Rethinking Networking for “Five Computers”

Sundararajan

Renganathan
Microsoft Research India
t-sur@microsoft.com

ABSTRACT

T. J. Watson’s apocryphal statement about there being a mar-
ket for only “five computers” has, in a sense, come true with
the rise of cloud computing and the dominance of a handful of
“mega-computers” in terms of Internet traffic volume. How-
ever, network protocols and operation over the Internet have,
for the most part, remained wedded to the old world, with
individual hosts operating autonomously. We argue that this
is suboptimal and that the time has come to revisit network-
ing in the world of “five computers.” We consider various
networking functions, including specifically congestion con-
trol and network diagnosis, and provide an indication of the
potential benefits of a new coordinated approach and sketch
out an approach to realizing these benefits.

1 INTRODUCTION

It has been suggested that T. J. Watson of IBM had, in 1943,
made the statement, “I think there is a world market for maybe
five computers.” [8, 9]. Although it is quite likely that he never
made this statement [3], it is often held up as an example of
a technology prediction that has proved to be grossly off the
mark. However, in a sense, this “prediction” has nonetheless
come to be true with the rise of cloud computing [19, 34].
A handful of large cloud providers and services account for
the majority of Internet traffic. For instance, with the rise
in popularity of online video, Netflix and Youtube alone re-
portedly account for over 50% of Internet traffic [5, 7]. Even
traditional “peer-to-peer” applications such as A/V confer-
encing (e.g., Skype) have, for reasons of connectivity and
performance, moved to an architecture where communication
happens between clients and cloud-based relays. Therefore,
the vast majority of Internet traffic has at least one end-point
on one of “five” computers (of course, we mean “five” not in
a literal sense but rather figuratively to mean a “handful”).
Internet protocols such as TCP were designed for a decen-
tralized world of host-to-host communication. Hosts make
minimal assumptions about the network and operate largely

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions @acm.org.

HotNets-XVII, November 15-16, 2018, Redmond, WA, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6120-0/18/11...$15.00
https://doi.org/10.1145/3286062.3286076

Venkata N. Padmanabhan

Microsoft Research India
padmanab @microsoft.com

92

Akshay Uttama Nambi

Microsoft Research India
t-snaksh @microsoft.com

autonomously. For instance, when a new TCP connection
is launched, it generally starts with a clean slate and goes
through its motions in accordance with the parameters (e.g.,
initial congestion window size and the slow-start threshold)
that it has been configured with. Even where it uses his-
tory [27] and/or machine learning [20, 45] to adapt, it is
generally limited to its local view. Likewise, when there is
a failure, the host notices it only when a communication at-
tempt fails, and then has to rely on local tools such as ping
and traceroute to diagnose the problem. The local view
also means that the network API is largely bereft of predictive
information, e.g., how long a download is likely to take or
how good the quality of a video call is likely to be.

Clearly, there is the opportunity to do better individually
and collectively through information sharing and coordination
across senders. We touch on a couple of examples here.

o If the shared information indicates that the network is
congested (e.g., a significant packet loss rate), it would
be advantageous for the network as a whole if each
sender were to be less aggressive. In the context of
TCP, that might mean using a small initial window or
backing off more sharply in the event of a packet loss.

e Shared information can also help detect and diagnose
network problems, across senders or even across ser-
vices. For instance, if users of a cloud provider are
experiencing unreliability in their VoIP service but not
their file hosting service, that would point to a VoIP-
specific issue.

While there has been prior work on creating an “informa-
tion plane” for Internet hosts [32], we argue that the present
“five-computer” world presents a new opportunity for rethink-
ing and redesign that has hitherto not been available.

Let us consider an example. Netflix has been and continues
to be dominant in terms of its share of Internet traffic (e.g., it
accounted for 37% of Internet traffic in 2015 [5]). However, it
only has a relatively modest number of servers pumping out
this traffic (e.g., a research effort from 2016 aimed at mapping
Netflix’s servers only found 4669 servers [4])'. Sharing infor-
mation across and coordinating a few thousand servers run by
a single entity, is likely to be much more feasible than it would
be across millions or billions of disparate end-points or peers.
And where such an entity accounts for a dominant share of
Internet traffic, such information sharing and coordination is
also likely to be effective. Furthermore, we argue that even if

! Although Netflix has moved many of their services to Amazon AWS, the
actual delivery of media bits, which arguably accounts for the bulk of their
traffic, happens from servers in the Netflix OpenConnect CDN [2, 6]

https://doi.org/10.1145/3286062.3286076

such coordination is confined to the individual entities among
the “five computers” and does not span multiple competing
entities (e.g., Netflix, Youtube, and Amazon), there would
still be tangible benefits since the large scale of the individual
entities would help push the network towards a more efficient
operating point.

In the rest of the paper, we present our proposal for infor-
mation sharing and coordination, which we dub as Phi, a
play on the word “five”.

2 RETHINKING CONGESTION
CONTROL

Congestion control is key to the stability and efficient opera-
tion of networks. There have been myriad flavors of conges-
tion control schemes over the years, varying in the control
mechanism employed (e.g., window-based or rate-based),
feedback relied upon (e.g., delay, loss, explicit congestion
notification), the control policy (e.g., the increase or decrease
policy), and more [11, 14, 27, 30, 37, 38]. In the recent years,
there has been recognition of the fact that a static and hand-
crafted control policy is unlikely to be optimal, because these
policies are often based on a simplified model of the net-
work that might not reflect reality. This has led to work on
machine-learned congestion control, where the congestion
control algorithm is trained offline using trace-driven simu-
lation and uses the resultant model to respond to a client’s
measurement of end-to-end metrics such as delay and packet
loss [43, 45]. Nevertheless, these approaches still have clients
operating autonomously, each making its own measurements
and responding according to the model.

We argue that in a “five-computer” world, there is the op-
portunity to do much better, in terms of both information
sharing and coordination. After all, if a single entity such as
Netflix accounts for a dominant share of network traffic, then
it makes little sense for new streams to fly blind, oblivious to
what Netflix already knows about the network. For instance,
if the experience from ongoing streams points to a high level
of congestion on the network path to Comcast customers
in a particular location, it would likely be beneficial for a
new stream to learn from that and temper its congestion con-
trol accordingly. Furthermore, since the prevalence of FIFO
queueing makes the network not incentive compatible [23],
there would need to be a degree of coordination across the
streams to ensure overall benefit. While the "five-computer"
world, with the dominance of just a small number of entities,
facilitates such coordination, making coordination practical
is still a key challenge.

In the remainder of this section, we expand on the op-
portunity for and the benefits of information sharing and
coordination in the “five-computer” world in the context of
congestion control, and outline a practical design for realizing
such sharing and coordination.

2.1 Opportunity for Sharing
We look at Internet-bound egress traffic from a large cloud

provider to assess the opportunity for the sharing of informa-
tion. In particular, we use the IPFIX (IP Flow Information

93

20 Mbits/s, 48ms

Data transfer

Figure 1: Dumbbell network used for the TCP Cubic ex-
periments. The buffer size is 5 times the bandwidth-delay

product of the bottleneck link.
Export) data [18] to calculate the number of TCP flows (char-

acterized by the number of unique 4-tuples <Src Ip, Src Port,
Dst Ip, Dst Port>) per minute for each /24 subnet that the
provider sends traffic to. Given this compact spatio-temporal
granularity (/24 subnet and 1-minute time slice), we can rea-
sonably expect all the flows to follow the same WAN path.

The IPFIX sampling rate is set to 4096 at each router mean-
ing that one in 4096 packets traversing the router is sampled
and the headers of these sampled packets are reported to
the centralized collector service. Despite this aggressive sub-
sampling, we find that 50% of the flows share the WAN path
with at least 5 other flows while 12% share it with at least 100
other flows. The actual sharing (without the sub-sampling) is
likely to be much higher.

Another pertinent question is whether these flows share
a bottleneck link. Recent work on egress path selection [41,
46] suggests that the bottleneck link is often not the last
hop. Nevertheless, a measurement study with techniques such
as [29] would be needed to establish whether a set of flows
share a bottleneck link.

2.2 Benefits of Sharing and Coordination

We first consider a case where there is both sharing of infor-
mation and coordination across senders. To make our discus-
sion concrete, we consider the simulated network topology
depicted in Figure 1, with a single bottleneck link. We use
a varying number of TCP senders in ns-2 (version 2.35) to
transmit data across this bottleneck link. Furthermore, each
sender launches fresh connections sequentially (“on” peri-
ods) separated by idle “off” periods, where the amount of
data transferred during “on” periods and the duration of “off”
periods are picked from separate exponential distributions.
The varying workload generates different levels of congestion
at the bottleneck link, with average link utilization spanning
from 20% to 80% across the experiments.

2.2.1 TCP Cubic. We first consider TCP Cubic, which
is widely used and is the default flavor of TCP in Linux and
recently also in Windows. Our goal is to compare the perfor-
mance of TCP Cubic, with its parameters tuned for the current
conditions based on globally shared knowledge, with that of
TCP Cubic with its default (and fixed) parameter settings. We
start by considering 3 different parameters: windowInit__
(initial congestion window), initial_ssthresh (initial
slow start threshold), and § (where (1-f) is the multiplicative
decrease factor applied on packet loss). The default settings

Parameter Default Value
initial_ssthresh | Arbitrarily large (65K segments)
windowInit_ 2 segments
B 0.2
Table 1: Default settings of the TCP Cubic parameters.
Parameter ‘ Range ‘ Increment

initial_ssthresh | 2-256 segments X2
windowInit_ 2 - 256 segments X2

p 0.1-09 +0.1

Table 2: Range of parameter sweep in TCP Cubic-Phi

of these parameters in the TCP Cubic implementation in ns-2
are given in Table 1. Note that to enable effective bandwidth
discovery, RFC-5681 recommends that the initial slow start
threshold be set arbitrarily large. 2

For each level of workload, we perform a sweep across
the range of parameter values noted in Table 2 and identify
the optimal parameter setting. To define optimality in our
experiments, we start with the network power metric [22],
P = %, where r is the throughput or data rate, and d is the
delay, and extend it to also incorporate the packet loss rate, [
(inspired by [31]), yielding the new metric, P; = "2 We
use P; is the metric to optimize in the case of TCP Cubic and
log(P) in the case of Remy (in line with [45]).

We first consider a simplified setting, where it is assumed
that for a given run, all the TCP Cubic senders use the same
parameter settings that is fixed for the duration of the run.
(We defer to Section 2.2.2 discussion of a more realistic set-
ting, wherein the parameters are set on the fly as connections
come.) The workload is varied by varying the number of
senders that share the bottleneck link, the average connec-
tion length for “on” periods and the average duration of the
“off” periods. For each combination of workload level and
parameter settings, we repeat the experiment for n = 8 runs.

Figure 2a and 2b show the throughput and queueing delay
corresponding to the different workload levels, where the
average connection length is set to 500 KB and the average
"off" time is set to 2 seconds. (Note that the throughput is
computed only during the on-times, i.e., throughput = bits
transferred / ontime.) The aggregate throughput and delay
measurements are averaged across the corresponding set of
runs. In each case, the solid triangle marker corresponds to
the default parameter settings for TCP Cubic, the circles to
other parameter settings, and the solid circle to the optimal
setting. The size of each marker indicates the packet loss rate;
the larger the size, the higher the loss rate.

The optimal parameter setting yields a significantly higher
throughput and lower queueing delay than the default set-
ting. It also achieves a lower packet loss rate (e.g., 0.01%
vs. 3.92% in the case shown in Figure 2b). The optimal case
uses a larger initial window but a smaller slow start threshold
than the default case. And as we would expect, the optimal
settings of these parameters shift to be smaller as the link uti-
lization becomes higher. Finally, in these settings, modifying

2RFC-5681 [10] recommends that “The initial value of ssthresh SHOULD
be set arbitrarily high (e.g., to the size of the largest possible advertised
window)”. In our experiments, we set it to 65536, or 65K, segments.

94

S does not have an impact because each connection tends to
be relatively short.

Is the improved performance merely a statistical fluke or is
it that the non-default parameter settings provide benefit con-
sistently? To answer this question, we perform leave-out-one
validation, wherein for each workload, we take the “optimal”
parameter settings from one run and evaluate its performance
on the remaining n — 1 = 7 runs. As shown in Figure 3, ap-
plying such a common parameter setting to all runs yields
significant performance gains over the default setting, almost
equal to the gains from the “optimal” setting for each run.
(Note that we are optimizing for the P; metric, so it is possible
for the “common” setting to be better than the “optimal” set-
ting on a subset of the individual metrics, e.g., throughput or
delay.) This stability across the runs for a particular workload
shows that the gains are not a fluke.

Figure 2c¢ shows the results with 100 long-running connec-
tions, with the bottleneck link being 99%. Unsurprisingly, in
this setting, varying the initial window size or the slow start
threshold does not have much impact. However, f does have
a significant impact, with a larger value (corresponding to a
sharper back-off upon packet loss) yielding a significantly
lower queueing delay compared to the default.

Since the optimal parameter setting depends on the level of
congestion, a natural question is how Phi senders could as-
sess the network conditions and set the TCP Cubic parameters
accordingly. We turn to this next.

2.2.2 Practical Approach to Realization. As discussed
above, the optimal parameter setting depends on the level
of congestion. We argue that the congestion context can be
characterized in terms of (i) the utilization of the bottleneck
link (u), (ii) the queue occupancy (q), and (iii) the number
of competing senders (n). For instance, when any of these
metrics is high, that would mean a high level for congestion
and would call for more conservative behavior, and conversely
a low level of congestion would mean that less conservative
behavior would still be safe.

This then brings up the question of how the congestion
context could be estimated. To this end, we envisage a context
server, say within a domain (i.e., within one of the “five”
computers), that serves as the repository of shared state from
which the congestion context can be computed. Information
from senders on when and how much data is transferred would
enable estimation of u and n, while the difference between the
current RTT and the minimum RTT would give an indication
of g (as in [45]).

While instantaneous sharing of state by the individual
senders might be ideal, it would clearly be prohibitive in
terms of the overhead and would limit scaling. So we keep
the communication between the senders and the context server
minimal — each sender would look up the context server once
when a new connection starts (so that it can then determine
the optimal parameter settings) and would report back to the
context server once the connection ends (so that the shared

Nsenders=2, Avg Link Utilization=18 %

Nsenders=6, Avg Link Utilization=60 %

— Nsenders=100, Avg Link Utilization=99 %
13 @ Optimal setting ® Optimal setting o oth i
4256, 256, 0.2) 4 Default setting 5128 128, 0.2) A Default setting o ° ferlie \trt\gs
’ L Oth tti A Default setting
12 {256,128,02) O Other settings 8 {128, 64, 02) © Ofhersettings 022 e Optimal setting
~11 3
2 §128,128,0.2) §7 go21
2 (64, 64, 0.2) 8
210 {128, 64,0.2) = . = 0.4)
= 7 k-1 = .
» L PO NG G NS A Y
£ 5 : e
S 3)
S s 2 3 0.19
£ £5 {32,32,02) g
S §64.64.0.2) 5202
0.18
4
6 (16, 16, 0.2)
5K 2.02) o
0.17
5

27 26 25 22 2! 20 2°

2* 23
Queueing delay (ms)

(a) Low Link Utilization

24 2
Queueing delay (ms)

(b) High Link Utilization

22 20

<

0 650 600 550 500 450

Queueing delay (ms)

400 350

(c) Long running connections.

Figure 2: Cubic parameters (initial_ssthresh, windowInit_, J) for various workloads. Note that only the

parameter (f) has been reported for sub-figure (c).
Stability

EBE Throughput improvement with optimal setting
EE88 Delay improvement with optimal setting

BB Mean throughput improvement with common settings
N Mean delay improvement with common settings

120

100

80

60

Percentage

40

20

6 senders 8 senders

Workloads

4 senders

Figure 3: Stability analysis of improvement with optimal
parameter setting, over the default parameter setting.

state can be updated based on the experience of that connec-
tion). As we show in Section 2.2.4, such a practical approach,
with minimal overhead, still provides significant gains.

Note that we use connections as the unit of sharing and
coordination only as a matter of convenience. There is nothing
that requires it to be so. If connections are short, we could
look up and report back to the context server only once in
many connections. Likewise, if the connections are long, we
could communicate with the context server multiple times
within the same connection. The goal is just to ensure that
sufficiently up-to-date information on the state of the network
(the “network weather”) is available to individual hosts for
them decide on suitable settings for current conditions.

2.2.3 Incremental Deployment. Thus far, we have only
considered a cooperative scenario, where all senders share
information and conform to the optimal parameter setting.
However, since transitioning to the proposed approach of
sharing and coordination is likely to be gradual, the question
is whether a partial deployment would also offer any benefit.

To evaluate this, we consider a setting where one half of
the senders (“unmodified”) sticks with the default parameter
settings for TCP Cubic, while the other half (“modified”)
uses the parameter setting that would have been optimal had
all senders been cooperating. As we see in Figure 4, the
modified senders still see improved throughput and delay
compared to the default case. Even the unmodified senders
see an improvement in the power metric, though the queueing
delay is slightly worse.

95

o Nsenders=6, Avg Link Utilization=60 %

m Incremental Deployment
@ Optimal setting

A Default setting

O Other settings

6128, 128,0.2)
6128, 64,0.2)

~

464, 64, 0.2)

Modified

51 _Unmodified
‘GSK, 2,0.2)

Throughput (Mbps)
@

(32,32,0.2)
o

IS

(16, 16, 0.2)
e}

o7 25 @ 3

Queueing delay (ms)

22 20

Figure 4: Cubic parameters for incremental deployment

As noted in Section 2.2.1, unmodified senders start with a
large default slow start threshold (65K segments) for each con-
nection, i.e., each “on” period). In contrast, modified senders
start with a slow start threshold of 64 segments found to be
optimal for the current network conditions. Thus, the unmodi-
fied senders tend to fill up the queue, even causing packet loss
(as can be seen from the size of the markers), much more than
the modified senders do. Given FIFO queueing, this would
affect all flows. However, the moderate link utilization (60%)
means that modified flows sometimes get lucky in not encoun-
tering any unmodified flows (i.e., all the unmodified senders
happen to be in the “off” state), thereby enjoying a lower
delay. As the utilization goes higher, though, any advantage
enjoyed by the modified flows diminishes.

Thus, even a partial deployment of Phi can offer benefits
in certain circumstances. We discuss this further in Section 3
below.

2.2.4 Remy. In the recent years, there has been a grow-
ing body of work on a machine learning based approach to
congestion control, with Remy [45] perhaps being the earliest
such example. The general idea is to move away from hand-
crafted and hard-coded congestion control strategies (as, for
example, in TCP Cubic) and instead to learn the appropriate
congestion control response in any given situation based on
training experiments typically done in a simulator.

The question we ask is whether the proposed sharing and
coordination in Phi would provide any benefits over a scheme
such as Remy that is already adaptive. The reason it might is
that sharing of information would enable senders to obtain a

Algorithm Median Median Median
throughput queueing objective
(Mbps) delay (ms) function
Remy-Phi-practical 1.93 5.6 2.52
Remy-Phi-ideal 1.97 3.0 2.56
Remy 1.45 1.7 2.26
Cubic 1.03 9.3 1.87

Table 3: Results for single bottleneck dumbbell topol-
ogy with link speed 15 Mbps and round-trip time 150
ms with 8 senders, each alternating between flows of
exponentially-distributed byte length (mean 100 KB) and
exponentially-distributed off time (mean 0.5 s)

more accurate picture of the network weather and do so more
quickly than they would when operating individually as in
Remy. For instance, if the network is under heavy congestion,
the senders in Phi could directly learn of this (e.g., based
on shared information on bottleneck bandwidth utilization)
and adopt a suitably conservative congestion response instead
of each sender having to discover it individually, and hence
slowly, based on its own measurements.

To investigate this question, we extend the context (or
“memory” in Remy parlance) maintained by each Remy sender
with an additional dimension corresponding to the bottleneck
link utilization, u. We then retrain Remy in the same range
of network and traffic model parameters as reported in the
original Remy paper [45]. Note that, during training, we allow
each sender access to up-to-the-minute link utilization. Ta-
ble 3 summarizes the results for one of the topologies reported
in the original paper, evaluated in ns-2. Remy-Phi-ideal cor-
responds to the ideal setting where all senders have access to
up-to-the-minute bottleneck utilization while in Remy-Phi-
practical, the utilization information is queried at the begin-
ning of a connection and updated at the end of the connection
(as outlined in Section 2.2.2 above). From Table 3, we see
that Remy-Ph i -ideal yields a significantly higher throughput
than unmodified Remy, and while it also results in a marginal
increase in the queueing delay, Remy’s objective function,
log(P), is nevertheless higher (because the marginal increase
in queueing delay does not have much of a negative impact
on overall delay). Remy-Phi-practical performs somewhat
worse than Remy-Phi-ideal but still better than Remy.

Thus, we believe Phi could be beneficial even in the con-
text of modern machine learning based congestion control.

3 OTHER ISSUES AND OPPORTUNITIES

3.1 Incentives for Adoption

As noted in Section 2.2.3, unless we are considering a situ-
ation with low link utilization, benefiting from Phi would
require cooperation from the majority of or all senders. The
reason is that the prevalence of FIFO queuing means that
a flow is not insulated from the actions of other flows. In-
deed, prior work has pointed out that FIFO queuing is not
incentives-compatible [23]. Even so, TCP congestion control
and TCP friendliness has taken root through a process of
techno-social “(dis)incentives”, through forums such as the
IETF, and the Internet has not suffered a congestion collapse
episode since the 1980s.

96

We believe that a similar combination of technical and
social pressures could spur the adoption of Phi. Large opera-
tors would be expected to adopt Phi because of the beneficial
impact on themselves and on the network at large. The infor-
mation to be shared between providers, to establish a common
barometer on the network weather, would be minimal (e.g.
the level of congestion in a particular part of the network).
Work on secure multiparty computation and anonymous ag-
gregation [15, 39, 40] could be leveraged to further shield
such information sharing.

Even if data-related sensitivities prove to be an impediment
to the deployment of Phi across mutually-competing entities,
the scale of each of the “five computers” (e.g., Netflix) is
such that it is likely to be beneficial, even if not optimal, for
each entity to employ Phi independently based on its own
information. Even if the paths between the content sources
and their clients are short, as noted in [17], flows travers-
ing the same bottleneck links on these short paths stand to
benefit from Phi. Furthermore, besides deploying Phi on
user-facing networks, we believe that large providers can
also fruitfully deploy Phi on their inter-DC WANSs. Prior
work [26, 28], focused on coarse-grained bandwidth allo-
cation on such networks, does not eliminate congestion or
packet loss. Therefore, we believe that informed adaptation
of transmission rates on the basis of level of congestion is
likely to be beneficial in such single-provider settings too.

3.2 Benefits of Sharing without Cooperation
We consider how sharing of information, say within a rela-
tively small subset of senders, could be beneficial to these
senders even if the majority of senders do not cooperate. As
noted above, FIFO queuing in this context would mean that
the congestion state of the network would not really bene-
fit from Phi. So the opportunity for the minority of clients
would be in terms of informed adaptation based on shared
information. For instance, the jitter buffer size for audio-video
streaming could be initialized and updated over time based
on the shared information. As another example, the thresh-
old of 3 duplicate ACKs typically used to trigger TCP fast
retransmission could be adjusted if the experience of other
connections suggests that reordering is prevalent.

3.3 Prioritization Across Flows

In the “five-computer” world, a single entity might have
a large number of flows that traverse the same bottleneck
link [9] even if these are destined to different clients (e.g., see
Section 2.1). However, some flows might be more important
than others (e.g., an HD movie stream vs. a TCP bulk transfer).
In today’s setting, with senders operating autonomously, each
sender is individually expected to be TCP-friendly. However,
in the “five-computer” world, a single entity could have some
of its flows be more (or less) aggressive than others (say based
on their “importance”), while still ensuring that the ensemble
of flows remains TCP-friendly. This is akin to past proposals
such as TCP Session [35] and the Congestion Manager [13]
except that the prioritization happens across hosts rather than
within a single host.

Requests
* % Anomalies
oo Expected number of requests
-)

Number of requests
e

Day 1 Day 2

Time
Figure 5: An unreachability event localized to an ISP net-
work in a metro that lasted for around 2 hours.
3.4 Problem Diagnosis
The scale of the “five computers” means that they each have
a wide footprint of servers (senders) and clients (receivers),
spanning geographical locations, ISPs, and more. Therefore,
the sharing of information, even within a single large entity,
would provide a diversity of viewpoints to enable far more
effective problem diagnosis than would be possible with in-
dividual hosts operating autonomously. For instance, when
a particular connection faces problems, “comparing notes”
with other connections could enable zeroing in on the cause.
This is akin to past work on distributed blame attribution [12]
except that much of the distributed information in the “five-
computer” world is available to individual (large) entities
(e.g., Netflix), which makes sharing and diagnosis much more
feasible than before.

As a simple but concrete example, consider the problem
of network unreachability, wherein a subset of clients is un-
able to reach a cloud service. Today, individual clients, or
users, are left with manually-driven processes such as Down
Detector [1] and even social media channels such as Twitter
While we could automate the sharing of information across
the (disparate) clients, we argue that in the “five-computer”
world, it would be more effective for the cloud service, which
is the common entity spanning a large number of clients —
both the affected ones and the unaffected ones — to aggregate
information and thereby perform diagnosis.

We build a time series model for the volume of requests
received by a cloud service, sliced along various dimensions
(client AS’es, data center locations, etc.), and look for anoma-
lous departures from the model to detect unreachability events
and also perform (coarse) diagnosis. Figure 5 shows an un-
reachability event detected in the context of a large global-
scale cloud provider, that was localized to an ISP network on
a particular metro.

3.5 Performance Prediction

One functionality that is largely absent in the Internet, despite
research proposals stretching back decades [42], is perfor-
mance prediction. When an application initiates a network
flow, it typically does so without any knowledge of how good,
or bad, the performance will be. This arises from the au-
tonomous operation of individual hosts. However, in the “five-
computer” world, the large volume of aggregate network per-
formance data available even within a single cloud provider

97

would, we believe, enable effective performance prediction.
This would mean that before an application downloads a file
or makes a VoIP call or launches a video stream, it would
be able to obtain an indication of the expected performance,
which could even be surfaced to the user (e.g., if the VoIP
quality is expected to be poor, the user might hold off on an
important call).

4 RELATED WORK

Congestion control has been the focus of much research in
networking over decades [14, 25, 27, 38]. While these ap-
proaches have varied in terms of their details, two common
characteristics have been (a) operation at the level of individ-
ual connections, and (b) a hard-coded policy.

There has been been work aimed at addressing both (a)
and (b). With regard to the former, the work has centered on
host-level aggregation of congestion control [13, 35]. With
regard to the latter, there has been much recent work on
machine learning based approaches to congestion control and
bandwidth adaptation, again based on local input at a host [20,
33, 43, 45]. Our work builds on these but goes beyond by
focusing on network information sharing and coordination
across the WAN flows emanating from large providers.

There has also been work on aggregating information across
hosts for the purposes of performance prediction, diagnosis,
etc. [32, 36]. While this body of work was largely set in the
context of decentralized peer-to-peer systems, ours is set in
the context of large-scale cloud providers, where control by a
single entity arguably makes sharing and coordination more
feasible than in a decentralized setting. Besides, the prior
work has not focused on congestion control.

Finally, there has been work in the context of software-
defined networks (SDNs) on centralizing network state and
its management [16, 24]. Furthermore, the full visibility into
the network state afforded by SDNs, in confined settings
such as a data center network, has been used to tune TCP
parameters [21], in particular, the initial window size and the
retransmit timeout. Other work [44] has proposed sharing of
network congestion information by cellular operators to en-
able better TCP adaptation. Both of these are quite related to
our work. However, we focus on settings where it is not feasi-
ble to obtain full visibility into the network state, say because
the network operator is unwilling to share information.

S CONCLUSION

We have made the case that in the world of “five computers”,
network information sharing and coordination across senders
and connections could yield significant benefits in terms of
congestion control, problem diagnosis, and more. We have
presented a practical approach that enables such sharing and
coordination with minimal overhead.

ACKNOWLEDGMENTS

We thank our shepherd, Matteo Varvello, and the anonymous
HotNets reviewers for their feedback and suggestions.

REFERENCES

[1] Down Detector. http://downdetector.com/.

[2] How Netflix works. https://medium.com/refraction-tech-everything/
how-netflix- works- the-hugely-simplified-complex- stuff- that-
happens-every-time- you-hit-play-3a40c9be254b.

[3] IBM FAQ, page 26. http://www-03.ibm.com/ibm/history/documents/
pdf/faq.pdf.

[4] Locations of 4,669 Servers in Netflix’s Content Delivery Net-

work. https://spectrum.ieee.org/tech-talk/telecom/internet/researchers-

map-locations-of-4669- servers-in-netflixs-content-delivery-network.

Netflix boasts 37% share of Internet traffic in North America.

https://appleinsider.com/articles/16/01/20/netflix-boasts-37-share-

of-internet-traffic-in-north-america- compared- with- 3-for-apples-
itunes.

Netflix Open Connect. https://openconnect.netflix.com/en/.

Streaming services now account for over 70% of peak traf-

fic. https://venturebeat.com/2015/12/07/streaming-services-now-

account-for-over-70-of-peak- traffic-in-north-america-netflix-
dominates-with-37/.
[8] Thomas J. Watson Wikipedia.
Thomas;.atson.
[9] World of five computers. https://www.lexology.com/library/
detail.aspx?g=164a442a- 1b90-49¢3-895d-4c54bb49ecce.

[10] M. Allman, V. Paxson, and E. Blanton. TCP Congestion Control. RFC
5681, Sep. 2009.

[11] V. Arun and H. Balakrishnan. Copa: Congestion Control Combining
Objective Optimization with Window Adjustments. In NSDI, 2018.

[12] B. Arzani, S. Ciraci, B. T. Loo, A. Schuster, and G. Outhred. Taking
the Blame Game Out of Data Centers Operations with NetPoirot. In
ACM SIGCOMM, 2016.

[13] H. Balakrishnan, H. S. Rahul, and S. Seshan. An Integrated Congestion
Management Architecture for Internet Hosts. In ACM SIGCOMM,
1999.

[14] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson. TCP Vegas: New
Techniques for Congestion Detection and Avoidance. In ACM SIG-
COMM, 1994.

[15] M. Burkhart, M. Strasser, D. Many, and X. Dimitropoulos. Sepia:

Privacy-preserving aggregation of multi-domain network events and

statistics. Network, 1(101101), 2010.

M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and

S. Shenker. Ethane: Taking Control of the Enterprise. In ACM SIG-

COMM Computer Communication Review, volume 37, pages 1-12.

ACM, 2007.

Y.-C. Chiu, B. Schlinker, A. B. Radhakrishnan, E. Katz-Bassett, and

R. Govindan. Are we one hop away from a better internet? In Proceed-

ings of the 2015 Internet Measurement Conference, pages 523-529.

ACM, 2015.

B. Claise, B. Trammell, and P. Aitken. Specification of the IP Flow

Information Export (IPFIX) Protocol for the Exchange of Flow Infor-

mation. RFC 7011, Sep. 2013.

[19] J. Dean. The Rise of Cloud Computing Systems. In SOSP History Day
2015, page 12. ACM, 2015.

[20] M. Dong, Q. Li, D. Zarchy, P. B. Godfrey, and M. Schapira. PCC:
Re-architecting Congestion Control for Consistent High Performance.
In NSDI, 2015.

[21] M. Ghobadi, S. H. Yeganeh, and Y. Ganjali. Rethinking End-to-End
Congestion Control in Software-Defined Networks. In ACM HotNets,
2012.

[22] A. Giessler, J. Hdenle, A. Konig, and E. Pade. Free buffer allocation -
an investigation by simulation. Computer Networks, 1(3):191-204, Jul.
1978.

[23] P. Godfrey, M. Schapira, A. Zohar, and S. Shenker. Incentive Com-
patibility and Dynamics of Congestion Control. ACM SIGMETRICS
Performance Evaluation Review, 38(1):95-106, 2010.

[24] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford,
G. Xie, H. Yan, J. Zhan, and H. Zhang. A Clean Slate 4D Approach

[5

—

(6]
(71

https://en.wikipedia.org/wiki/

[16]

[17]

[18]

98

to Network Control and Management. ACM SIGCOMM Computer

Communication Review, 35(5):41-54, 2005.

S. Ha, I. Rhee, and L. Xu. CUBIC: A New TCP-friendly High-speed

TCP Variant. ACM SIGOPS Operating Systems Review, 42(5):64-74,

2008.

C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,

and R. Wattenhofer. Achieving high utilization with software-driven

wan. In ACM SIGCOMM Computer Communication Review, vol-

ume 43, pages 15-26. ACM, 2013.

V. Jacobson. Congestion Avoidance and Control. In ACM SIGCOMM,

1988.

S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,

S. Venkata, J. Wanderer, J. Zhou, M. Zhu, et al. B4: Experience with a

globally-deployed software defined wan. In ACM SIGCOMM Computer

Communication Review, volume 43, pages 3—14. ACM, 2013.

D. Katabi, I. Bazzi, and X. Yang. A Passive Approach for Detecting

Shared Bottlenecks. In Proceedings Tenth International Conference on

Computer Communications and Networks, Oct. 2001.

[30] D. Katabi, M. Handley, and C. Rohrs. Congestion Control for High
Bandwidth-Delay Product Networks. In ACM SIGCOMM, 2002.

[31] L.Kleinrock. Power and Deterministic Rules of Thumb for Probabilistic

Problems in Computer Communications. In International Conference

on Communications, Jun. 1979.

H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson, A. Kr-

ishnamurthy, and A. Venkataramani. iPlane: An Information Plane for

Distributed Services. In OSDI, 2006.

H. Mao, R. Netravali, and M. Alizadeh. Neural Adaptive Video Stream-

ing with Pensieve. In ACM SIGCOMM, 2017.

D. C. Marinescu. Cloud Computing: Theory and Practice. Morgan

Kaufmann, 2017.

V. N. Padmanabhan. Addressing the Challenges of Web Data Transport.

1998. PhD thesis, UC Berkeley.

V. N. Padmanabhan, S. Ramabhadran, and J. Padhye. NetProfiler:

Profiling Wide-Area Networks Using Peer Cooperation. In /PTPS,

2005.

K. Ramakrishnan, S. Floyd, and D. Black. The Addition of Explicit

Congestion Notification (ECN) to IP. RFC 3168, Sep. 2001.

K. Ramakrishnan and R. Jain. A Binary Feedback Scheme for Conges-

tion Avoidance in Computer Networks with a Connectionless Network

Layer. ACM SIGCOMM Computer Communication Review, 18(4):303—

313, 1988.

M. Roughan and Y. Zhang. Privacy-preserving performance measure-

ments. In Proceedings of the 2006 SIGCOMM workshop on Mining

network data, pages 329-334. ACM, 2006.

M. Roughan and Y. Zhang. Secure distributed data-mining and its

application to large-scale network measurements. ACM SIGCOMM

Computer Communication Review, 36(1):7-14, 2006.

B. Schlinker, H. Kim, T. Cui, E. Katz-Bassett, H. V. Madhyastha,

1. Cunha, J. Quinn, S. Hasan, P. Lapukhov, and H. Zeng. Engineering

Egress with Edge Fabric: Steering Oceans of Content to the World. In

ACM SIGCOMM, 2017.

S. Seshan, M. Stemm, and R. H. Katz. SPAND: Shared Passive Net-

work Performance Discovery. In USENIX Symposium on Internet

Technologies and Systems, pages 1-13, 1997.

[43] A. Sivaraman, K. Winstein, P. Thaker, and H. Balakrishnan. An ex-
perimental study of the learnability of congestion control. In ACM
SIGCOMM, 2014.

[44] A. Terzis and C. Bentzel. Sharing network state with application
endpoints. In Proceedings of the 2015 Managing Radio Networks in an
Encrypted World (MaRNEW) Workshop, 2015.

[45] K. Winstein and H. Balakrishnan. TCP ex machina: Computer-
Generated Congestion Control. In ACM SIGCOMM, 2013.

[46] K.-K. Yap and et al. Taking the Edge off with Espresso: Scale, Re-
liability and Programmability for Global Internet Peering. In ACM
SIGCOMM, 2017.

(25]

[26]

[27]

(28]

[29]

(32]

[33]
[34]
[35]

[36]

(37]

(38]

(39]

[40]

[41]

[42]

http://downdetector.com/
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
http://www-03.ibm.com/ibm/history/documents/pdf/faq.pdf
http://www-03.ibm.com/ibm/history/documents/pdf/faq.pdf
https://spectrum.ieee.org/tech-talk/telecom/internet/researchers-map-locations-of-4669-servers-in-netflixs-content-delivery-network
https://spectrum.ieee.org/tech-talk/telecom/internet/researchers-map-locations-of-4669-servers-in-netflixs-content-delivery-network
https://appleinsider.com/articles/16/01/20/netflix-boasts-37-share-of-internet-traffic-in-north-america-compared-with-3-for-apples-itunes
https://appleinsider.com/articles/16/01/20/netflix-boasts-37-share-of-internet-traffic-in-north-america-compared-with-3-for-apples-itunes
https://appleinsider.com/articles/16/01/20/netflix-boasts-37-share-of-internet-traffic-in-north-america-compared-with-3-for-apples-itunes
https://openconnect.netflix.com/en/
https://venturebeat.com/2015/12/07/streaming-services-now-account-for-over-70-of-peak-traffic-in-north-america-netflix-dominates-with-37/
https://venturebeat.com/2015/12/07/streaming-services-now-account-for-over-70-of-peak-traffic-in-north-america-netflix-dominates-with-37/
https://venturebeat.com/2015/12/07/streaming-services-now-account-for-over-70-of-peak-traffic-in-north-america-netflix-dominates-with-37/
https://en.wikipedia.org/wiki/Thomas_J._Watson
https://en.wikipedia.org/wiki/Thomas_J._Watson
https://www.lexology.com/library/detail.aspx?g=164a442a-1b90-49e3-895d-4c54bb49ecce
https://www.lexology.com/library/detail.aspx?g=164a442a-1b90-49e3-895d-4c54bb49ecce

	Abstract
	1 Introduction
	2 Rethinking Congestion Control
	2.1 Opportunity for Sharing
	2.2 Benefits of Sharing and Coordination

	3 Other Issues and Opportunities
	3.1 Incentives for Adoption
	3.2 Benefits of Sharing without Cooperation
	3.3 Prioritization Across Flows
	3.4 Problem Diagnosis
	3.5 Performance Prediction

	4 Related Work
	5 Conclusion
	Acknowledgments
	References

