
USENIX Association NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation 307

Not-a-Bot: Improving Service Availability in the Face of Botnet Attacks

Ramakrishna Gummadi , Hari Balakrishnan , Petros Maniatis , Sylvia Ratnasamy
MIT CSAIL, Intel Research Berkeley

Abstract

A large fraction of email spam, distributed denial-of-
service (DDoS) attacks, and click-fraud on web adver-
tisements are caused by traffic sent from compromised
machines that form botnets. This paper posits that by
identifying human-generated traffic as such, one can ser-
vice it with improved reliability or higher priority, miti-
gating the effects of botnet attacks.

The key challenge is to identify human-generated traf-
fic in the absence of strong unique identities. We develop
NAB (“Not-A-Bot”), a system to approximately identify
and certify human-generated activity. NAB uses a small
trusted software component called an attester, which runs
on the client machine with an untrusted OS and applica-
tions. The attester tags each request with an attestation
if the request is made within a small amount of time of
legitimate keyboard or mouse activity. The remote entity
serving the request sends the request and attestation to a
verifier, which checks the attestation and implements an
application-specific policy for attested requests.

Our implementation of the attester is within the Xen
hypervisor. By analyzing traces of keyboard and mouse
activity from 328 users at Intel, together with adversar-
ial traces of spam, DDoS, and click-fraud activity, we
estimate that NAB reduces the amount of spam that cur-
rently passes through a tuned spam filter by more than
92%, while not flagging any legitimate email as spam.
NAB delivers similar benefits to legitimate requests un-
der DDoS and click-fraud attacks.

1 Introduction

Botnets comprising compromised machines are
the major originators of email spam, distributed
denial-of-service (DDoS) attacks, and click-fraud on
advertisement-based web sites today. By one measure,
the current top six botnets alone are responsible for more
than 85% of all spam mail [23], amounting to more than
120 billion messages per day that infest more than 95%
of all inboxes [14, 24]. Botnet-generated DDoS attacks
account for about five percent of all web traffic [9],
occurring at a rate of more than 4000 distinct attacks
per week on average [17]. A problem of a more recent
vintage, click-fraud, is a growing threat to companies

that draw revenue from web ad placements [26]; bots are
said to generate 14–20% of all ad clicks today [8].

As a result, if it were possible to tag email or web
requests as “human-generated,” and therefore not “bot-
generated,” the problems of spam, DDoS, and click-fraud
could be significantly mitigated. This observation is not
new, but there is currently no good way to obtain such
tags automatically without explicit human input. As ex-
plained in 4, requiring human input (say in the form
of answering CAPTCHAs [30]) is either untenable (per-
suading users to answer a CAPTCHA before clicking on
a web ad or link is unlikely to work well), or ineffective
(e.g., because today the task of solving CAPTCHAs can
be delegated to other machines and humans, and not in-
extricably linked to the request it is intended to validate).

The problem with obtaining this evidence automati-
cally is that the client machine may have been compro-
mised, so one cannot readily trust any information pro-
vided by software running on the compromised machine.
To solve this problem, we observe that almost all com-
modity PCs hitting the market today are equipped with a
Trusted Platform Module (TPM) [28]. We use this facil-
ity to build a trusted path between physical input devices
(the keyboard and mouse, extensible in the future to de-
vices like the microphone) and a human activity attester,
which is a small piece of trusted software that runs iso-
lated from the (untrusted) operating system.

The key challenge for the attester is to certify human-
generated traffic without relying on strong unique iden-
tities. This paper describes NAB, a system that imple-
ments a general-purpose human activity attester (4), and
then shows how to use this attester for email to control
spam, and for web requests to mitigate DDoS attacks
and click fraud. Attestations are signed statements by
the trusted attester, and are attached to application re-
quests such as emails. Attestations are verified by a veri-
fier module running at the server of an entity interested in
knowing whether the incoming request traffic was sent as
a result of human activity. If the attestation is valid (i.e.,
it is not forged or used before), that server can take suit-
able application-specific action—improving the “spam
score” for an attested email message, increasing the pri-
ority of an attested web request, etc. NAB requires minor
modifications to client and server applications to use at-
testations, and no application protocols such as SMTP or

308 NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

HTTP need be modified.
NAB’s philosophy is to do no harm to users who do

not deploy NAB, while benefiting users who do. For ex-
ample, email senders who use the attester decrease the
likelihood that their emails are flagged as spam (that is,
decrease the false positives of spam detectors), and email
receivers that use the verifier see reduced spam in their
inboxes. These improvements are preserved even under
adversarial workloads. Further, since NAB does not use
identity-based blacklisting or filtering, legitimate email
from an infected machine can still be delivered with valid
attestations.

The NAB approach can run on any platform that pro-
vides for the attested execution of trusted code, either
directly or via a secure booting mechanism such as those
supported by Intel’s TXT and AMD’s Pacifica architec-
tures. We have constructed our prototype attester as host
kernel model running under a trusted hypervisor. Other
implementations, such as building the attester within the
trusted hardware, or running it in software without virtu-
alization (e.g., via Flicker [16]) are also possible.

Our prototype extends the Xen hypervisor [3], thus
isolating itself from malicious code running within un-
trusted guest operating systems in a virtual machine. We
stripped the host kernel and Xen Virtual Machine Mon-
itor (VMM) down to fewer than 30,000 source lines, in-
cluding the necessary device drivers, and built the attester
as a 500-line kernel module. This code, together with
the TPM and input devices forms the trusted computing
base (TCB). Generating an attestation on a standard PC
takes fewer than CPU cycles, or less than 10 ms on
a 2 GHz processor, making NAB practical for handling
fine-grained attestation requests, such as individual web
clicks or email messages.

We evaluate whether NAB can be applied to spam con-
trol, DDoS defense, and click-fraud detection, using a
combination of datasets containing normal user activity
and malicious bot activity. We used traces of keyboard
and mouse activity from 328 PCs of volunteering users
at Intel gathered over a one-month period in 2007 [11],
packet-level traces of bot activity that we gathered from a
small number of “honeypot” computers infected by mal-
ware at the same site, as well as publicly available traces
of email spam and DDoS activity. On top of those traces,
we constructed an adversarial workload that maximizes
the attacker’s benefit obtained under the constraints im-
posed by NAB. Our experimental study shows that:

1. With regards to spam mitigation, we reduced the vol-
ume of spam messages that evaded a traditional spam
filter (what are called false negatives for the spam
filter) by 92%. We reduced the volume of legiti-
mate, non-spam messages that were misclassified by
the spam filter (false positives) to 0.

2. With regards to web DDoS mitigation, we depriori-

tized 89% of bot-originated web activity without im-
pacting human-generated web requests.

3. With regards to click-fraud mitigation, we detected
bot-originating click-fraud activity with higher than
87% accuracy, without losing any human-generated
web clicks.

Although our specific results correspond only to our par-
ticular traces, choice of applications, and threat model
(e.g., NAB does nothing to mitigate the volume of evil
traffic created manually by an evil human), we argue that
they apply to a large class of on-line applications affected
by bot traffic today. Those include games, brokerage, and
single sign-on services. This suggests that a human ac-
tivity attestation module might be a worthwhile addition
to the TCB of commodity systems for the long term.

2 Threat Model and Goal

Threat model and assumptions. We assume that the OS
and applications of a host cannot be trusted, and are sus-
ceptible to compromise. A host is equipped with a TPM,
which boots the attester stack—this includes all software
on which the attester implementation depends, such as
the host kernel and VMM in our implementation (4.4).
This trust in the correct boot-up of the attester can be re-
motely verified, which is the standard practice for TPM-
assisted secure booting today. We assume that the users
of subverted hosts may be lax, but not malicious enough
to mount hardware attacks against their own machine’s
hardware (such as shaving the protective coating off their
TPM chip or building custom input hardware). We as-
sume correct hardware, including the correct operation
and protection of the TPM chip from software attacks, as
per its specification [28]. We make no assumptions about
what spammers do with their own hardware. Finally, we
assume that the cryptographic primitives we use are se-
cure, and that their implementations are correct.
Goal. NAB consists of an attester and a verifier. Our
primary goal is to distinguish between bot and human-
generated traffic at the verifier, so that the verifier can
implement application-specific remedies, such as prior-
itizing or improving the delivery of human traffic over
botnet traffic. We would like to do so without requiring
any user input or imposing any cognitive burden on the
user.

We aim to bound the final botnet traffic that man-
ages to bypass any measures put up against it (spam
and DDoS filters, click fraud detectors, etc.). We will
consider our approach successful if we can reduce this
botnet traffic that evades our best approaches today to a
small fraction of its current levels (10%), even in the
worst case for NAB (i.e., with adaptive bots that modu-
late their behavior to gain the maximum benefit allow-

USENIX Association NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation 309

able by our mechanism), while still identifying all valid
human-generated traffic correctly. We set this goal be-
cause we do not believe that purely technical approaches
such as NAB will completely suppress attack traffic such
as spam, since spam also relies on social engineering.
We demonstrate that NAB achieves this goal with our re-
alistic workloads and adaptive bots (6).

3 NAB Architecture

We now present the requirements and constraints that
drive the NAB architecture.

3.1 Requirements and Constraints

Requirements. There are four main requirements. First,
attestations must be generated in response to human re-
quests automatically. Second, such attestations must not
be transferable from the client on which they are gen-
erated to attest traffic originating from another client.
Third, NAB must benefit users that deploy it without
hurting those that do not. Fourth, NAB must preserve
the existing privacy and anonymity semantics of applica-
tions while delivering these benefits.
Constraints. NAB has two main constraints. First, the
host’s OS or applications cannot be trusted. In particu-
lar, a compromised machine can actively try to subvert
the attester functionality. Second, the size of the attester
TCB should be small, because it is a trusted component;
the smaller a component is, the easier it is to validate it
operates correctly, which makes it easier to trust.
Challenge. The key challenge is to meet these require-
ments without assuming the existence of globally unique
identities. Even assuming a public-key infrastructure
(PKI), deploying and managing large-scale identity sys-
tems that map certificates to users is a daunting prob-
lem [4].

Without such identities, the requirements are hard to
meet, and, in some cases, even seemingly in conflict
with each other. For example, generating attestations
automatically without trusting the OS and applications
is challenging. Further, there is tension between the re-
quirement that NAB should benefit its users without hurt-
ing other users, and the requirement that NAB should
preserve the existing anonymity and privacy semantics.
NAB’s attestations are anonymously signed certificates
of requests, and the membership size of the signing keys
is several million. We describe how NAB uses such attes-
tations to overcome the absence of globally unique iden-
tities in 4.4.
TPM background. The TPM is a small chip specified
by the Trusted Computing Group to strengthen the secu-
rity of computer systems in general. A TPM provides

�ƚƚĞƐƚĞƌ

�ƚƚĞƐƚĞĚ�
ƌĞƋƵĞƐƚƐ

dWD

K^
�ƉƉϭ �ƉƉϮ

EĞƚǁŽƌŬ

sĞƌŝĨŝĞƌϭ

�ƉƉϭ�̂ ĞƌǀĞƌ

sĞƌŝĨŝĞƌϮ

�ƉƉϮ�̂ ĞƌǀĞƌ

Figure 1: NAB architecture. The thick black line en-
closes the TCB.

many security services, among which the ability to mea-
sure and attest to the integrity of trusted software run-
ning on the computer at boot time. Since a TPM is too
slow to be used routinely for cryptographic operations
such as signing human activity, we use the TPM only for
its secure bootstrap facilities, to load an attester, a small
trusted software module that runs on the host processor
and generates attestations (i.e., messages asserting hu-
man activity).

The attester relies on two key primitives provided by
TPMs. The first is called direct anonymous attesta-
tion (DAA), which allows the attester to sign messages
anonymously. Each TPM has an attestation identity key
(AIK), which is an anonymous key used to derive the at-
tester’s signing key. The second primitive is called sealed
storage, which provides a secure location to store the
attester’s signing key until the attester is measured and
launched correctly.

3.2 Architecture

NAB consists of an attester that runs locally at a host
and generates attestations, as well as an external verifier
that validates these attestations (running at a server ex-
pected to handle spam and DDoS requests, or checking
for click fraud). The attester code hashes to a well-known
SHA-1 value, which the TPM measures at launch. The
attester then listens on the keyboard and mouse ports for
human activity clicks, and decides whether an attestation
should be granted to an application when the application
requests one. If the attester decides to grant an attes-
tation, the application can submit the attestation along
with the application request to the verifier for human ac-
tivity validation. The verifier can confirm human activity
as long as it trusts the attestation TCB, which consists
of the attester, the TPM, and input device hardware and
drivers. This architecture is shown in Figure 1.

Attestations are signed messages with two key proper-
ties that enable the verifier to validate them correctly:

1. Non-transferability. An attestation generated on a
machine is authenticated by a chain of signing keys
that pass through that machine’s TPM. Hence, a valid

310 NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

attestation cannot be forged to appear as if it were is-
sued by an attester other than its creator, and no valid
attestation can be generated without the involvement
of a valid attester and TPM chip.

2. Binding to the content of a request. An attestation
contains the hash digest of the content of the request
it is attesting to. Since an attester generates an attes-
tation only in response to human activity, this binding
ensures that the attestation corresponds to the content
used to generate it. Binding thus allows a request to be
tied as closely as practical to the user’s intent to gen-
erate that request, greatly reducing opportunities for
using human activity to justify unrelated requests.

4 Attester Design and Implementation

Our attester design assumes no special hardware support
other than the availability of a TPM device. However, it
is flexible enough to exploit the recent processor exten-
sions for trusted computing such as AMD’s Secure Vir-
tual Machine (SVM) or Intel’s Trusted Execution Tech-
nology (TXT) to provide additional features such as late
launch (i.e., non boot-time launch), integration into the
TCB of an OS, etc., in the future.

The attester’s sole function is to generate an attestation
when an application requests one. An attestation request
contains only the application-specific content to attest to
(e.g., the email message to send out). The attester may
provide the attestation or refuse to provide an attestation
at all. We discuss two important decisions: when to grant
an attestation and what to attest.

4.1 When To Grant An Attestation
The key question in designing the attester is deciding un-
der what conditions a valid attestation must be granted.
The goal is to simultaneously ensure that human-
generated traffic is attested, while all bot-generated traf-
fic is denied attestation.

The attester’s decision is one of guessing the human’s
presence and intent: was there a human operating the
computer, and did she really intend to send the particular
email for which the application is requesting an attesta-
tion? Since the attester lacks a direct link to the human’s
intentions, it must guess based on the trusted inputs avail-
able: the keyboard and mouse. We considered three key
design points for such a guessing module.

The best-quality guess is not a guess at all: the attester
could momentarily take over the keyboard, mouse, and
display device, and prompt the user with a specific ques-
tion to attest or not attest to a particular email. Since the
OS and other applications are displaced in the process,
only the human user can answer the question. From the
interaction point of view, this approach is similar to the

User Account Control (UAC) tool in Microsoft Windows
Vista, in which the OS prompts the user for explicit ap-
proval before performing certain operations, although in
our context it would be the much smaller and simpler
attester that performs that function. While technically
feasible to implement, users have traditionally found ex-
plicit prompts annoying in practice, as revealed by the
negative feedback on UAC [29]. What is worse, user
fatigue inevitably leads to an always-click-OK user be-
havior [32], which defeats the purpose of attestation.

So, we only consider guesses made automatically. In
particular, we use implicit guessing of human intent, us-
ing timing as a good heuristic: how recently before a
particular attestation request was the last keyboard or
mouse activity observed? We call this a “ ” at-
tester, if denotes the time since the last mouse activity
and denotes the time since the last keyboard activity.
For example, the email application requests an attesta-
tion specifying that a keyboard or mouse click should
have occurred within the last or milliseconds re-
spectively, where the represents the application-
specified upper-bound. The attester generates attesta-
tions that indicate this time lag, or refuses if that lag is
longer than milliseconds.

This method is simpler and cheaper in terms of re-
quired resources than an alternative we carefully consid-
ered and eventually discarded. Using keyboard activity
traces, we found that good-quality guesses can be ex-
tracted by trying to support the content of an attestation
request using specific recent keyboard and mouse activ-
ity. For example, the attester can observe and remember
a short sequential history of keystrokes and mouse clicks
in order of observation. When a particular attestation re-
quest comes in, the attester searches for the longest sub-
sequence of keyclicks that matches the content to attest.
An attestation could be issued containing the quality of
match (e.g., a percentage of content matched), only rais-
ing an explicit alarm and potential user prompting if that
match is lower than a configurable threshold (say 60%).
This design point would not attest to bot requests un-
less they contained significant content overlap with legit-
imate user traffic. Nevertheless this method raised great
implementation complexity, given the typical multitask-
ing behavior of modern users (switching between win-
dows, interleaving keyboard and mouse activity, insert-
ing, deleting, selecting and overwriting text, etc.). So,
we ultimately discarded it in favor of the simpler
attester, which allowed a simple implementation with a
small TCB size.

One drawback of the attester is that it allows a bot
to generate attestations for its own traffic by “harvesting”
existing user activity. So, NAB could allow illegitimate
traffic to receive attestations, though only at the rate of
human activity.

USENIX Association NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation 311

NAB mitigates this situation in two ways. First, NAB
ensures that two attestations are separated by at least the
application-specific milliseconds. For email, we find
from the traces (6) that second works well. Since
key clicks cannot be captured or stored, we throttle a bot
significantly in practice. Today’s bots send several tens
of thousands of spam within a few hours [14], so even an
adaptive bot is constrained by this rate limit.

Second, if legitimate traffic fails to receive an attesta-
tion (e.g., because bot code attestation requests absorbed
all recent user activity before the user’s application had
a chance to do so), a NAB-aware application alerts the
user that it has not been able to acquire an attestation,
possibly alerting the user that unwholesomeness is afoot
at her computer. We note that this technique is not per-
fect, because a bot can hijack such prompts. In practice,
we found that such feedback is useful, although we eval-
uate NAB assuming adversarial bots.

4.2 What To Attest

The second attester design decision is what to attest, i.e.,
how much to link a particular attestation to the issuer, the
verifier, and the content.

Traditional human activity solutions such as
CAPTCHAs [30] do not link to the actual request
being satisfied. A CAPTCHA is a challenge that only a
human is supposed to be able to respond to. A correct
response to a CAPTCHA attests to the fact that a human
was likely involved in answering the question, but it
does not say where the human was or whether the
answer came from the user of the service making the
request. The problem is that human activity can be
trafficked, as evidenced by spammers who route human
activity challenges meant for account creation to sketchy
web sites to have them solved by those sites’ visitors
in exchange for free content [25], or to sweatshops
with dedicated CAPTCHA solvers. Thus, a human was
involved in providing the activity, but not necessarily the
human intended by the issuer of the challenge.

In contrast, NAB generates responder-specific,
content-specific, and, where appropriate, challenger-
specific attestations. Attestations are certificates of
human activity that contain a signature over the entire
request content. For example, an email attestation
contains the signature over the entire email, including
the “From:” address (i.e., the responder), the email
body (i.e., the content), and the “To:” address (i.e., the
challenger). Similarly, a web request attestation contains
the URL, which provides both responder-specific and
content-specific attestations.

Content-specific attestation is more subtle. Whereas
CAPTCHAs are used today for coarse-grained actions
such as email account creation, they are considered too

$SSOLFDWLRQ

26 $WWHVWHU

730

UHT�K�PVJ���W\SH��ǻP��ǻN�3,'�

UHS�.SULY^K�PVJ���QRQFH��įP��įN`��FHUW�

NEG��
PRXVH

8VHU

0HDVXUH�LQWHJULW\��
UHOHDVH�VLJQHG�NH\V

�DW�ERRW�

Figure 2: Attester interfaces.

intrusive to be used for finer granularity requests such as
sending email or retrieving web URLs. So, in practice,
the challenge response is “amortized” over multiple re-
quests (i.e., all email sent from the CAPTCHA-created
mail account). Even if an actual human created the ac-
count, nothing prevents the bots in that human’s desktop
from sending email indiscriminately using that account.

Finally, challenger-specific attestation helps in ensur-
ing that unwitting, honest humans do not furnish attes-
tations for bad purposes. A verifier expecting an attes-
tation from human ’s attester will reject an attestation
from human that might be provided instead. In the
spam example, this is tantamount to explicit sender au-
thentication.

Attestations with these three properties, together with
application-specific verifier policies described in 5.2,
meet our second and third requirements (3.1).

4.3 Attester API
Figure 2 shows the relationship between the attester and
other entities. The API is simple: there is only a sin-
gle request/reply pair of calls between the OS and the
attester. An application’s attestation request contains the
hash of the message to be attested (i.e., the contents of an
email message or the URL of a browser click), the type
of attestation requested, and the process id (PID) of the
requesting process.

If the attester verifies that the type of attestation be-
ing requested is consistent with user activity seen on the
keyboard/mouse channels, it signs the attestation and,
depending on the attestation type, includes and ,
which indicate how long ago a mouse click and a key-
board click respectively were last seen. The attestation
is an offline computation , and is thus an instance of a
non-interactive proof of human activity.

The same API is used for all applications. The only
customization allowed is whether to include the values
of the or , depending on the attestation type. The
attester uses a group signature scheme for anonymous at-

312 NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

testations, extending the Direct Anonymous Attestation
(DAA) service [7] provided by recent TPMs. Anony-
mous attestations preserve the current privacy semantics
of web and email, thereby meeting our fourth and final
requirement (3.1).

We have currently defined and implemented two attes-
tation types. Type 0 is for interactive applications such
as all types of web requests. Type 1 is for delay-tolerant
applications such as email. Type 0 attestations are gener-
ated only when there is either a mouse or keyboard click
in the last one second, and do not include the or
values. Type 0 attestations are offered as a privacy en-
hancement, to prevent verifiers from tracking at a fine
temporal granularity a human user’s activity or a partic-
ular request’s specific source machine. We chose one
second as the lag for Type 0 attestations since it is suffi-
cient for local interactive applications; for example, this
is ample time between a key or mouse click and a local
action such as generating email or transmitting an HTTP
GET request. Type 1 attestations can be used with all
applications we have examined, when this finer privacy
concern is unwarranted. To put the two types in perspec-
tive, a Type 0 attestation is roughly equivalent to a Type
1 attestation requested with and in
which the attested values have been hidden.
Attestation structure. An attestation has the form

. It contains a cryptographic con-
tent digest (e.g., a SHA-1 hash) of the application-
specific payload being attested to; a nonce used to
maintain the freshness of the attestations and to dis-
allow improper attestation reuse; the values
(for type 1 attestations); the attestation signature

; and a certificate from the
TPM guaranteeing the attester’s integrity, the version of
the attester being used, the attestation identity key of the
TPM that measured the attester integrity, and the signed
attester’s public key (Figure 2). The certificate
is generated during booting of the attester and is stored
and reused until reboot.

The mechanism for attesting to web requests is simple:
when a user clicks on a URL that is either a normal link
or an ad, the browser requests an attestation on the entire
page URL. After the browser fetches the page content, it
uses the same attestation to retrieve any included objects
within the page. As explained in 5.2, the verifier accepts
the attestation for all included objects.

The mechanism for sending email in the common case
is also straightforward: the entire email message, includ-
ing headers and attachments, constitutes the request. In-
terestingly, the same basic mechanism is extensible to
other email usage scenarios, such as text or web-based
email, email-over-ssh, batched and offline email, and
script-generated email.
Email usage scenarios (mailing lists; remote, batched,

offline, scripted or web mail). To send email to mail-
ing lists, the attester attests to the email normally, except
that the email destination address is the name of the tar-
get mailing list. Every recipient’s verifier then checks
that the recipient is subscribed to the mailing list, as de-
scribed in 5.2. Also, a text-based email application run-
ning remotely over ssh can obtain attestations from the
local machine with the help of the ssh client program
executing locally. This procedure is similar to authenti-
cation credential forwarding implemented in ssh. Simi-
larly, a graphical email client can obtain and store an at-
testation as soon as the “send” button is clicked, regard-
less of whether it has a working network connection, or
if the email client is in an offline mode, or if the client
uses an outbox to batch email instead of sending it im-
mediately. In case of web mail, a browser can obtain an
attestation on behalf of the web application.

Script-generated email is more complex. The PID
argument in the attestation request (Figure 2) is used
for deferred attestations, which are attestations approved
ahead of time by the user. Such forms of attestation
are not required normally, and are useful primarily for
applications such as email-generating scripts, cron-jobs,
etc. When an application requests a deferred attestation,
the user approves the attestation explicitly through a re-
served click sequence (currently “Ctl-Alt-F4”, followed
by number of deferred attestations). These attestations
are stored in a simple PID-table in the attester, and re-
leased to the application in the future. Since the content
of a deferred attestation is not typically known until later
(such as when the body of an email is dynamically gen-
erated), it is dangerous to release an unbound attestation
to the untrusted OS. Instead, the attester stores the de-
ferred attestations in its own memory, and releases only
bound attestations. Although the attester ensures that un-
bound attestations are not released to the untrusted OS,
thereby limiting damage, there is no way to ensure that
these attestations are not stolen by a bot faking the legit-
imate script’s PID. However, the user is able to reliably
learn about the missing attestations after this occurrence,
which is helpful during troubleshooting.

4.4 Attester Implementation

The attester is a small module, currently at fewer than
500 source code lines. It requires a TPM chip conform-
ing to any revision of the TPM v1.2 specification [28].
Attester installation. The attester is installed by bind-
ing its hash value to an internal TPM register called a
Platform Configuration Register (PCR). We use .
Initially, the register value is -1. We extend it1 with the
attester through the TPM operation:

USENIX Association NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation 313

where is the attester’s hash. If the attester
needs to be updated for some reason (which should be
a rare event), is reinitialized and extended with
the new code value.
Key generation. At install time, the attester generates
an anonymous signing key pair: . This
key pair is derived from the attestation identity key AIK
of the TPM, and is an offline operation. allows the
attester to sign requests anonymously. The attester then
seals the private key to the TPM using the TPM’s
private storage root key .

Assume that the system BIOS, which boots before the
attester, extends . Thus, the sealing operation
renders inaccessible to everyone but the attester
by executing the TPM call:

which returns the encrypted value of . The TPM
unseals and releases the key only to the attester, after the
attester is booted correctly.

Until the TPM releases and the accompanying
certificate to the attester, there is thus no way for the host
to prove to an external verifier that a request is accompa-
nied by human activity. Conversely, if the attester has a
valid private key, the external verifier is assured that the
attester is not tampered with.
Attester booting. The attester uses a static chain of trust
rooted at the TPM and established at boot-time. It is
booted as part of the secure boot loading operation be-
fore the untrusted OS itself is booted. After the BIOS
is booted, it measures and launches the attester. After
the attester is launched, it unseals the previously sealed

by executing:

The operation releases only if the PCR
registers 17 and 18 after reboot contain the same hash
values as the registers at the time of sealing . If
the PCR values match, the TPM decrypts and returns

to the attester.
Thus, by sealing the anonymous signing key to

the TPM and using secure boot loading to release the key
to the attester, NAB meets the challenge of generating
attestations without globally unique identities.
Attester execution. The attester waits passively for at-
testation requests from an application routed through the
untrusted OS. A small untrusted stub is loaded into the
OS in order to interact with the attester on behalf of the
application.

With our current attester design and implementation,
applications need to be modified in order to obtain attes-
tations. We find the modifications to be fairly small and

localized (6). The only change as far as applications
are concerned is to first obtain appropriate attestations
and then include them as part of the requests they submit
today. Protocols such as SMTP (mail) or HTTP (web)
need not be modified in order to include this function-
ality. SMTP allows extensible message headers, while
HTTP can include the attestation as part of the “user
agent” browser string or as an extended header.

5 Verifier Design and Implementation

We now describe how verifiers use attestations to imple-
ment attack-specific countermeasures for spam, DDoS
and click-fraud.

5.1 Verifier Design

The verifier is co-located with the server processing re-
quests. We describe how the server invokes the verifier
for each application in 5.2. When invoked, the verifier
is passed both the attestation and the request. The attes-
tation and request contain all the necessary information
to validate the request.

The verifier first checks the validity of the attester pub-
lic key used for signing the request, by traversing the
public-key chain in the certificate (Figure 2). If valid,
it then recomputes the hash of the request’s content and
verifies whether the signed hash value in the attestation
matches the request’s contents. Further, for attestations
that include the values, the verifier also checks
whether are less than the application-specified

. The verifier then checks to ensure that the at-
testation is not being double-spent, as described in 5.3.

A bot running in an untrusted domain cannot masquer-
ade as a trusted attester to the verifier because a TPM
will not release the signed (Figure 2) to the bot
without the correct code hash. Further, it derives no ben-
efit from tampering with the values it specifies in its
requests, because the verifier enforces the application-
specified upper-limit on .

The verifier then implements an application-specific
policy as described next.

5.2 Application-specific Policies

Verifiers implement application-specific policies to deal
with bot traffic. Spam can be more aggressively filtered
using information in the attestations, legitimate email
with attestations can be correctly classified, DDoS can
be handled more effectively by prioritizing requests with
attestations over traffic without attestations, and click-
fraud can be reduced by only serving requests with valid
attestations and ignoring other requests.

314 NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

VDBIOWUBWKU

DWWHVWHG")RUZDUG

)RUZDUG 'LVFDUG

\HV QR

QR\HV

PDLO

Figure 3: Sender ISP’s verifier algorithm.

We now describe how the verifier implements such
application-specific policies. Note that these are only
example policies that we constructed for our three case
studies, and many others are possible.

5.2.1 Spam policy

The biggest problem with Bayesian spam filters such as
spamassassin today is that they either flag too much le-
gitimate email as spam, or flag too little spam as such.

When all legitimate requests are expected to carry at-
testations, the verifier can set spam filters aggressively to
flag questionable unattested messages as spam, but use
positive evidence of human activity to “whitelist” ques-
tionable attested messages.
Sender ISP’s email server. The verifier sits on the
sender ISP’s server alongside a Bayesian spam filter like
spamassassin. The filter is configured at an aggressive,
low threshold (e.g., -2 instead of the default 5 for spa-
massassin), because the ISP can force its users to send
email with attestations, in exchange for relaying email
through its own servers.

This low spamassassin “required score” threshold (or
sa fltr thr in Figure 3) tags most unattested spam
as unwanted. However, in the process, it might also tag
some valid email as spam. In order to correct this mis-
take, the verifier “salvages” messages with a high spam
filter score that carry a valid attestation, and relays them;
high-score, unattested email is discarded as spam. This
step ensures that legitimate human-generated email is
forwarded unconditionally, even if the sender’s machine
is compromised. Thus, NAB guarantees that human-
generated email from even a compromised machine is
forwarded correctly (for example, in our trace study in
6, we did not find a single legitimate email that was ul-

timately rejected). Finally, while spam that steals attes-
tations will also be forwarded, in our trace-based study
this spam volume is 92% less than the spam forwarded
today (6). This reduction is because the attester limits
the bot to acquiring attestations only when there is hu-
man activity, and even then at a rate limit of at most one
attestation per (one second for type 0 attestations).
Recipient’s inbox. A second form of deploying the

verifier is at the email recipient. This form can coexist
with the verifier on the sender’s side.

We observe that any email server classifying email as
spam or not can ensure that a legitimate email is not mis-
classified by improving the spam score for email mes-
sages with attestations by a small number (=3, 6). This
number should be high enough that all legitimate email
is classified correctly, while spam with or without attes-
tations is still caught.

The verifier improves the score for all attested emails
by 3, thereby vastly improving the delivery of legitimate
email. Additionally, in this deployment, the verifier also
checks that the ‘To:” or “Cc:” headers contain the recipi-
ent’s email address or the address of a subscribed mailing
list. If not (for example, in the case of “Bcc:”), it does
not improve the spam score by 3 points.
Incentives. Email senders have an incentive to deploy
NAB because it prevents their email from being misclas-
sified as spam. Verifiers can be deployed either for reduc-
ing spam forwarded through mail relays or for ensuring
that all legitimate email is classified and delivered cor-
rectly. Home ISPs, which see significant amount of com-
promised hosts on their networks, can benefit from the
first deployment scenario, because, unlike other meth-
ods of content or IP-based filtering, attestations still al-
low all legitimate email from compromised hosts, while
reducing spam significantly (6). Also, web-based mail
servers such as gmail have an incentive to deploy NAB so
that they can avoid being blacklisted by other email re-
lays by reducing the spam they forward today. Finally,
email recipients have an incentive to deploy NAB be-
cause they will receive all legitimate email correctly, un-
like today (6).

5.2.2 DDoS policy

We consider scenarios where DDoS is effected by over-
loading servers, and not by flooding networks. The ver-
ifier resides in a firewall or load balancer, and observes
the response time of the web server to determine whether
the server is overloaded [31]. Here, unlike in spam, the
verifier does not drop requests with invalid or missing
attestations. Instead, it prioritizes requests with valid at-
testations over those that lack them. Prioritizing, rather
than dropping, makes sense because some valid requests
may actually be generated automatically by machines
(for example, automatic page refreshes on news sites like
cnn.com).

The verifier processes the web request in the following
application-specific manner. If the request is for a page
URL, the verifier treats it as a fresh request. It keeps a set
of all valid attestations it has seen in the past 10 minutes,
and adds the attestation and the requested page URL to
the list. If the request is for an embedded object within a

USENIX Association NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation 315

page URL, the verifier searches the attestation list to see
if the attestation is present in the list. If the attestation
is present in the list, and if the requested object belongs
to the page URL recorded in the list for the attestation,
the verifier treats the attestation as valid. Otherwise, it
lowers the priority of the request. The verifier ages the
stored attestation list every minute.

The priority policy serves all outstanding attested re-
quests first, and uses any remaining capacity to serve all
unattested requests in order.

Incentives. Overloaded web sites have a natural incen-
tive to deploy verifiers. While users have an incentive to
deploy attesters to receive priority treatment, the attester
deployment barrier can be still high. However, since our
attester is not application-specific, it is possible for the
web browser to leverage the attester deployed for email
or click-fraud.

5.2.3 Click-fraud Policy

Click-fraud occurs whenever an automated request is
generated for a click, without any interest in the click
target. For example, a botmaster puts up a web site to
show ads from companies such as Google, and causes
his bots to fetch ads served by Google through his web
site. This action causes Google to pay money to the bot-
master. Similarly, an ad target’s competitor might gener-
ate invalid clicks in order to run up ad costs and bankrupt
the ad purchaser. Further, the competitor might be able to
purchase ad words for a smaller price, because the victim
might no longer bid for the same ad word. Finally, com-
panies like Google have a natural incentive to prove to
their advertisers that ads displayed together with search
results are clicked not by bots but by humans.

With NAB, a verifier such as Google can implement
the verifier within its web servers, configured as a sim-
ple policy of not serving unattested requests. Also, it can
log all attested requests to prove to the advertiser that
the clicks Google is charging for are, in fact, human-
generated.

Incentives. Companies like Google, Yahoo and Mi-
crosoft that profit from ad revenue have a good incentive
to deploy verifiers internally. They also have an incen-
tive to distribute the attester as part of browser toolbars.
Such toolbars are either factory installed with new PCs,
or the user can explicitly grant permission to install the
attester. While the user may not benefit directly in this
case, she benefits from spam and DDoS reduction, and
from being made aware of potential problems when a bot
steals key clicks.

5.3 Security guarantees

NAB provides two important security guarantees. First,
it ensures that attestations cannot be double-spent. Sec-
ond, it ensures that a bot cannot steal key clicks and ac-
cumulate attestations beyond a fixed time window, which
reduces the aggregate volume and burstiness of bot traf-
fic.

The verifier uses the nonce in the attestation (Figure 2)
for these two guarantees. The verifier stores the nonces
for a short period (10 minutes for web requests, one
month for email). We find this nonce overhead to be
small in practice (6.3). If a bot recycles an attestation
after one month, and the spam filter at the verifier flags
the email as spam based on content analysis, the veri-
fier uses the “Date:” field in the attested email to safely
discard the request because the message is old.

The combination of application-specific verifier pol-
icy and content-bound attestations can also be used to
mitigate bursty attacks. For example, a web URL can in-
clude an identifier that encodes the link freshness. Since
attestations include the identifier, the verifier can discard
out-of-date requests, even if they have valid signatures.

6 Evaluation

In this section, we evaluate NAB’s two main compo-
nents: a) our current attester prototype with respect to
metrics such as TCB size, CPU requirements, and appli-
cation changes; and b) our verifier prototype with respect
to metrics such as the extent to which it mitigates attack-
specific traffic such as spam, DDoS and click-fraud, and
the rate at which it can verify attestations.

Our main experiments and their conclusions are shown
in Table 1. We elaborate on each of them in turn.

6.1 Attester Evaluation

TCB size. We implemented the attester as a kernel mod-
ule within Xen. Xen is well-suited because it provides a
virtual machine environment with sufficient isolation be-
tween the attester and the untrusted OS. However, the
chief difficulty was keeping the total TCB size small.
Striving for a small TCB allows the attester to handle
untrusted OSes with a higher assurance. While the Xen
VM itself is small (about 30 times smaller than the Linux
kernel), we have to factor the size of a privileged do-
main such as Domain-0 into the TCB code base. Unfor-
tunately, this increases the size of the TCB to more than
5 million source lines of code (SLOC), the majority of
which is device driver code.

Instead, we started with a minimal kernel that only
includes the necessary drivers for our platform. We in-
cluded the Xen VMM and built untrusted guest OSes us-

316 NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Experiment Conclusion
TCB size 500 source lines of code (SLOC) for attester, 30K SLOC total
Attester CPU cost instructions/attestation
Application changes 250 SLOC for simple applications
Worst-case spam mitigation spam suppressed; no human-sent email missed
Worst-case DDoS mitigation non-human requests identified; no human requests demoted
Worst-case click-fraud mitigation automated clicks denied; no human request denied
Verifier throughput req/s. Scalable to withstand 100,000-bot DDoS

Table 1: Summary of key experiments and their results.

ing the mini-OS [19] domain building facility included
in the Xen distribution. Mini-OS allows the user-space
applications and libraries of the host VM to be untrusted,
leaving us with a total codebase of around 30,000 source
lines of code (SLOC) for the trusted kernel, VMM and
attester. Our attester was less than 500 SLOC. While this
approach produced a TCB that can be considered rea-
sonably small, especially compared to the status quo, we
are examining alternatives such as using Xen’s driver do-
main facility that allows device drivers to run in unprivi-
leged domains. We are also working on using the IOM-
MUs found on the newer Intel platforms, which enable
drivers for devices other than keyboard and mouse to run
in the untrusted OS, while ensuring that the attester can-
not be corrupted due to malicious DMA requests. Such
an approach makes the attester portable to any x86 plat-
form.
Attester CPU cost. The attester uses RSA signatures
with a 1024-bit modulus, enabling it to generate and re-
turn an attestation to the application with a worst-case
latency of 10 ms on a 2 GHz Core 2 processor. This
latency is usually negligible for email, ad click, or fetch-
ing web pages from a server under DDoS. Establishing
an outgoing TCP connection to a remote server usually
takes more than this time, and attestation generation is
interleaved with connection establishment.
Application changes. We modified two command-line
email and web programs to request and submit attes-
tations: NET::SMTP, a Perl-based SMTP client, and
cURL, an HTTP client written in C. Both modifications
required changes or additions of less than 250 SLOC.

6.2 Verifier Evaluation

We used a trace study of detailed keyboard and mouse
activity of 328 volunteering users at Intel to confirm
the mitigation efficacy of our application-specific veri-
fier policies. We find the following four main benefits
with our approach:

1. If the sender’s mail relay or the receiver’s inbox uses
NAB and checks for attestations, the amount of spam
that passes through tuned spam filters (i.e., false neg-

atives) reduces by more than 92%, while not flagging
any legitimate email as spam (i.e., no false positives).
The spam reduction occurs by setting the “scoring
thresholds” aggressively; the presence of concomitant
human activity greatly reduces the number of legiti-
mate emails flagged as spam.

2. In addition to reduced spam users see in their inboxes,
NAB also reduces the peak processing load seen at
mail servers, because the amount of attested spam that
can be sent even by an adaptive botnet is bounded by
the number of human clicks that generate attestations.
Hence, mail servers can prioritize attested requests po-
tentially dropping low-priority ones, which improves
the fraction of human-generated email processed dur-
ing high-load periods.

3. NAB can filter out more than 89% of bot-mounted
DDoS activity without misclassifying human-
generated requests.

4. NAB can identify click-fraud activity generated by ad-
ware with more than 87% accuracy, without losing any
human-generated web clicks.

Methodology. We use the keyboard and mouse click
traces collected by Giroire et al. [11]; activity was
recorded on participants’ laptops at one-second granu-
larity at all times, both at work and at home. Each user’s
trace is a sequence of records with the following rele-
vant information: timestamp; number of keyboard clicks
within the last second; number of mouse clicks within the
last second; the foreground application that is receiving
these clicks (such as “Firefox”, “Outlook”, etc.); and the
user’s network activity (i.e., the TCP flow records that
were initiated in the last one second). Nearly 400 users
participated in the trace study, but we use data from 328
users because some users left the study early. These 328
users provide traces continuously over a one-month pe-
riod between Jan–Feb 2007, as long as their machines
were powered on. While the user population size is mod-
erate, the users and the workloads were diverse. For ex-
ample, there were instances of significant input device
activity corresponding to gaming activity outside regular
work. So, we believe the traces are sufficiently represen-
tative of real-world activity.

USENIX Association NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation 317

Separately, we also collected malware traces from a
honeypot. The malware whose traces we gathered in-
cluded: a) the Storm Worm [13], which was until re-
cently the largest botnet, generating several tens of bil-
lions of spam messages per day; and b) three adware
bots called 180solutions, Nbcsearch and eXactSearch,
which are known to perpetrate click-fraud against Ya-
hoo/Overture. For spam, we also used a large spam cor-
pus containing more than 100,000 spam messages and
50,000 valid messages [1]. Each message in the corpus is
hand-classified as spam or non-spam, providing us with
ground-truth. For DDoS, we use traffic traces from the
Internet Traffic Archive [27], which contain flash-crowd
scenarios. We assume that these flash crowds represent
DDoS requests, because, as far as an overloaded server
is concerned, the two scenarios are indistinguishable.

We overlay the user activity traces with the malware
and DDoS traces for each user, and compare the results
experienced by the user at the output of the verifier with
and without attestations. We consider two strategies for
overlaying requests: a normal bot and an adaptive bot.
The adaptive bot represents the worst-case scenario for
the verifier, because it monitors human activity and mod-
ulates its transmissions to collect attestations and mas-
querade as a user at the verifier.

We consider an adaptive adversary that buffers its re-
quests until it sees valid human activity, and simulate the
amount of benefit NAB can provide under such adversar-
ial workloads.
Spam mitigation. The verifier can be used in two ways
(5.2). First, mail relays such as gmail or the SMTP
server at the user’s ISP can require attestations for outgo-
ing email. In this case, the main benefit comes from fil-
tering out all unattested spam and catching most attested
spam, while allowing all legitimate email. So, the main
metric here is how much attested spam is suppressed.
Second, the inbox at the receiver can boost the “spam
score” for all attested email, thereby improving the prob-
ability that a legitimate email is not misclassified. So, the
main metric here is how much attested human-generated
email is misclassified as spam.

Figure 4 shows the amount of spam, attested or not,
that managed to sneak through spamassassin’s Bayesian
filter for a given spam threshold setting. By setting a
spam threshold of -2 for an incoming message , and ad-
mitting messages that still cleared this threshold and car-
ried valid attestations, we cut down the amount of spam
forwarded by mail relays by more than 92% compared to
the amount of spam forwarded currently.

From our traces, we also found that no attested human-
generated email is misclassified as spam for a spam
threshold setting of 5, as long as the spam score of at-
tested messages is boosted by 3 points. On the other
hand, spamassassin uses a threshold of 5 by default be-

�

���

���

���

���

�

���

���

���

�� �� �� � � � � � �
6SDP�WKUHVKROG

0
LV
VH
G�
VS
DP

���
�

Figure 4: Missed spam percentage vs. spam threshold
with attestations. By setting spam threshold to -2, spam
cleared by spamassassin and received in inboxes today is
reduced more than 92% even in worst case (ı.e., adaptive
bots), without missing any legitimate email.

cause, without attestations, a lot of valid email would be
missed if it were to use a spam score of -2. Even so, about
0.08% of human-generated email is still misclassified as
spam, which is a significant improvement of legitimate
email reception.

There is another benefit that the verifier can derive by
using attestations. It comes in the form of reduced peak
load observed while processing spam. Today’s email
servers are taxed by ever-increasing spam requests [23].
At peak times, the mail server can prioritize messages
carrying attestations over those that do not, and process
the lower-priority messages later.

Figure 5 shows the CDF of the percentage of spam re-
quests that the verifier must still service at a high priority
because of stolen attestations. NAB demotes spam traffic
without attestations by more than 91% in the worst case
(equivalently, less than 7.5% of spam traffic is served at
the high priority). At the same time, no human-generated
requests are demoted. The mean of the admitted spam
traffic is 2.7%, and the standard deviation is 1.3%. Thus,
NAB reduces peak server load by more than 10 .
DDoS mitigation. The verifier uses the DDoS policy
described in 5.2, by giving lower priority to requests
without attestations. Figure 6 shows the CDF of the per-
centage of DDoS requests that the verifier still serves at
a high priority because of stolen attestations. NAB de-
motes DDoS traffic by more than 89% in the worst case
(equivalently, only 11% of DDoS traffic is served at the
high priority). At the same time, no human-generated
requests are demoted. The mean of the admitted DDoS
traffic is 5.8%, and the standard deviation is 2.2%.
Click-fraud mitigation The verifier uses the Click-fraud
policy described in 5.2. Figure 7 shows the amount
of click-fraud requests that the verifier satisfies due to

318 NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

�

���

���

���

���

���

���

���

���

���

�

� � � � � � � � �

5HPDLQLQJ�VSDP�WUDIILF�LQ�ZRUVW�FDVH����

&
'
)

Figure 5: CDF of percentage of bots’ spam requests ser-
viced by an email server in the worst case. The mail
server’s peak spam processing load is reduced to less
than 7.5% of its current levels.

�

���

���

���

���

���

���

���

���

���

�

� � � � � ��

5HPDLQLQJ�''R6�WUDIILF�LQ�ZRUVW�FDVH����

&
'

)

Figure 6: CDF of percentage of bots’ DDoS requests
serviced in the worst case. Allowed DDoS traffic is re-
stricted to less than 11% of original levels.

valid attestations. NAB denies more than 87% of all
in the worst case (equivalently, only 13% of all click-
fraud requests is serviced). At the same time, no human-
generated requests are denied service. The mean of the
serviced click-fraud traffic is 7.1%, and the standard de-
viation is 3.1%.

6.3 Verifier Throughput

The verifier processes attestations, which are signed RSA
messages, at a rate of more than 10,000 attestations per
second on a 2 GHz Core 2 processor. It benefits from
the fact that RSA verification is several times faster than
signing. The verifier processes an attestation by consult-
ing the data base of previously seen nonces within an
application-specific period. The longest is email, with
a duration of one month, while nonces of web requests
are stored for 10 minutes, and fit in main memory. Even
in the worst-case scenario of a verifier at an ISP’s busy

�

���

���

���

���

���

���

���

���

���

�

� � � � � �� ��

5HPDLQLQJ�FOLFN�IUDXG�WUDIILF�LQ�ZRUVW�FDVH����

&
'
)

Figure 7: CDF of percentage of bots’ click-fraud re-
quests serviced in the worst case. Serviced click-fraud
requests are restricted to less than 13% of original levels.

SMTP relay, the storage and lookup costs for the nonces
are modest—for a server serving a million clients, each
of which sends a thousand emails per day, the nonce stor-
age overhead is around 600 GB, which can fit on a single
disk and incur one lookup overhead. This overhead is
modest compared to the processing and storage costs in-
curred for reliable email delivery.

Another concern is that the verifier is itself susceptible
to a DDoS attack. To understand how well our verifier
can withstand DDoS attacks, we ran experiments on a
cluster of 10 Emulab machines configured as distributed
email verifiers. We launched a DDoS from bots with
fake attestations. Each DDoS bot sent 1 req/s to one of
the ten verifiers at random, in order to mimic the behav-
ior of distributed low-rate bots forming a DDoS botnet.
Our goal was to determine whether a botnet of 100,000
nodes (which is comparable to the median botnet size)
can overwhelm this verifier infrastructure or not. Our
bot implementation used 100 clients to simulate 1000
bots each, and attack the ten verifier machines. We as-
sume network bandwidth is not a bottleneck, and that the
bots are targeting the potential verification overhead bot-
tleneck. A verifier queues incoming requests until it can
attend to it, and has sufficient request buffers.

Figure 8 shows the latency increase (in ms) experi-
enced by a normal client request. Normally, a user takes
about 1 ms to get her attestation verified. With DDoS, we
find that even a 100,000-node botnet degrades the perfor-
mance of a normal request only by an additional 1.2 ms
at most. Hence, normal request processing is not affected
significantly. Thus, a cluster of 10 verifiers can withstand
a 100,000-node botnet using fake attestations.

7 Related Work

We classify prior work into three main categories.

USENIX Association NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation 319

�

���

���

���

���

�

���

���

� ����� ����� ����� ����� ������

1XPEHU�RI�ERWQHW�QRGHV

/D
WH

QF
\�

LQ
FU

HD
VH

�IR
U�Q

RU
P

DO
�

UH
TX

HV
WV

��P
V�

Figure 8: Request processing latency at the verifier.

Human activity detection. CAPTCHAs [30?] are
the currently popular mechanism for proving human
presence to remote verifiers. However, as described
in 4, they suffer from four major drawbacks that ren-
der them less attractive for mitigating botnet attacks.
First, CAPTCHAs as they are used today are transfer-
able and not bound to the content they attest, and are
hence vulnerable to man-in-the-middle attacks, although
one could imagine designs to improve this shortcom-
ing; second, they are semantically independent of the ap-
plication (i.e., unbound to the user’s intent), are hence
exposed to human solver attacks; third, they are ob-
trusive, which restricts their use for fine-grained attes-
tations (by definition, CAPTCHAs require manual hu-
man input), and hence cannot be automated, unlike NAB.
Also, we are witnessing continued successes in breaking
the CAPTCHA implementations of several sites such as
Google, Yahoo, and MSN [12], leading some to question
even their long-term viability [34], at least in their cur-
rent form. By contrast, NAB’s security relies on cryp-
tographic protocols such as RSA that have been studied
and used longer.

The recent work on the Nexus operating system [33]
has developed support for application properties to be se-
curely expressed using a trusted reference monitor mech-
anism. The Nexus reference monitor is more expressive
than a TPM implementing a hash-based trusted boot. So,
it allows policies restricting outgoing email only from
registered email applications. In contrast, we assume
commodity untrusted OS and applications.

The approach of using hardware to enable human ac-
tivity detection has been described before in the context
of on-line games, using untrusted hardware manageabil-
ity engines (such as Intel’s AMT features) [21].
Mitigating spam, DDoS and click-fraud. There is
extensive literature related to mitigation techniques for
Spam [2], DDoS [20, 35] and click-fraud [26]. There
are still no satisfactory solutions, so application-specific

defenses are continuously proposed. For example, Oc-
cam [10], SPF (Sender Policy Framework), DKIM (Do-
mainKeys Identified Mail) and “bonded sender” [6]
have been put forth recently as enhancements. Simi-
larly, DDoS and click-fraud mitigation have each seen
several radically different attack-specific proposals re-
cently. These proposals include using bandwidth-as-
payment [31], path validation [35], and computational
proofs of work [20] for DDoS; and using syndicators,
premium clicks, and clickable CAPTCHAs for click-
fraud [26].

While all these proposals certainly have several mer-
its, we propose that it is possible to mitigate a vari-
ety of botnet attacks using a uniform mechanism such
as NAB’s attestation-based human activity verification.
Such a uniform attack mitigation mechanism amortizes
its cost of deployment. Moreover, unlike some propos-
als, NAB does not rely on IP-address blacklisting, which
is unlikely to work well because even legitimate requests
from a blacklisted host are denied. Also, NAB can be im-
plemented purely at the end hosts, and does not require
Internet infrastructure modification.
Secure execution environments. The TPM specifica-
tions [28] defined by the Trusted Computing Group are
aimed at providing primitives that can be used to pro-
vide security guarantees to commodity OSes. TPM-like
services have been extended to OSes that cannot have
exclusive access to a physical TPM device of their own,
as with legacy and virtual machines. For example, Pio-
neer [22] provides an externally verifiable code execution
environment for legacy devices similar to that provided
by a hardware TPM, and vTPM [5] provides full TPM
services to multiple virtualized OSes. NAB assumes a
single OS and a hardware TPM, but can leverage this re-
search in future.

XOM [15] and Flicker [16] provide trusted execu-
tion support even when physical devices such as DMA
or, with XOM, even main memory are corrupted, while
SpyProxy [18] blocks suspicious web content by exe-
cuting the content in a virtual machine first. In con-
trast, NAB assumes compromised machines’ hardware
is functioning correctly, that the bot may generate di-
verse traffic such as spam and DDoS, and that owners do
not mount hardware attacks against their own machines,
which is realistic for botted machines.

8 Conclusions

This paper presented NAB, a system for mitigating net-
work attacks by using automatically obtained evidence of
human activity. NAB uses a simple mechanism centered
around TPM-backed attestations of keyboard and mouse
clicks. Such attestations are responder- and content-
specific, and certify human activity even in the absence

320 NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

of globally unique identities. Application-specific ver-
ifiers use these attestations to implement various poli-
cies. Our implementation shows that it is feasible to pro-
vide such attestations at low TCB size and runtime cost.
By evaluating NAB using trace analysis, we estimate
that NAB can reduce the amount of spam evading tuned
spam filters by more than 92% even with worst-case ad-
versarial bots, while ensuring that no legitimate email
is misclassified as spam. We realize similar benefits
for DDoS and click-fraud. Our results suggest that the
application-independent abstraction provided by NAB
enables a range of verifier policies for applications that
would like to separate human-generated requests from
bot traffic.
Acknowledgments. We thank Nina Taft and Jaideep
Chandrashekar for the click traces used in this paper, our
shepherd Geoff Voelker, Bryan Parno, Frans Kaashoek
and the anonymous reviewers for their helpful com-
ments.

References
[1] 2005 TREC public spam corpus, http://plg.uwaterloo.

ca/ gvcormac/treccorpus/.
[2] A plan for spam, http://www.paulgraham.com/spam.

html.
[3] P. Barham, B. Dragovic et al. Xen and the art of virtualization. In

SOSP’03.
[4] M. Bellare and P. Rogaway. Entity authentication and key distri-

bution. In CRYPTO’93.
[5] S. Berger, R. Cáceres et al. vTPM: Virtualizing the Trusted Plat-

form Module. In USENIX-SS’06: Proceedings of the 15th con-
ference on USENIX Security Symposium.

[6] Bonded sender program, http://www.bondedsender.
com.

[7] E. Brickell, J. Camenisch, and L. Chen. Direct anonymous attes-
tation. In CCS’04.

[8] Click fraud rate rises to 14.1%, http://redmondmag.com/
columns/print.asp?EditorialsID=1456.

[9] Five percent of Web traffic caused by DDoS attacks,
http://www.builderau.com.au/news/soa/Five-
percent-of-Web-traffic-caused-by-DDoS-
attacks/0,339028227,339287902,00.htm.

[10] C. Fleizach, G. Voelker, and S. Savage. Slicing spam with oc-
cam’s razor. In CEAS’07.

[11] F. Giroire, J. Chandrashekar et al. The Cubicle Vs. The Coffee
Shop: Behavioral Modes in Enterprise End-Users. In PAM’08.

[12] Gmail CAPTCHA cracked, http://securitylabs.
websense.com/content/Blogs/2919.aspx.

[13] T. Holz, M. Steiner, F. Dahl, E. Biersack, and F. Freiling. Mea-
surements and mitigation of peer-to-peer-based botnets: A case
study on Storm worm. In Leet’08.

[14] C. Kanich, C. Kreibich et al. Spamalytics: An empirical analysis
of spam marketing conversion. In CCS’08.

[15] D. Lie, C. A. Thekkath, and M. Horowitz. Implementing an un-
trusted operating system on trusted hardware. In SOSP’03.

[16] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and
H. Isozaki. Flicker: An execution infrastructure for TCB min-
imization. In EuroSys’08.

[17] D. Moore, C. Shannon, D. J. Brown, G. M. Voelker, and S. Sav-

age. Inferring Internet denial-of-service activity. ACM Trans.
Comput. Syst., 24(2), 2006.

[18] A. Moshchuk, T. Bragin, D. Deville, S. D. Gribble, and H. M.
Levy. SpyProxy: Execution-based detection of malicious web
content. In USENIX’07.

[19] D. G. Murray, G. Milos, and S. Hand. Improving xen security
through disaggregation. In VEE’08.

[20] B. Parno, D. Wendlandt et al. Portcullis: Protecting connection
setup from denial-of-capability attacks. In SIGCOMM’07.

[21] T. Schluessler, S. Goglin, and E. Johnson. Is a bot at the controls?:
Detecting input data attacks. In SIGCOMM workshop on Network
and system support for games, 2007.

[22] A. Seshadri, M. Luk et al. Pioneer: verifying code integrity
and enforcing untampered code execution on legacy systems. In
SOSP’05.

[23] Six botnets churning out 85% of all spam, http:
//arstechnica.com/news.ars/post/20080305-
six-botnets-churning-out-85-percent-of-
all-spam.html.

[24] Spam reaches all-time high of 95% of all email, http://www.
net-security.org/secworld.php?id=5545.

[25] Spammers using porn to break CAPTCHAs, http:
//www.schneier.com/blog/archives/2007/11/
spammers using.html.

[26] The first AdFraud workshop, http://crypto.stanford.
edu/adfraud/.

[27] Traces in the Internet Traffic Archive, http://ita.ee.lbl.
gov/html/traces.html.

[28] Trusted Platform Module (TPM) specifications, https://
www.trustedcomputinggroup.org/specs/TPM/.

[29] Vista’s UAC security prompt was designed to annoy you, http:
//arstechnica.com/news.ars/post/20080411-
vistas-uac-security-prompt-was-designed-
to-annoy-you.html.

[30] L. von Ahn, M. Blum, N. Hopper, and J. Langford. CAPTCHA:
Using Hard AI Problems for Security. In Eurocrypt’03.

[31] M. Walfish, M. Vutukuru, H. Balakrishnan, D. Karger, and
S. Shenker. DDoS Defense by Offense. In SIGCOMM’06.

[32] A. Whitten and J. D. Tygar. Why Johnny can’t encrypt: A usabil-
ity evaluation of PGP 5.0. In USENIX Security’99.

[33] D. Williams, P. Reynolds, K. Walsh, E. G. Sirer, and F. B. Schnei-
der. Device driver safety through a reference validation mecha-
nism. In OSDI’08.

[34] Windows Live Hotmail CAPTCHA cracked, exploited,
http://arstechnica.com/news.ars/post/
20080415-gone-in-60-seconds-spambot-
cracks-livehotmail-captcha.html.

[35] X. Yang, D. Wetherall, and T. Anderson. A DoS-limiting network
architecture. In SIGCOMM’05.

Notes
1The TPM terminology uses the term register extension to imply

appending a new value to the hash chain maintained by that register.

