are shown for the
on-disk and in-memory versions of each benchmark workload.

the stage and, subsequently, the completion time of the
higher-level query. Past work has demonstrated that
stragglers can be a significant bottleneck; for example,
stragglers were reported to delay average job completion
time by 47% in Hadoop clusters and by 29% in Dryad
clusters [8]. Existing work has characterized some strag-
glers as being caused by data skew, where a task reads
more input data than other tasks in a job, but otherwise
does not characterize what causes some tasks to take
longer than others [11, 26, 29]. This inability to explain
the cause of stragglers has typically led to mitigation
strategies that replicate tasks, rather than strategies that
attempt to understand and eliminate the root cause of long
task runtimes [8, 10, 39, 52].

5.1 How much do stragglers affect job completion
time?

To understand the impact of stragglers, we adopt the ap-
proach from [8] and focus on a task’s inverse progress rate:
the time taken for a task divided by amount of input data
read. Consistent with that work, we define the potential
improvement from eliminating stragglers as the reduction
in job completion time as a result of replacing the progress
rate of every task that is slower than the median progress
rate with the median progress rate. We use the methodol-
ogy described in §2.3.2 to compute the new job comple-
tion time given the new task completion times. Figure 12
illustrates the improvement in job completion time as a
result of eliminating stragglers in this fashion; the median
improvement from eliminating stragglers is 5-10% for the
big data benchmark and TPC-DS workloads, and lower
for the production workloads, which had fewer stragglers.

5.2 Are these results inconsistent with prior work?
Some prior work has reported the effect of stragglers to
be similar to what we found in our study. For example,
based on a Facebook trace, Mantri described a median
improvement of 15% as a result of eliminating all
stragglers. Mantri had a larger overall improvements
when deployed in production that stemmed not only from
eliminating stragglers, but also from eliminating costly
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Figure 13: Our improved instrumentation allowed us to explain the causes behind most of the stragglers in the workloads we
instrumented. This plot shows the distribution across all queries of the fraction of the query’s stragglers that can be attributed to a
particular cause.

recomputations [11].
Other work has reported larger potential improvements

from eliminating stragglers: Dolly, for example, uses the
same metric we used to understand the impact of strag-
glers, and found that eliminating stragglers could reduce
job completion time by 47% for a Facebook trace and
29% for a Bing trace [8]. This difference may be due to the
larger cluster size or greater heterogeneity in the studied
traces. However, the difference can also be partially at-
tributed to framework differences. For example, Spark has
much lower task launch overhead than Hadoop, so Spark
often breaks jobs into many more tasks, which can reduce
the impact of stragglers [39]. Stragglers would have had a
much larger impact for the workloads we ran if all of the
tasks in each job had run as a single wave; in this case, the
median improvement from eliminating stragglers would
have been 23-41%. We also found that stragglers have
become less important as Spark has matured. When run-
ning the same benchmark queries with an older version of
Spark, many stragglers were caused by poor disk perfor-
mance when writing shuffle data. Once this problem was
fixed, the importance of stragglers decreased. These im-
provements to Spark may make stragglers less of an issue
than previously observed, even on large-scale clusters.

5.3 Why do stragglers occur?
Prior work investigating straggler causes has largely
relied on traces with coarse grained instrumentation; as
a result, this work has been able to attribute stragglers to
data skew and high resource utilization [11, 49], but oth-
erwise has been unable to explain why stragglers occur.
Our instrumentation allows us to describe the cause of
more than 60% of stragglers in 75% of the queries we ran.

In examining the cause of stragglers, we follow
previous work and define a straggler as a task with inverse
progress rate greater than 1.5⇥ the median inverse
progress rate for the stage. Unlike the previous subsec-
tion, we do not look at all tasks that take longer than the
median progress rate, in order to focus on situations where
there was a significant anomaly in a task’s execution.

Many stragglers can be explained by the fact that the
straggler task spends an unusually long amount of time
in a particular part of task execution. We characterize

a straggler as caused by X if it would not have been
considered a straggler had X taken zero time for all
of the tasks in the stage. We use this methodology
to attribute stragglers to scheduler delay (time taken
by the scheduler to ship the task to a worker and to
process the task completion message), HDFS disk read
time, shuffle write time, shuffle read time, and Java’s
garbage collection (which can be measured using Java’s
GarbageCollectorMXBean interface).

We attribute stragglers to two additional causes that
require different methodologies. First, we attribute strag-
glers to output skew by computing the progress rate based
on the amount of output data processed by the task instead
of the amount of input data, and consider a straggler
caused by output skew if the task is a straggler based on
input progress rate but not based on output progress rate.
Second, we find that some stragglers can be explained by
the fact that they were among the first tasks in a stage to
run on a particular machine. This effect may be caused by
Java’s just-in-time compilation: Java runtimes (e.g., the
HotSpot JVM [32]) optimize code that has been executed
more than a threshold number of times. We consider strag-
glers to be caused by the fact that they were a “first task”
if they began executing before any other tasks in the stage
completed on the same machine, and if they are no longer
considered stragglers if compared to other “first tasks.”

For each of these causes, Figure 13 plots the fraction
of stragglers in each query explained by that cause. The
distribution arises from differences in straggler causes
across queries; for example, for the on-disk big data
benchmark, in some jobs, all stragglers are explained by
the time to read data from HDFS, whereas in other jobs,
most stragglers can be attributed to garbage collection.

The graph does not point to any one dominant of
stragglers, but rather illustrates that straggler causes
vary across workloads and even within queries for a
particular workload. However, common patterns are that
garbage collection can cause most of the stragglers for
some queries, and many stragglers can be attributed to
long times spent reading to or writing from disk (this is
not inconsistent with our earlier results showing a 19%
median improvement from eliminating disk: the fact
that some straggler tasks are caused by long times spent
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Figure 14: Improvement in job completion time as a result of
eliminating disk I/O, eliminating network I/O, and eliminating
stragglers, each shown for two different trials of the on-disk
TPC-DS workload using different scale factors and cluster sizes.

blocked on disk does not necessarily imply that overall,
eliminating time blocked on disk would yield a large
improvement in job completion time). Another takeaway
is that many stragglers are caused by inherent factors like
output size and running before code has been jitted, so
cannot be alleviated by straggler mitigation techniques.

5.4 Improving performance by understanding
stragglers

Understanding the root cause behind stragglers pro-
vides ways to improve performance by mitigating the
underlying cause. In our early experiments, investigating
straggler causes led us to find that the default file system
on the EC2 instances we used, ext3, performs poorly
for workloads with large numbers of parallel reads and
writes, leading to stragglers. By changing the filesystem
to ext4, we fixed stragglers and reduced median task
time, reducing query runtime for queries in the big data
benchmark by 17�58%. Many of the other stragglers we
observed could potentially be reduced by targeting the
underlying cause, for example by allocating fewer objects
(to target GC stragglers) or consolidating map output
data into fewer files (to target shuffle write stragglers).
Understanding these causes allows for going beyond
duplicating tasks to mitigate stragglers.

6 How Does Scale Affect Results?
The results in this paper have focused on one cluster size
for each of the benchmarks run. To understand how our
results might change in a much larger cluster, we ran the
TPC-DS on-disk workload on a cluster with three times
as many machines and using three times more input data.
Figure 14 compares our key results on the larger cluster to
the results from the 20-machine cluster described in the
remainder of this paper, and illustrates that the potential
improvements from eliminating disk I/O, eliminating
network I/O, and eliminating stragglers on the larger
cluster is comparable to the corresponding improvements
on the smaller cluster.

7 Conclusion
This paper undertook a detailed performance study of
three workloads, and found that for those workloads,
jobs are often bottlenecked on CPU and not I/O, network
performance has little impact on job completion time,
and many straggler causes can be identified and fixed.
These findings should not be taken as the last word on
performance of analytics frameworks: our study focuses
on a small set of workloads, and represents only one
snapshot in time. As data-analytics frameworks evolve,
we expect bottlenecks to evolve as well. As a result,
the takeaway from this work should be the importance
of instrumenting systems for blocked time analysis, so
that researchers and practitioners alike can understand
how best to focus performance improvements. Looking
forward, we argue that systems should be built with
performance understandability as a first-class concern.
Obscuring performance factors sometimes seems like a
necessary cost of implementing new and more complex
optimizations, but inevitably makes understanding how to
optimize performance in the future much more difficult.
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