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Abstract
The systems and networking community treasures “sim-
ple” system designs, but our evaluation of system sim-
plicity often relies more on intuition and qualitative dis-
cussion than rigorous quantitative metrics. In this paper,
we develop a prototype metric that seeks to quantify the
notion of algorithmic complexity in networked system
design. We evaluate several networked system designs
through the lens of our proposed complexity metric and
demonstrate that our metric quantitatively assesses so-
lutions in a manner compatible with informally artic-
ulated design intuition and anecdotal evidence such as
real-world adoption.

1 Introduction
The design of a networked system frequently includes a
strong algorithmic design component. For example, so-
lutions to a variety of problems – routing, distributed
storage, multicast, name resolution, resource discovery,
overlays, data processing in sensor networks – require
distributed techniques and procedures by which a collec-
tion of nodes accomplish a network-wide task.

Design simplicity is a much-valued property in such
systems. For example, the literature on networked sys-
tems often refers to the importance of simplicity (all em-
phasis added):

The advantage of Chord is that it is substantially
less complicated. . . (Chord [35])
This paper describes a design for multicast that is
simple to understand. . . (Simple Multicast [32])
This paper proposed a simple and effective ap-
proach. . . (SOSR [17])

Likewise, engineering maxims stress simplicity:
All things being equal, the simplest solution tends
to be the right one. (Occam’s razor)
KISS: Keep It Simple, Stupid! (Apollo program)

However, as the literature reveals, our evaluation of
the simplicity (or lack thereof) of design options is of-
ten through qualitative discussion or, at best, proof-of-
concept implementation. What rigorous metrics we do
employ tend to be borrowed from the theory of algo-
rithms. These metrics, however, were intended to cap-
ture the overhead or efficiency of an algorithm and are
at times incongruent with our notion of simplicity. For

example, flooding performs poorly on two of the most
common metrics used to calibrate system designs (the
amount of state maintained at nodes and the number of
messages exchanged across nodes), but most of us would
consider flooding a simple, albeit inefficient, solution.
Similarly, a piece of state obtained as the result of a dis-
tributed consensus protocol feels intuitively more com-
plex than state that holds the IP address of a neighbor in
a wireless network.

We conjecture that this mismatch in design aesthetic
contributes to the frequent disconnect between the more
theoretical and applied research on networked system
problems. A good example of this is the work on rout-
ing. Routing solutions with small forwarding tables are
widely viewed as desirable and the search for improved
algorithms has been explored in multiple communities;
for instance, a fair fraction of the proceedings at STOC,
PODC, and SPAA are devoted to routing problems. The
basic distance-vector and link-state protocols incur high
routing state (O(n) entries) but are simple and widely
employed. By contrast, a rich body of theoretical work
has led to a suite of compact routing algorithms (e.g.,
[2,3,10,36]). These algorithms construct optimally small
routing tables (O(

√
n) entries) but appear more complex

and have seen little adoption.
This is not to suggest existing overhead or efficiency

metrics are not relevant or useful. On the contrary, all else
being equal, solutions with less state or traffic overhead
are strictly more desirable. Our point is merely that de-
sign simplicity plays a role in selecting solutions for real-
world systems, but existing efficiency or performance-
focused metrics can be misaligned with our notion of
what constitutes simple system designs.

This paper explores the question of whether we can
identify complexity metrics that more directly capture
the intuition behind our judgment of system designs. Be-
cause the system designs we work with are fairly well-
specified, we believe there is no fundamental reason why
our appreciation of a design cannot be reinforced by
quantifiable measures. Such metrics would not only al-
low us to more rigorously discriminate between design
options, but also to better align the design goals of the
theory and systems communities.

We start by reporting on a survey we conducted to un-
derstand how system designers evaluate and articulate
complexity in system design (Section 2). Building on
this, we define a complexity metric in Sections 3 and 4



and evaluate several networked system designs through
the lens of our complexity metric in Section 5. Using this
analysis, we demonstrate that our metric quantitatively
differentiates across flavors of solutions and ranks sys-
tems in a manner that is congruent with our survey. We
discuss the limitations of our metric in Section 6, review
related work in Section 7, and conclude in Section 8.

Finally, it is important to clarify the scope of our work.
We intend for our complexity metric to complement –
not replace – existing efficiency or performance metrics.
For example, in the case of a routing algorithm, our met-
ric might capture the complexity of route construction
but reveal little about the quality of computed paths. In
addition, while we focus on system design at the algo-
rithmic or procedural level, there are many aspects to a
software system that contribute to its ultimate complex-
ity. For example, as the CAP theorem [13] tells us, the
careful selection of a system’s service model profoundly
impacts complexity. The same is true for the sound de-
sign of its software implementation. Although at least as
important as distributed complexity, these are not aspects
we consider in this paper. Lastly, we stress that we view
our metric as a prototype: one specific metric that works
well with several classes of important systems. We ex-
pect that the best-suited metric will emerge in time after
much broader discussion and evaluation (similar to the
development of standard benchmarks in many commu-
nities such as databases and computer architecture). As
such, we view our contribution primarily in getting the
ball rolling by providing a candidate metric and set of
results for further scrutiny.

2 Perceived Complexity
We conducted a survey to explore how system design-
ers perceive complexity of networked system algorithms
such as routing, distributed systems, and resource discov-
ery. Nineteen students in a graduate distributed systems
class at UC Berkeley participated in the survey. Partici-
pants were asked to rank which of two comparable net-
worked system algorithms they viewed as more complex
on a scale where 1 means system A is far more complex
and 9 means B is far more complex. Participants were
also asked to rationalize their choice in 2–3 sentences.

We discuss the algorithms we surveyed in detail in
the later sections of this paper; Table 1 briefly summa-
rizes the findings from the survey’s quantitative rank-
ing. The one-sample t-test reveals that participants con-
sider distance vector (DV) routing as more complex than
link state (LS) routing but less complex than landmark
or compact routing. In evaluating classical distributed
systems, participants viewed solutions such as quorums,
Paxos, multicast, and atomic multicast as more complex
than read-one/write-all, two phase commit, gossip, and
repeated multicast, respectively. Napster was perceived

More complex
Algorithm A Algorithm B algorithm
DV LS A (p < .060)
DV Landmark B (p < .050)
DV Compact B (p < .030)
DV RCP not significant
Read one/write all Quorum B (p < .007)
Two phase commit Paxos B (p < .001)
Gossip Multicast B (p < .013)
Atomic multicast Repeated multicast A (p < .001)
Locking Lease not significant
Napster Gnutella B (p < .001)
DHT Gnutella A (p < .020)
DNS lookup DHT lookup B (p < .007)

Table 1: Survey results on comparing networked systems complexity.
For each question, we present which algorithm was statistically rated as
more complex based on the t test’s p-value, which indicates the proba-
bility that the result is coincidental. The smaller the p-value, the more
significant the result.

as simpler than Gnutella and systems such as Gnutella
and the Domain Name System (DNS) as simpler than
distributed hash tables (DHTs).

The rationales for these rankings shed more insight.
Participants found a system was complex if it was hard
to “get right,” understand, or debug, or if it could not eas-
ily cope with failures. For the most part, issues of scal-
ability or performance did not figure in their responses.
Some sample answers include: “components have com-
plex interactions,” “centralized or hierarchical is sim-
pler than decentralized,” “structure is complex,” and “re-
quires complex failure and partition handling.” Tellingly,
participants at times could not clearly articulate why one
algorithm was more complex than the other and resorted
to circular definitions – e.g., “chose system A because it
is more complicated” or “B’s protocol is more complex.”

3 Components of Complexity
A complexity metric could make these arguments ob-
jective. A good metric would be based on quantifiable,
concrete measurements of the system properties that in-
duce implementation difficulties, complex interactions
and failures, and so forth. Many metrics are possible. A
perfect metric would be intuitive and easy to calculate,
and would correlate with other, more subjective metrics,
such as lines of code or system designers’ experience.

We build on the observation that much of system de-
sign centers on issues of state – the required state must be
defined and operations for constructing and using it must
be developed – but in distributed systems, one state can
derive from states stored on other nodes. To calculate its
state, a node must hear from the remote nodes that store
the dependencies. This adds additional dependencies on
the network and intermediate node states required to re-
lay input states to the node in question. Thus, not only are



a given piece of state’s dependencies distributed, there
are also more of them.

We conjecture that the complexity particular to net-
worked systems arises from the need to ensure state is
kept in sync with its distributed dependencies. The met-
ric we develop in this paper reflects this viewpoint and
we illustrate several systems for which this dependency-
centric approach appears to appropriately reflect system
complexity. Alternate approaches are certainly possible
however – e.g., based on protocol state machine descrip-
tions, a protocol’s state space, and so forth – and we leave
a comprehensive exploration of the design space for met-
rics and their applicability to future work.

Our goal then is to derive a per-state measure cs that
captures the complexity due to the distributed state on
which a state s depends. While a natural option would be
simply to count s’s dependencies, this is not sufficiently
discriminating: dependencies, like state, can vary greatly
in the burden they impose. Consider Figure 1, which
shows dependency relationships between states for sev-
eral simple networks. In Fig. 1b, a simple distribution
tree, v is computed from three dependencies w, x, and y,
while in Fig. 1c, which transforms a value over several
hops, v has just one direct dependency w, which is in
turn computed from x, itself computed from y. However,
a change in y in Fig. 1b will affect only v, while the same
change in Fig. 1c must propagate through x and w first.
As a system, we argue that Fig. 1c is more complex than
Fig. 1b. We therefore weight each state, and instead of
naively counting dependencies, calculate a state’s com-
plexity by summing the complexities of its dependencies.
The sum includes not only direct dependencies on values,
but also dependencies on the transport states required to
relay those values, accounting for networks whose trans-
port relationships are expensive to maintain.

Some flexibility is required to account for the differ-
ent types of dependencies in real networked systems, in-
cluding redundancy, soft state, and so forth, and to dif-
ferently penalize transport and value dependencies. Nev-
ertheless, our metric is defined exclusively by counting;
we avoid incorporating intricate probabilistic models of
node or link behavior or state machine descriptions and
the like. This keeps our metric usable, lending it to eval-
uation through simple examination and analysis or even
empirical simulation, and represents one particular trade-
off between a metric’s discriminative power and the sim-
plicity of the metric itself. Some of the limitations of our
counting-based approach are discussed in Section 6.

4 A Complexity Metric
Given a system that consists of a set of states S, our goal
is to assign a complexity metric cs to each state s ∈ S.
We write states as lowercase letters, such as s, v, and w.
Where the context is clear, we abuse notation and merge

1 2 3
v = f (w) w

l2 l3

1

2 3

4 5

6 7
v =

f (w,x,y)

w

x

y

(a) Collecting one value (b) Collecting several values

1 2 3 4 5 6 7
v = f (w) w = f (x) x = f (y) y

(c) Collecting one value via intermediate states
1 2 3 4 5 6 7

v = f (w,a2) w = f (x,a1) x = f (y,a0) y

(d) Collecting an aggregate value
1 3 5

4

6 72
v =

f (w1,w2)

w1 = f (x)

w2 = f (x)

x = f (y) y

(e) Collecting via branches forked and then merged
Figure 1: State relationships in four toy scenarios. For clarity routing
table state, written l, is only shown in scenario (a).

the identities of states and nodes; e.g., instead of “deliv-
ered to node 1, which stores state x,” we simply say “de-
livered to x.” Local or primitive state can be maintained
without network traffic, as in a sensor node’s tempera-
ture reading. We sometimes indicate primitive state with
an underline, as in w. All other state is derived at least
partially from states held at other nodes. We call these
remote states direct value dependencies. In Fig. 1a, w
is a primitive state, and v is a derived state with one
value dependency, namely w, as indicated by the defini-
tion v = f (w). Primitive state is assigned zero complex-
ity, while any derived state has positive complexity. The
set of state s’s direct value dependencies is written Ds.

A derived state also depends on the transport state re-
quired to relay value dependencies through the network.
For instance, in Fig. 1a, propagating w to v uses the l2 and
l3 routing table entries at nodes 2 and 3, respectively. We
call these states transport dependencies and account for
their complexity. The set Ts←x is defined as the set of
transport dependencies involved in relaying x’s value to
s; it is empty when x 6∈ Ds. In terms of maintaining state
consistency, transport dependencies are less of a burden
than value dependencies since changes in a state’s trans-
port dependencies do not induce costs to keep that state
in sync and, as we shall see, our metric reflects this. For
instance, in Fig. 1a, any change in w must be commu-
nicated to node 1, but a change in l2 need not, since v
depends on the l states only for the delivery of w.

While some value dependencies require state changes
be relayed, others need only be established once. For ex-
ample, if v were defined as a function of w at some spe-
cific time, rather than of w’s current value, then once es-



tablished v is unaffected by changes elsewhere in the net-
work. We say that state x and one of its value dependen-
cies y are linked if a change in y must be propagated to
x, and unlinked otherwise. Linked value dependencies
are the major source of network complexity due to the
state maintenance they incur and are treated accordingly
by our metric.

Evaluating the metric requires determining dependen-
cies among states and defining which dependencies are
linked or unlinked. Unused or redundant dependencies,
which frequently occur, can be measured in several ways.
For example, consider Fig. 1b, where v = f (w,x,y) and
let us assume that the value v takes at any point is based
on just one of its inputs (for instance, perhaps the active
input is chosen based on minimum path length). Then v’s
value dependencies have distinctly different importance:
ensuring consistency requires that v and its active input
stay synchronized, while updates from the other depen-
dencies are less critical. When we consider dependencies
of state v, we focus on these active states that derive v and
ignore unused value dependencies.

We now turn to the metric itself, first defining a sub-
metric us which we call the value dependency impact.
us measures the number of remote states on which s is
value dependent directly or indirectly. Stated otherwise,
these are primitive states that, if they were to change,
could result in an update at s and hence one can intu-
itively view us as indicative of the number of updates
seen at s for maintaining consistency with its value de-
pendencies. us is defined mutually recursively with us←x,
which measures the number of states on which s is value
dependent via some direct value dependency x ∈ Ds. For
local state s, we have Ds = /0, us = us←x = 0.

us = ∑
x∈Ds

us←x ;

us←x =































ux if x is linked to s and
x is not dependent on local state

ux +1 if x is linked to s and
x is dependent on local state,

ε if x is unlinked to s.

If the dependency s← x is linked, s must be notified of
any change in x∈Ds. Applied recursively, changes in any
of x’s direct or indirect value dependencies must also be
passed on to s. Thus, the number of dependencies inher-
ited via x is x’s own value dependency impact, ux, plus
one in the event that x was derived (in part) from local
state (since a change caused by state local to x would
not be accounted for in ux). For example, states w and x
in Fig. 1c, do not include any local inputs while the same
states in Fig. 1d do. If s is unlinked to x, then any changes
in x are not propagated to s, so we cut off x’s value de-
pendency impact. However, to ensure that s is charged

for its initial reliance on x, we introduce ε , 0 < ε � 1,
and charge this amount for every non-local, unlinked de-
pendency.

Note that our definition of us assumes the dependen-
cies s inherits are independent – a simplifying assump-
tion due to which us overcounts in some dependency
structures. For example, in Fig. 1e, if v← {w1,w2} ←
x← y, then y is counted twice in us, once via w1 and once
via w2. This situation arose rarely. Many such branching
dependency structures represent unused or redundant de-
pendencies that we model by picking one active input,
which leaves the dependency graph in the form of a tree.

The complexity of s is then defined as follows:

cs = ∑
x∈Ds

cs←x ;

cs←x =

{

us←x +∑y∈Ts←x max(cy,ε)+ cx if x linked,
ε if x unlinked.

This definition accounts for the entire scaffolding of dis-
tributed dependencies that maintain changes from s’s de-
pendencies to s itself. Suppose s’s direct value depen-
dencies are all linked. Then, the first term ∑x∈Ds us←x
(= us) is s’s value dependency impact. The second term
∑x∈Ds ∑y∈Ts←x max(cy,ε) accounts for the complexity of
the transport states from s’s dependencies to s itself;
ε again ensures that all links are counted, here includ-
ing transport links that nominally require no state (such
as one-hop wireless broadcast). Finally, the last term
∑x∈Ds cx covers the complexity from inherited (transport
and value) dependencies downstream from x. Local state
s has cs = 0. Thus intuitively, where us was indicative
of the updates seen at s, cs is indicative of the updates
seen across all states – value and transport – that main-
tain changes from s’s dependencies to s.

For a chain of linked dependencies from x0 to xi
(Fig. 1d), which depends on its local state ai (perhaps
xi measures node i’s hop count to node 0), and writing ci
for cxi and so forth, we have ui = i and

ci = i+ ∑
y∈Ti←(i−1)

cy + ci−1 .

Ignoring transport dependencies, the result is ci = (i2 +
i)/2: chained linked dependencies induce complexity
proportional to the square of the length of the chain. In
Figure 1, if we assume all l states have complexity t, the
metric yields cv = 1+2t in Fig. 1a, cv = 3+6t in Fig. 1b,
and cv = 6+6t in Fig. 1c.

We sometimes convey intuition about the sources of
complexity by writing cs = cV

s +cT
s , where cV

s is the com-
plexity contributed by value dependencies and cT

s is the



complexity contributed by transport dependencies:

cV
s←x = us←x + cV

x ,

cT
s←x = ∑

y∈Ts←x

max(cy,ε)+ cT
x .

This split is purely for illustration and does not affect the
definition of complexity in any way.

To measure the complexity of an operation, such as
name resolution, routing, agreement, replication, and so
forth, we simply measure the complexity of a state cre-
ated or updated by that operation. For example, to mea-
sure the complexity of multihop routing, we imagine a
piece of state, s, derived from one primitive value de-
pendency, x, whose value must be routed across a multi-
hop network. The complexity of routing is defined as cs,
which accounts for the multihop transport dependencies
used to route x across the network. Assuming a network
with diameter d where every routing table entry has com-
plexity cr, the resulting complexity is O(dcr).

This paper evaluates different networked system de-
signs by comparing their complexities for specific
operations of interest (e.g., route, write_object,
find_object). We found it sufficient to consider one
operation at a time for our evaluation. If desired, one
might (for example) select the average complexity of key
operations as the overall complexity of the networked
system. We proceed to evaluating the above metric and
defer a discussion of its scope and limitations to Sec-
tion 6.

4.1 Some Canonical Scenarios
We first examine how the above complexity metric fares
in evaluating a few simplified network scenarios and in
the following section explore a suite of more complete
networked system solutions. Before this, we first intro-
duce two conditions that appear repeatedly in our analy-
sis of system designs and are hence worth calling out.
Redundant inputs and paths Many systems build in
redundancy to achieve higher robustness. In our analy-
sis, this manifests itself as some state s that has multiple
inputs or paths but only a subset of them are needed to
derive s (akin to our discussion of active value depen-
dencies in the previous section). For example, a multi-
ple input scenario could be a node trying to discover the
address of a wireless access point (AP) – the node lis-
tens for AP beacons but need only hear from a single
AP to establish connectivity state. An example involv-
ing redundant paths might include two data centers that
provision multiple disjoint network paths between them.
When a message is encoded with (m,k) erasure code and
each code is sent to a distinct path, the destination can
construct the message if any k out of m paths work cor-
rectly. We call this the k-of-m scenario where m is the
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Figure 2: Canonical scenarios. For clarity we do not show the local
and transport state at each node. In all scenarios other than (1) and
(2), this transport state is assumed to have complexity t.

total number of inputs (paths) available and k is the num-
ber of inputs (paths) required.

We define the complexity of s derived from k-of-m in-
puts as being k times the average complexity due to a
single input. As shown in [9], this average can be com-
puted simply as 1/m times the complexity of s assuming
all m inputs were required inputs.

Likewise, for the multipath scenario in which a single
input x can be relayed to s using any k of m available
paths, we calculate the complexities due to the transport
states between x and s as k times the average complexity
due to the transport states along any one path.
Recursion In some systems, a piece of state s is derived
by an operation that uses states that were themselves set
up by the same operation. For example, in DHTs, a node
discovers its routing table entries using a lookup op-
eration that makes use of state (at other nodes) that was
itself set up using lookup operations.

We use two complexity computation passes for state
that involves this kind of recursion. In the first pass, we
compute the complexities from value and transport de-
pendencies with the assumption that states used by the
operation do not depend on the operation. We compute
the final complexities in the second pass in terms of an
operation on states whose complexities are computed in
the first pass. In Section 5, DHTs and Paxos are canoni-
cal examples that involve recursion.
Canonical scenarios We recap the following canonical
scenarios, also depicted in Figure 2. In many cases, we
can construct dependency structures of networked sys-
tem algorithms by composing several canonical scenar-
ios. In all scenarios other than (1) and (2), we assume
that the transport state at each node has complexity t.

(1) single input, 1-hop broadcast: here s is derived
by listening to the broadcast of x. We assume x is lo-
cal state and hence cx = 0. Moreover, the complexity
of transport state at x equals zero since broadcasting
does not require any non-local transport state to be es-



Scenario cs
(1) 1 input, 1-hop broadcast 1+ ε
(2) 1 non-value-dependent input, ε

1-hop broadcast
(3) 1 input, 1-hop unicast 1+ t
(4a) 1 input, 1-of-m paths 1+ t
(4b) 1 input, k-of-m paths 1+ kt
(5a) 1-of-m inputs, 1 path 1+ t
(5b) k-of-m inputs, 1 path k(1+ t)
(6) m inputs, in series 1

2 m(m+1)+mt
(7) m inputs, in parallel m+mt
(8) tree O(m logm+mt)

Table 2: Complexity of canonical scenarios

tablished at x. Correspondingly, state s has complexity
cs = 1+ cx +max(0,ε) = 1+ ε .
(2) single unlinked input, 1-hop broadcast: this case
is identical to the previous case but here s is unlinked to
x (e.g., s stores the value of x as soft-state) and hence
us←x = ε and cs = ε .
(3) single input, 1-hop unicast: this is identical to the
first case, except that instead of broadcasting, x is routed
to s using transport state at x which has complexity t and
hence cs = 1+ t.
(4a) single input, 1-of-m paths: this is identical to the
previous case but we now have m identical paths from x
to s. As before, the complexity of the transport state for
each path is t and hence cs = 1+ t.
(4b) single input, k-of-m paths: this is identical to the
previous case but here x must be delivered to s along k
paths and hence cs = 1+ kt.
(5a) 1-of-m inputs, single path per input: 1 input must
be delivered to s and hence cs = 1+ t.
(5b) k-of-m inputs, single path per input: similar to
the previous case but here k inputs must be delivered to s
and hence cs = k(1+ t).
(6) m value dependencies; 1 direct, m−1 indi-
rect: similar to scenario-1c in Figure 1, here the value
of each xi is computed from that of xi+1 and local state
and hence us = m and cs = m(m+1)

2 +mt.
(7) m direct value dependencies: similar to scenario-1b
in Figure 1, s is computed from m inputs each of which
is directly connected to s and hence cs = m(1+ t).
(8) tree: each intermediate node has two children and
the tree height is O(logm). Hence cs = O(m logm+mt).

The complexities for the above scenarios are summa-
rized in Table 2. Comparing the complexity of s in case
(6) to that in case (7), we see that dependencies that ac-
cumulate indirectly result in a higher complexity than
dependencies that accumulate directly (in keeping with
our discussion comparing scenarios (1b) and (1c) in Fig-
ure 1). A second observation, based on comparing cases
(3) vs. (4a) or (3) vs. (5a), is that our metric neither penal-

izes nor rewards the use of redundant state. This decision
might seem to warrant discussion. One might argue that
redundancy should add to complexity because of the ad-
ditional effort that goes into creating redundant state. For
example, consider a server that must create m replicas of
an immutable file instead of just one. While this is true,
we note that (in this example) the replicas are not depen-
dent on each other and likewise state derived from one
of the replicas is ultimately only dependent on one rather
than m replicas and hence neither should have a com-
plexity higher than if there were only a single replica.
That said, the additional effort due to creating redun-
dancy would emerge in the complexity of the operation
that creates the m copies since this requires maintaining
additional state to identify the m nodes at which to store
replicas.

In terms of not rewarding redundancy, one might argue
(as was done in [34]) that a scenario in which s is derived
from k-of-m inputs should have lower complexity than
if s were derived from exactly k inputs because having
alternate options reduces the extent to which s depends
on any single input (and similarly for paths). However, to
do so would be conflating robustness and complexity1 in
the sense that having alternate inputs does not ultimately
change the number of dependencies for s even though
it changes the extent to which s might depend on any
individual input; i.e., the value of s derived from k-of-
m inputs does ultimately depend on some k input states.

5 Analysis
In this section we evaluate a number of networked sys-
tem designs through the lens of the complexity metric
defined in Section 4. Our goal in this is to: (1) illustrate
the application of our metric to a broad range of systems
and (2) provide concrete examples of the assessments our
metric arrives at both in comparing across systems, and
relative to traditional metrics.

To the extent possible, our hope is also to validate that
our metric matches common design intuition. That said,
conclusively validating the goodness of a metric is al-
most by definition difficult and, in this sense, our results
are perhaps better viewed as providing the initial dataset
for the future scrutiny of metric performance.

We analyzed the complexity of solutions to four prob-
lems that figure prominently in the literature on net-
worked systems: (1) Internet routing, (2) classical dis-
tributed systems, (3) resource discovery, and (4) routing
in wireless networks. Due to space constraints we only
discuss the first two items in this paper; our complete set
of results are presented in [9].

5.1 Routing
Routing is one of the fundamental tasks of a networked
system and the literature abounds in discussions of rout-



ing architectures and algorithms. In this section we an-
alyze a set of routing solutions that represent a range of
design options in terms of architecture (e.g., centralized
vs. distributed), scalability (e.g., small vs. large tables),
adoption and so forth.

For each solution, we present the complexity of an in-
dividual routing entry and a source-to-destination routing
operation. For clarity we summarize only the final com-
plexity results here and present the details of their deriva-
tion in [9]. For comparison across metrics, we also eval-
uate each solution using the following traditional mea-
sures: (1) per-node state, (2) number of messages and (3)
convergence time.2 In what follows, we consider each
routing solution in turn, briefly revise its operation and
summarize its complexity. The results of our analysis are
summarized in Tables 3 and 4 and we end this section
with a discussion examining these results.
Distance-Vector (DV) Used by protocols such as RIP
and IGP, distance-vector represents one of the two ma-
jor classes of IP routing solutions. DV protocols use the
Bellman-Ford algorithm to calculate the shortest path be-
tween pairs of nodes. Every node maintains an estimate
of its shortest distance (and corresponding next-hop) to
every destination. Initially, a node is configured with the
distance to its immediate neighbors and assumes a dis-
tance of infinity for all non-neighbor destinations. Each
node then periodically informs its neighbors of its cur-
rently estimated distance to all destinations. For each
destination, a node picks the neighbor advertising the
shortest path to the destination and updates its estimated
shortest distance and next-hop accordingly.

For an n node network with diameter d, DV thus re-
quires O(n) per-node state, a total message cost of O(n2)
and convergence time of O(d) in the absence of topol-
ogy changes. In terms of our complexity measure, a sin-
gle DV routing entry s has complexity cs = O(d2 + dε)
while a routing operation has a complexity of croute =
O(d3 +d2ε).3
Link-State (LS) Link-State routing, used in protocols
such as OSPF and IS-IS, represents the second major
class of widely-deployed IP routing solutions. In LS,
each node floods a “link state announcement (LSA)” de-
scribing its immediate neighbor connections to the entire
network. This allows each node to reconstruct the com-
plete network topology. To compute routes, a node then
simply runs Dijkstra’s algorithm over this topology map.

LS thus requires O(n f ) state per node (where f de-
notes the average node degree), incurs a total message
cost of O(n2) and convergence time O(d). A routing en-
try s has complexity cs = O(d +d2ε) while a routing op-
eration has complexity croute = O(d2 +d3ε).4
Centralized Architectures The authors of the 4D
project [15] argue for architectures that centralize the
routing control plane to simplify network management.

Several subsequent proposals – RCP [5], SANE/Ethane
[7, 8], FCP [25] – present different instantiations of this
centralized approach. We analyze two variants of central-
ized routing solutions inspired by these proposals. Our
variants are not identical to any particular proposal but
instead adapt their key (routing) insights for a generic
network context. We do this because many of the above
proposals were targeted at specific contexts which com-
plicates drawing comparisons across solutions if we were
to adopt them unchanged. For example, RCP assumes
existing intra-domain routing and leverages this to de-
liver forwarding state from the center to the domain’s
IGP routers.

In our first “RCP-inspired” variant, a designated center
node collects the LSAs flooded by all nodes, reconstructs
the complete network map from these LSAs, computes
forwarding tables for all nodes and then uses source rout-
ing to send each node its forwarding table.5 When the
network topology changes, the center receives the new
LSA, recomputes routes and updates the forwarding state
at relevant nodes. RCP-inspired has a per-state complex-
ity of cs = O(d +d2ε) and correspondingly, a routing op-
eration complexity of croute = O(d2 + d3ε). This can be
intuitively inferred by noting that a routing entry r com-
puted at the center is similar to that at a node in LS; r
is then delivered to a node in the network using a source
route with the same complexity as r. RCP’s performance
with traditional metrics is summarized in Table 4.

RCP-inspired centralizes the computation of routes
but packet forwarding (i.e., the data plane) still relies on
state distributed across nodes along the path. Borrowing
from several recent routing proposals [8, 25], our second
variant “RCP-inspired + SR” uses source routing to for-
ward packets between pairs of nodes. Routing construc-
tion proceeds as before but now the forwarding table sent
from the center to a node A contains the entire route (as
opposed to just the next hop) from A to each destina-
tion and this information is used to source route packets
originating at A. Thus, rather than requiring O(d) rout-
ing entries (one at each node along the path) for packet
forwarding, our second variant requires only the single
source-route entry at the source thus retaining the per-
state complexity cs = O(d +d2ε) but lowering the com-
plexity of croute to that of a single routing entry and hence
croute = O(d +d2ε).
Compact routing Compact routing [2,3,10,36] has sig-
nificantly improved scalability (i.e., small routing tables)
relative to deployed solutions but has seen little real-
world adoption. Here, we analyze the complexity of a
state-of-the-art name-independent6 routing algorithm by
Abraham et al. (AG+_compact) [2]. AG+_compact
guarantees optimally small routing tables of O(

√
n) en-

tries, worst-case stretch less than 3.0 for arbitrary topolo-
gies and≈1.0 for Internet topologies [23] and hence – as



Algorithm us cV
s cT

s cs croute
DV O(d) O(d2) O(dε) O(d2 +dε) O(d3 +d2ε)
LS O(d) O(d) O(d2ε) O(d +d2ε) O(d2 +d3ε)
RCP-inspired O(d) O(d) O(d +d2ε) O(d +d2ε) O(d2 +d3ε)
RCP-inspired+SR O(d) O(d) O(d +d2ε) O(d +d2ε) O(d +d2ε)
Compact O(d

√
n) O(nd2) O(nd2) O(nd2) O(nd2)

Hierarchical LS O(log n
k ) O(log n

k ) O(ε log2 n
k ) O(log n

k + ε log2 n
k ) O(log2 n

k + ε log3 n
k )

Intradomain ROFL O(d2) O(d2 logn) O(d3ε logn) O((d2 +d3ε) logn) O((d2 +d3ε) log2 n)

Table 3: Complexity analysis for routing solutions with the breakdown of the final per-state complexity cs into its constituent components: us, the
complexity contributed by value dependencies (cV

s ) and the complexity contributed by transport dependencies (cT
s ).

Algorithm State Message Convergence time Complexity
DV O(n) O(n2) O(d) O(d3 +d2ε)
LS O(n) O(n2) O(d) O(d2 +d3ε)
RCP-inspired O(n), center O(n f ) O(n2) O(d) O(d2 +d3ε)
RCP-inspired+SR O(n), center O(n f ) O(n2) O(d) O(d +d2ε)
Compact O(

√
n) O(n

√
n) O(d) O(nd2)

Hierarchical LS O( n
k + k) O(( n

k )2 + k2) O(log n
k ) O(log2 n

k + ε log3 n
k )

Intradomain ROFL O(logn) O(n log2 n) O(d log2 n) O((d2 +d3ε) log2 n)

Table 4: Evaluation of routing solutions using different metrics

per standard measures – AG+_compact would appear
to be an attractive option for IP routing.

Briefly, AG+_compact operates as follows: a node
A’s vicinity ball (denoted VB(A)) is defined as the k
nodes closest to A. Node A maintains routing state for
every node in its own vicinity ball as well as for ev-
ery node B such that A ∈ VB(B). A distributed coloring
scheme assigns every node one of c colors. One color,
say red, serves as the global backbone and every node
in the network maintains routing state for all red nodes.
Finally, a node must know how to route to every other
node of the same color as itself. For n nodes, vicinity
balls of size k = O(

√
n logn) and c = O(

√
n) colors, one

can show that a node’s vicinity ball contains every color.
With this construction, a node can always forward to a
destination that is either in its own vicinity, is red, or is
of the same color as the node itself. If none of these is
true, the node forwards the packet to a node in its vicinity
that is the same color as the destination. The challenge in
AG+_compact lies in setting up routes between nodes
of the same color without requiring state at intermediate
nodes of a different color and yet maintaining bounded
stretch for all paths. Loosely, AG+_compact achieves
this as follows: say nodes A and D share the same color
and A is looking to construct a routing entry to D. A ex-
plores every vicinity ball to which it belongs (VB(I), A
∈ VB(I)) and that touches or overlaps the vicinity ball of
the destination D (i.e., ∃ node X ∈ VB(I) with neighbor
Y and Y ∈ VB(D)). For such C, A could route to D via
C, X and Y. AG+_compact considers possible paths for
each neighboring vicinity balls VB(C) as well as the path
through the red node closest to D and uses the shortest of
these for its routing entry to D.

AG+_compact incurs O(
√

n) per-node state, total
message overhead of O(n

√
n) and converges in O(d)

rounds. Derived in [9], AG+_compact has per-state
complexity cs = O(nd2) and croute = O(nd2).
Hierarchical routing Compact routing represents one
effort to reduce routing table size. The approach adopted
by IP routing however has been to address scalability
through the use of hierarchy. For example, OSPF may
partition nodes into OSPF areas and border routers of ar-
eas are connected into a backbone network. Identifiers
of nodes within a region are assigned to be aggregat-
able (i.e., sharing a common prefix) so that border routers
need only advertise a single prefix to represent all nodes
within the region.

For a network partitioned into k areas, hierarchical
routing reduces the per-node state to O( n

k + k) and total
message overhead to O(( n

k )2 + k2). The resultant com-
plexity depends on the network topology. If the diameter
of an area scales as log n

k , then, from the LS complex-
ity analysis, we know that routing complexity in an area
is ca = log2 n

k + ε log3 n
k . The final routing complexity is

2ca, which is asymptotically equivalent to the complexity
of non-hierarchical routing O(log2 n+ ε log3 n). Thus, in
this case, hierarchy offers improved scalability at no ad-
ditional complexity. (If the network is planar, hierarchy
as above actually reduces complexity by O(

√
n) [9].)

Intradomain ROFL Hierarchical routing offers im-
proved scalability at the cost of constraining address
assignment (giving rise to several well-documented is-
sues). Intradomain ROFL [6] is a scalable routing pro-
tocol that retains the ability to route on flat (as opposed
to aggregatable) identifiers. Each virtual node maintains
its predecessor and successor and a pointer cache that



stores source routes of virtual nodes extracted from for-
warded packets. In routing a packet, if a node knows a
virtual node whose identifier matches the label, it sends
the packet directly to the node; otherwise, it forwards the
packet to a node whose identifier is closest to the label
using a source route. Each node computes source routes
of its neighbors from a network topology map obtained
from LSAs. To simplify our analysis and comparison, we
assume that the pointer cache of a node contains fingers
as in Chord [35] to guarantee O(logn) hops in the flat la-
bel space and each node hosts a single virtual node rep-
resenting itself.

In intradomain ROFL, a node maintains routing en-
tries, each of which is (id,s,r) where id is a particular
identifier, s is the successor of id and r is a source route
to the node hosting s. Like in LS, cr = O(d2 +d3ε). Find-
ing s using a lookup operation takes O(logn) hops thus
yielding a complexity of cs = O(logn(d2 +d3ε)). A rout-
ing operation involves logn such entries, hence results
in a complexity of croute = O(log2 n(d2 +d3ε)). In other
metrics, intradomain ROFL requires O(logn) state per
node, incurs a total message cost of O(n log2 n), and has
convergence time O(d log2 n).

5.1.1 Discussion
Tables 3 and 4 summarize our results which we now
briefly examine. In drawing comparisons, we generally
assume that the network diameter d is O(logn) and ε ∼ 0.
Complexity vs. traditional metrics Our first observa-
tion is that none of the traditional metrics yield the same
relative ranking of solutions as our complexity metric,
confirming that complexity (as defined here) is not the
same as scalability or efficiency. Moreover, the ranking
due to our complexity metric is in fair agreement with
that suggested by real-world adoption and our survey re-
sults. For example, DV, LS and hierarchical routing are
simpler than either AG+_compact’s compact routing
algorithm or intradomain ROFL; centralized routing is
simpler than DV, compact routing or intradomain ROFL.

Our complexity measure is also more discriminating
than the other metrics. For example, DV, LS and both
variants of centralized routing fare equally in terms of
total state, messages or convergence time while our met-
ric ranks them as DV > LS = RCP-inspired > RCP-
inspired + SR. Convergence time in particular appears
too coarse-grained – for routing protocols it mostly re-
flects the scope to which state propagates and hence most
solutions have the same value. In some sense, however,
this greater discriminative power is to be expected as our
metric is somewhat more complicated in the sense of tak-
ing more detail into account.
Deconstructing complexity A routing entry at a node
A for destination B depends fundamentally on the link
connectivity information from the d nodes along the path

to B. In DV, the computation mapping these d link states
into a single routing entry is distributed – occurring in
stages at the multiple nodes en route to A. LS by contrast,
localizes this computation in that the d pieces of state are
transferred unchanged to node A which then computes
the route locally. RCP not only localizes, but centralizes
this computation.

Our metric ranks distributed network computations as
more complex than localized ones and hence DV as more
complex than LS. Our metric ranks the complexity of LS
as equal to that of the first centralized variant implying
that a localized approach (i.e., “flood everywhere then
compute locally”) is similar in complexity to a central-
ized one (i.e., “flood to a central point, compute locally,
then flood from central point”). This appears justified as
both approaches are ultimately similar in the number and
manner in which they accumulate dependencies. While
the central server can ensure an update is consistently ap-
plied in computing routes for all nodes, it is still left with
the problem of consistently propagating those routes to
all nodes. LS must deal with the former issue but not
the latter and is thus merely making the inverse trade-
off. These “simpler” approaches that localize or cen-
tralize computations might lead to greater message costs
or reduced robustness and this tradeoff could be made
apparent by simultaneously considering scalability, com-
plexity and robustness metrics.

Introducing the use of source routing causes an O(d)
reduction in the complexity of the first RCP-inspired
variant. Note too that introducing source routing to LS
would result in a similar reduction. In some sense source
routing localizes decision making for the data plane in
much the same way as LS and RCP do for the control
plane and hence the reduced complexity points again to
the benefit of localized vs. distributed decision making.
Finally, we note that, assuming ε → 0, the combination
of LS/RCP-inspired and source routing has O(d) com-
plexity which we conjecture might be optimal for di-
rected routing over an arbitrary topology.

In terms of navigating simplicity and scalability we
note that – unlike compact routing and intradomain
ROFL – introducing hierarchy improves scalability with-
out increasing complexity.

From our analysis we find that the complexity of com-
pact routing is in large part because of the multiple passes
needed to configure routing tables – a node must first
build its vicinity ball (VB), then hear from nodes whose
VBs it belongs to and finally explore the intersection of
“adjoining” VBs. We found a similar source of com-
plexity in our analysis of sensornet routing algorithms
(presented in [9]) that use an initial configuration phase
to elect landmark nodes and then proceed to construct
“virtual” coordinate systems based on distances to these
landmarks [33]. Such systems build up layers of depen-



Algorithm State Message Complexity
ROWAA(read) O(1) O(1) O(1)
ROWAA(write) O(1) O(n) O(1)
Quorum(read) O(1) O(k) O(k)
Quorum(write) O(1) O(k) O(k2)

2PC O(1) O(n) O(n2)
Paxos O(1) O(n) O(k3)

Multicast O(n) O(n) O(log3 n)
Gossip O(n) O(n logn) O(logn)

TTL-based 1 1 ε
Invalidation 1 1 2

Table 5: Evaluation of classical distributed system algorithms using
different metrics.

dencies, leading to higher complexity.
Work on compact routing is typically cast as exploring

the tradeoff between efficiency (path stretch) and scala-
bility (table size). Throwing complexity into the ring en-
ables discussing tradeoffs between simplicity, efficiency
and scalability. For example, much of the complexity of
AG+_compact stems from the additional mechanisms
needed to bound the worst-case stretch when routing be-
tween nodes in adjoining vicinities (see [9]). Were we to
instead reuse the same mechanism for nodes that are in
adjoining vicinity balls as for those in distant vicinities,
this would reduce the complexity of AG+_compact to
O(
√

nd2) but weaken the worst-case stretch bound.
In summary, we show that our complexity metric

can discriminate across a range of routing architectures,
ranks solutions in a manner that is congruent with com-
mon design intuition and can point to alternate “simpler”
design options and tradeoffs.

5.2 Classical Distributed Systems
In this section, we analyze the complexity of well-
known classical distributed system algorithms: (1)
shared read/write variables, (2) coordination/consensus,
(3) update propagation, and (4) cache consistency. For
each, we consider two solutions; one that offers inferior
performance/correctness guarantees relative to the other
but is typically viewed as being simpler. The algorithms
we analyze operate under benign fault assumptions and
we assume transport states have complexity 1. We de-
note by n the number of servers and denote by k (> n

2 )
the quorum size. The results are summarized in Table 5.

5.2.1 Shared Read/Write Variable
For availability or performance, applications frequently
replicate the same data on multiple servers. The repli-
cated data can be viewed as a shared, replicated
read/write variable provided by a set of servers that allow
multiple clients to read from, and write to, the variable.
We compare a best-effort read-one/write-all-available (in

short, ROWAA) that favors availability over consistency
and quorum systems [28] used in cluster file systems
such as GPFS [1]. Our analysis assumes a client knows
the set of servers that participate in the algorithm.
ROWAA In ROWAA, a client issues a read request to
any one of the replicas, but writes data to all available
replicas in a best-effort manner. A replica that is unavail-
able at the time of the write is not updated and hence
ROWAA can lead to inconsistency across replicas.

When a client reads a variable from a server, this
fetched value (denoted by r) depends only on the current
value at that server. Therefore, cV

r = 1. Reading involves
a request from the client to a server and the response
from the server; hence cT

r = 2. When a client writes a
value to all available servers, it receives any acknowl-
edgments from the servers in a best-effort manner; hence
cw = O(1).
Quorum Quorum systems allow clients to tolerate some
number of server faults while maintaining consistency al-
though with lower read performance. To obtain this prop-
erty, the client reads from and writes to multiple replicas,
and the quorum protocol requires that there is at least
one correct replica that intersects a write quorum and a
read quorum thereby ensuring that the latest write is not
missed by any client. For this purpose, each value stored
is tagged with a timestamp.

To read a variable in a quorum system, a client sends
requests to k servers and receives k (value, timestamp)
pairs from a quorum. It chooses the value with the high-
est timestamp. Since reading a value depends on both k
values and k timestamps, cV = 2k. Since there are k re-
quests and k responses, cT = 2k.

A write operation requires two phases. In the first
phase, a client sends a request to read the timestamp to
each of the k servers. When it receives timestamps from
k servers, it chooses the value with the highest times-
tamp thigh and computes a new timestamp tnew greater
than thigh. tnew depends on k timestamps stored at servers
and these timestamps are fetched via k requests and k re-
sponses. Therefore, cV

1 = k and cT
1 = 2k.

In the second phase, the client sends write requests
(value, tnew) to k servers and receives acknowledgments
from k servers. When a server receives this request, it
updates its local state s which depends on the value and
tnew, and hence cV

s = k + 1 and cT
s = 2k + 1. The client

finishes the second phase when it receives k acknowl-
edgments from distinct servers. Therefore, cV

2 = k(k+1),
cT

2 = k(2k +1) and hence overall complexity c is O(k2).
Observations Our complexity-based evaluation is in
agreement with intuition and our survey. ROWAA has
lower complexity but does not provide consistency; quo-
rums have higher complexity but ensure consistency.
This suggests that guaranteeing stronger properties (here,
consistency) may require more complex algorithms.



5.2.2 Coordination

Two-phase commit (in short, 2PC) [14] and Paxos [26]
coordinate a set of servers to implement a consensus ser-
vice. Both protocols operate in two phases and require a
coordinator that proposes a value and a set of acceptors,
which are servers that accept coordinated results. 2PC
is commonly used in distributed databases and Paxos is
used for replicated state machines. 2PC requires that a
coordinator communicate with n servers; on the other
hand, Paxos requires that a coordinator (named as a pro-
poser in Paxos) communicate with k servers, i.e., a quo-
rum of servers (named as acceptors in Paxos). Therefore,
2PC cannot tolerate a single server fault, but Paxos can
tolerate n− k server faults.
2PC In the first phase of 2PC, a coordinator multicasts
to R (a set of acceptors) a 〈prepare,T 〉 message where
T is a transaction. When an acceptor receives the mes-
sage, it makes a local decision on whether to accept the
transaction. If the decision is to accept T , the acceptor
sends a 〈ready,T 〉 message to the coordinator. Other-
wise, it sends a 〈no,T 〉 message to the coordinator. The
coordinator collects responses from acceptors. Since the
acceptor’s decision depends on its local state and T sent
by the coordinator, the value dependency of the collec-
tion at the end of the first phase is cV

1 = n(1 + 1) = 2n.
Since there are n requests sent and n responses received,
the transport dependency of the collection at the end of
the first phase is cT

1 = n(1+1) = 2n.
In the second phase, if the coordinator receives

〈ready,T 〉 from all acceptors, it multicasts to R a
〈commit,T 〉 message. Otherwise, it multicasts to R an
〈abort,T 〉message. When an acceptor receives a request
for commit or abort, it executes the request and sends an
〈ack,T 〉 back to the coordinator. When the coordinator
receives acknowledgments from all acceptors, it knows
that the transaction is completed. Let cV

2 and cT
2 be the

value dependency and transport dependency at the com-
pletion of the second phase, respectively. Since the coor-
dinator collects n acknowledgments, cV

2 = n(cV
1 ) = 2n2.

When an acceptor receives a commit or abort message,
the transport dependency of the message is cT

1 +1. Since
n acknowledgments are required at the coordinator, cT

2 =
n(cT

1 +1) = 2n2 +n. Hence 2PC has an overall complex-
ity of O(n2).
Paxos In Paxos, each acceptor maintains two important
variables: sm that denotes the highest proposal number
the acceptor promised to accept and va that denotes an
accepted value. A proposer multicasts to R a 〈prepare,s〉
message where s is a proposal number. When an acceptor
receives this message, it compares s with sm. If s > sm,
the acceptor sets sm to s and returns a 〈promise,s,sa,va〉
message where sa is the proposal number for the ac-
cepted value va. Otherwise, it returns an 〈error〉message.

When the proposer receives 〈promise,s,sa,va〉 mes-
sages from k distinct acceptors, it chooses va with the
highest sa among k messages. Let vc and sc be the cho-
sen value and proposal number, respectively. If va is not
null, vc is set to va; otherwise, vc is set to a default value.

The proposer then multicasts to R an 〈accept,sc,vc〉
message. When an acceptor receives the accept message,
it compares sc with its local sm. If sc ≥ sm, sm is set to
sc, sa is set to sc, and va is set to vc. It then sends an
〈ack,sa,va〉 message to the coordinator. Otherwise, it re-
turns an 〈error〉 message. When the proposer receives
〈ack,sa,va〉 messages from k distinct acceptors, it knows
that the message is accepted by k acceptors and com-
pletes the consensus process.

Note that vc depends on va’s accepted by acceptors in
the second phase. To account for this dependency, we
use two passes to compute overall complexity. In the first
pass, we compute the dependency of va without consid-
ering the dependency in the second phase. In the second
pass, we use the dependency of va computed in the first
pass to compute the dependency in the first phase and the
total dependency of the algorithm.

In the first pass, cV
vc = k(2 + 1) = 3k since vc depends

on k sm’s and va’s, each of which depends on s sent by the
proposer. Also, cV

va = cV
vc +1 = 3k+1 since va depends on

vc and a default value. cT
va = k(1+1)+1 since k prepare

messages, k promise messages, and one accept message
are required. In the second pass, cV

vc = k(cV
va + 2)+ 1 =

k(3k+3)+1 and the final cV = k(cV
vc +1) = 3k3 +3k2 +

2k, and cT
vc = k(cT

va + 1) = k(2k + 2) and the final cT =

k(cT
vc +2) = 2k3 +2k2 +2k. Hence Paxos has an overall

complexity of O(k3).
Observations Our complexity-based evaluation is in
agreement with general intuition and our survey. Both
2PC and Paxos use O(n) messages, maintain O(1) state
per node, and have the same operation time. However,
Paxos is more complex than 2PC because of inter-
dependencies between phases. At the same time, it is this
additional dependency that enables Paxos to tolerate up
to n− k faults while 2PC becomes unavailable with even
a single fault. Our results affirm once again that guar-
anteeing stronger properties (here, fault-tolerance) may
require more complex system algorithms.

5.2.3 Update Propagation

Update propagation algorithms disseminate an update
from a publisher to all nodes (e.g., publish-subscribe sys-
tems). We examine multicast (e.g., ESM [20]) using a
constructed tree and Gossip [11] that exchanges updates
with random nodes. To ease comparison, we assume each
node in the system knows k random nodes in the system
from a membership service.



Multicast In multicast, nodes run DV over a k-degree
mesh to build a per-source tree over which messages
are disseminated. Hence forwarding state has complex-
ity cs = O(log2 n + ε logn). A value received at a node
depends only on the value published by the source and
hence cV = 1. On the other hand, if we assume the tree
is balanced, cT = O(cs logn) and hence the overall com-
plexity of multicast is O(log3 n).
Gossip In Gossip, when a node receives a message, it
chooses a random node and forwards the message to the
selected node. This process continues until all nodes in
the system receive the new update. Hence cV = 1 as be-
fore. Each transport depends on a single hop from a for-
warding node to a randomly chosen node, and in average
logn such hops are required. Hence cT = O(logn) and
the overall complexity of Gossip is O(logn).
Observations Our metric ranks multicast as more com-
plex than Gossip which matches our survey. However,
multicast offers a deterministic guarantee of O(logn) de-
livery time and does so using an optimal O(n) number of
messages. Once again, our results convey that efficiency
need not be congruent with complexity.

5.2.4 Cache Consistency
When mutable data are replicated across multiple
servers, a cache consistency algorithm provides consis-
tency across replicas. We compare TTL-based caching
to invalidation-based approaches.
TTL-based caching In TTL-based caching, a cache
server that receives a request first checks whether the
requested data item is locally available. If so, it serves
the client’s request directly. Otherwise, it fetches the item
from the corresponding origin server and stores the data
item for its associated time-to-live (TTL). After the TTL
expires, the item is evicted from the cache. Once a data
item is cached, it does not depend on the item value
stored at the origin server and hence a cached data item
has c = ε .
Invalidation With approaches based on invalidation, the
origin server tracks which caches have copies of each
data item. When a data item changes, the origin server
sends an invalidation to all caches storing that item. Since
a cached item depends on the master copy of the origin
server, cV = 1, cT = 1, and c = 2.

Observations TTL-based caching is a soft-state tech-
nique while invalidations are a hard-state technique.
Soft-state is typically viewed as simpler than hard-state
because of the lack of explicit state set-up and tear-down
mechanisms and our metric supports this valuation.

5.3 Other systems
Resource discovery is a fundamental problem in net-
worked systems where information is distributed across

nodes in the network. We subjected a number of well-
known approaches to this problem to our complexity
based analysis. Due to space constraints, because these
solutions are well known in the community and our re-
sults are (we hope) fairly intuitive, we only present the fi-
nal ranks of our analysis: centralized directory (e.g., Nap-
ster) < (DNS, flooding-based (e.g., Gnutella)) < DHT.
The derivation of the complexities and discussion of the
results are described in [9].

We also analyzed several wireless routing solutions in-
cluding GPSR [21] (a scalable geo routing algorithm),
noGeo [33] (a scalable, but more complex solution
that constructs “virtual” geographic coordinates) and
AODV [31] (a less scalable but widely deployed ap-
proach). At a high level, our results (described in [9])
reflect a similar intuition as our analysis from Section 5.1
and hence we do not discuss them here.

6 Discussion
Defining a metric involves walking the line between the
discriminating power of the metric (i.e., the level of detail
in system behavior that it can differentiate across) and
the simplicity of the metric itself. Our prototype metric
represents a particular point in that tradeoff. We discuss
some of the implications of this choice in this section.

6.1 Limitations and possible refinements
Weighting value vs. transport dependencies Our met-
ric assigns equal importance to value and transport de-
pendencies. However, depending on the system environ-
ment, this may not be the best choice and a more general
form of the complexity equation might be to assign:

cs←x = wvus←x +wt ∑
y∈Ts←x

max(cy,ε)+ cx

For example, a system wherein the transport state is
known to be very stable while the data value of inputs
change frequently might choose wv � wt , thus favoring
system designs that incur simpler value dependencies.
Weighting dependencies Our metric treats all input
or transport states as equally important. However, some-
time certain input or transport states are more important
(for correctness, robustness, etc.) than others. For exam-
ple, DHTs maintain multiple routing entries but only the
immediate “successor” entry ensures routing progress
hence one might emphasize the complexity due to suc-
cessor. Again, this might be achieved by weighting states
based on system-specific knowledge of their importance.
Correlated inputs Our metric treats all inputs as in-
dependent which might result in over-counting depen-
dencies from correlated inputs. This could be avoided
by maintaining the set identifying the actual dependen-
cies associated with each piece of state rather than just



count their number although this requires significantly
more fine-grained tracking of dependencies.
Capturing dependencies in time In our counting-based
approach we only consider the inputs and transport states
by which state was ultimately derived without worrying
about the precise temporal sequence of events that led to
the eventual value of state. While a time-based analysis
might enable a more fine-grained view of dependencies
this would also seem more complicated since it requires
incorporating a temporal model that captures the evolu-
tion of state over time.

6.2 Scope
Scalability vs. Complexity As seen in the previous
sections, our complexity metric complements traditional
scalability metrics. As an example of their complemen-
tary nature: our metric would not penalize system A that
has the same per-state or per-operation complexity as
system B but constructs more state in total than B.
Correctness vs. Complexity Our metric does little to
validate the assumptions, correctness or quality of a solu-
tion. For example, our metric might capture the complex-
ity of route construction but says little about the qual-
ity or availability of the source-to-destination path. Like-
wise, our metric is oblivious to undesirable assumptions
that might underlie a design. For example, our metric
ranks hierarchical routing favorably and cannot capture
the loss in flexibility due to its requirement of aggregat-
able addresses (section 5.1). Similarly, our metric ranks
traditional geo routing as simple despite its problematic
assumption of “uniform disc” connectivity [9].
Robustness vs. Complexity Perhaps less obvious is the
relationship between our complexity metric and robust-
ness. In some sense, our metric does relate to robustness
since a more complex scaffolding of dependencies does
imply greater opportunities for failure. However, this re-
lation is indirect and does not always translate to robust-
ness. For example, consider a system where state at n
nodes is derived from state at a central server. Our com-
plexity metric would assign a low complexity to such a
system, while, in terms of robustness, such a system is
vulnerable to the failure of the central server.

However, we conjecture that our dependency-centric
viewpoint might also apply to measuring robustness and
this is something we intend to explore in future work.
In particular, there are two aspects to dependencies that
appear important to robustness. The first is the vulnera-
bility of the system which could be captured by counting
the “reverse” dependencies of a state s as the number of
output states that derive from s. The second aspect is the
extent to which a piece of state is affected by its various
dependencies and this is a function of both the impor-
tance of that dependency (e.g., the address of a server vs.

estimated latency to the server as a hint for better per-
formance) and the degree to which redundancy makes
the dependency less critical (i.e., deriving a piece of state
from any k of m inputs with k� m is likely more robust
that one derived from k specific inputs). The former con-
sideration (importance) can be captured by weighting de-
pendencies as proposed above. A fairly straightforward
extension to capture the effect of redundancy would be
to further weight complexity by the fraction of states re-
quired; i.e., a weighted metric rs of state s defined as:
rs = r

m cs where r and m are the required and available
number of inputs, respectively.

7 Related Work
There is much work – particularly in software engineer-
ing – on measuring the complexity of a software pro-
gram. For example, Halstead’s measures [18] capture
programming effort derived from a program’s source
code. Cyclomatic complexity [30], simply put, measures
the number of decision statements. Fan in-fan out com-
plexity [19] is a metric that measures coupling between
program components as the length of code times the
square of fan in times fan out. Kolmogorov complex-
ity is measured as the length of the program’s shortest
description in a description language (e.g., Turing ma-
chine). These metrics work at the level of system imple-
mentation rather than design, focus on a standalone pro-
gram and do not consider the distributed dependencies of
components that are networked. We believe the latter are
key to capturing complexity in networked systems and
both viewpoints are valuable.

Similarly, there is much work on improved approaches
to system specification with recent efforts that focus
on network contexts [22]. Metrics are complementary
to system specification and cleaner specifications would
make it easier to apply metrics for analysis. An interest-
ing question for future work is whether the computation
of network complexity (as we define it here) can be de-
rived from a system specification (or even code) in an
automated manner. This appears non-trivial as the accu-
mulation of distributed dependencies is typically not ob-
vious at the program or specification level.

While we derive our dependency-based metric from a
system design, there have been many recent efforts at in-
ferring dependencies or causality graphs from a running
system for use in network management, troubleshooting,
and performance debugging [4, 12, 16].

Finally, this paper builds on an earlier paper that artic-
ulated the need for improved complexity metrics [34].

8 Conclusions
This paper takes a first step towards quantifying the in-
tuition for design simplicity that often guides choices



for practical systems. We presented a metric that mea-
sures the impact of the ensemble of distributed depen-
dencies for an individual piece of state and apply this
metric to the evaluation of several networked system de-
signs. While our metric is but a first step, we believe
the eventual ability to more rigorously quantify design
complexity would serve not only to improve our own de-
sign methodologies but also to better articulate our de-
sign aesthetic to the many communities that design for
real-world networked contexts (e.g., algorithms, formal
distributed systems, graph theory).
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Notes
1We thank Paul Francis and Robert Kleinberg for discussion on this.
2 We include this since the time complexity of distributed algo-

rithms is commonly used in the theory community [24,27]. Time com-
plexity is the maximum number of message-exchange rounds needed
to complete the required computation.

3This can be inferred by noting that route construction is similar to
the canonical “m inputs in series” scenario from the previous section.

4 This is quickly inferred by noting the similarity to the “m inputs
in parallel” scenario with m = d inputs relayed along a path of O(d)
hops and transport state of complexity ε at each hop.

5This use of source routing is the key difference relative to RCP
which uses the underlying intra-domain routes for the same purpose.

6We do not consider name-dependent algorithms [10, 29] as these
require an additional name translation service for IP routing.


