
Network Support for Resource Disaggregation

in Next-Generation Datacenters

Sangjin Han+, Norbert Egi†, Aurojit Panda+, Sylvia Ratnasamy+, Guangyu Shi†, and Scott Shenker+⇤

+University of California, Berkeley, CA †Futurewei Technologies, Santa Clara, CA ⇤ICSI, Berkeley, CA

{sangjin, apanda, sylvia}@cs.berkeley.edu {norbert, shiguangyu}@huawei.com shenker@icsi.berkeley.edu

ABSTRACT

Datacenters have traditionally been architected as a col-
lection of servers wherein each server aggregates a fixed
amount of computing, memory, storage, and communi-
cation resources. In this paper, we advocate an alterna-
tive construction in which the resources within a server
are disaggregated and the datacenter is instead archi-
tected as a collection of standalone resources.

Disaggregation brings greater modularity to datacen-
ter infrastructure, allowing operators to optimize their
deployments for improved efficiency and performance.
However, the key enabling or blocking factor for disag-
gregation will be the network since communication that
was previously contained within a single server now tra-
verses the datacenter fabric. This paper thus explores the
question of whether we can build networks that enable
disaggregation at datacenter scales.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network
Architecture and Design

General Terms

Design, Performance

1 Introduction

From the dawn of the PC era to modern day datacen-
ters, the computer has been the cornerstone of comput-
ing infrastructure. At a high level, a computer is built
by tightly integrating a small amount of the various re-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Hotnets ’13, November 21–22, 2013, College Park, MD, USA.
Copyright 2013 ACM 978-1-4503-2596-7 ...$10.00.

sources needed for a computing task – processors, mem-
ory, networking, and storage – onto a single motherboard.
While there is no denying the tremendous success of
these computer- or server-centric architectures, we be-
lieve modern datacenters would be better served by an
alternate construction in which the internal resources of
a server are disaggregated, by which we mean that each
resource type is built as a standalone “resource blade”
and a datacenter-wide network directly interconnects all
resource blades. In such a datacenter, the aggregation of
resources needed by a job is then logical (allocated by
a software scheduler) rather than physical (dictated by
hardware).

Disaggregation makes it easier to optimize for ef-
ficiency, an issue of mounting importance given the
massive scale of today’s datacenters. By physically de-
coupling different resources, operators can more easily
adopt the state-of-the-art in any particular technology
and/or customize their infrastructure to maximize “per-
formance per dollar” for their target workloads. For ex-
ample, an ongoing challenge for hardware architects
is that technologies for CPUs, memory, storage, etc.
have very different cost, performance, and power scal-
ing trends and this constrains their integration. For in-
stance, recent work [16, 17] warns of an impending
“memory capacity wall” due to the growing imbalance
in the peak compute-to-memory-capacity ratio and ar-
gues that traditional compute-memory co-location on a
single server will not be sustainable. Similarly, upgrad-
ing to a new technology (e.g., NVRAM, memristors, or
silicon photonics) or incorporating specialized hardware
(e.g., GPUs or accelerators for encryption, coding, or
regular-expression matching) can be burdensome since it
requires reworking the integration process, server form
factor planning, and motherboard designs. Disaggrega-
tion instead allows each technology to evolve indepen-
dently and gives operators finer-grained control over how
they select, provision, and upgrade individual resources.

Disaggregation also enables more efficient use of the
resources already in a datacenter deployment. For ex-

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.001 0.01 0.1 1 10 100 1000

C
D

F

Ratio (log scale)

Disk / CPU

Memory / CPU

Figure 1: Distribution of relative disk/memory capacity de-
mand to CPU usage for tasks in Google’s datacenter.

ample, consider an application that requires 8 cores and
1 GB of memory in a datacenter where the typical server
is provisioning with 8 cores and 32 GB. While a server-
centric architecture would waste 31 GB memory, but in
a disaggregated architecture, the memory is not rigidly
coupled to any particular CPU and hence could be allo-
cated to other applications. Such inefficiency is hard to
avoid in server-centric architectures since applications
vary greatly in their resource needs and hence there is
no easy one-size-fits-all answer to provisioning server
resources. Figure 1, which plots the ratio of disk-to-CPU
and memory-to-CPU consumption for tasks in Google’s
datacenter [23], shows that the resource requirements of
tasks is spread over more than three orders of magnitude!
Disaggregation thus can allow statistical multiplexing
to occur at a much larger scale and hence naturally en-
ables higher efficiency. In addition, incremental resource
upgrade is straightforward and non-disruptive, when a
disaggregated datacenter as a whole faces more resource
demands.

In short: disaggregation brings greater modularity to
computing hardware, and with it, the flexibility that en-
ables greater optimization and customization.

Several industry and research efforts can be viewed as
already on the path to disaggregation – e.g., SeaMicro’s
server architecture [6] uses a looser coupling of com-
ponents within a single server, while Intel’s Rack Scale
Architecture (RSA) [15] extends this approach to rack
scales. And, as mentioned above, the authors in [16, 17]
argue the inevitability of disaggregating memory and
CPUs and even prototype a disaggregated memory blade.
What is not clear however is how widely one might apply
disaggregation and hence how general the benefits of
modularity would be. It may be possible that mid-scale
disaggregation (resource disaggregation at the rack- or
pod-level) would provide enough efficiency and flexi-
bility. However, we speculate that having a flat, unified
interconnect across a datacenter can be much simpler
than the two levels of network structure, in terms of the
design and scheduling complexity. As a straw man, in
this paper, we rather ask whether one can disaggregate

resources at datacenter scale. We hope that exploring
this extreme design point will shed light on the extent to
which we can and should disaggregate.

What is the barrier to scaling disaggregation? The
greatest burden of disaggregation falls on the network.
Communication that was previously contained within
a server now hits the datacenter-wide fabric. This both
increases the load on the network and makes the need for
low latency communication critical. The network will be
the key enabling or blocking factor to disaggregation.

Thus, in this paper, we explore questions such as: what
will the bandwidth and latency demands due to disag-
gregation look like? What are the key application and
hardware parameters that affect these demands? How
might we meet these demands? Although our discussion
is neither conclusive nor comprehensive, we hope it trig-
gers discussion on network support for disaggregation
and disaggregated datacenter architectures more broadly.

While we focus primarily on questions of network per-
formance, we recognize that disaggregation has broader
implications for how we build datacenter systems that
we do not begin to address (e.g., hardware design of
resource blades, new unified scheduler designs, program-
ming models that better exploit disaggregation, etc.). We
touch on these briefly at the end of this paper but leave
an in-depth discussion to future work.

2 Disaggregated Datacenters

We elaborate on what we mean by a disaggregated dat-
acenter and highlight some important assumptions we
make regarding how disaggregation will be implemented.
As illustrated in Figure 2, the high-level idea behind dis-
aggregation is to develop standalone hardware “blades”
for each resource type including CPUs, memory, storage,
and network interfaces as well as specialized components
(GPUs, various ASIC accelerators, etc.). Those resource
blades are interconnected by a datacenter-wide network
fabric. Understanding the specifications and nature of
this network fabric is our focus in this paper.

With some simplification, we can view each blade as
comprised of the resource component in question (CPU,
memory, I/O devices) with a direct interface to the data-
center network fabric. In the case of memory, each blade
may also require a controller ASIC (or a lightweight pro-
cessor) that implements local resource management and
address translation between the remote CPU’s view of
its address space and the local addressing used internally
within a blade. Many I/O device controllers are begin-
ning to support virtualization via the PCIe SR-IOV or
MR-IOV features, which can be also leveraged in the
disaggregated datacenter network in a similar fashion.
We note that while the implementation of such blades
may require some additional new hardware, it requires
no change to existing components such as CPUs, mem-

2

SAN / NAS
Devices

NIC

C C MM

Server 1

DATACENTER NETWORK

IOH

QPI

QPIQPI

CORE NETWORK
/ INTERNET

SATA
PCIe

NIC

C C MM

Server N

IOH

QPI

QPIQPI

SATA
PCIe

(a) Current datacenter

Storage
Devices

UNIFIED INTERCONNECT

NIC

NIC

C C C C M M
M

Shared disaggregated
memoryCPUs

CORE NETWORK
/ INTERNET

GPU FGPA ASIC

Specialized Hardware

(b) Disaggregated datacenter

Figure 2: Architectural differences between server-centric and resource-centric datacenters

ory modules, or storage devices themselves. We refer the
reader to [16–18] for an in-depth discussion of hardware
designs for disaggregated blades.

The scheduler allocates resources for computation
needs; such allocation involves selecting the location
of assigned resources, configuring the resultant resource
and address space assignments at the different resource
blades, and (as required) configuring the network that in-
terconnects these blades. Each rack may contain different
types of resource blades and (as today) the scheduler may
optimize for locality when it allocates resources to a job.
The best layout of resource blades and the corresponding
scheduler optimizations is a topic for future exploration.

The usage model, implementation, and feasibility of re-
source disaggregation are simultaneously interdependent
in the design of a disaggregated datacenter. For reasons
of performance, scalability, and applicability, we make a
few important assumptions as follows.

Assumption 1: VM as a computational unit

The current datacenter usage model is heavily based on
the server-centric architecture. While physical servers in
datacenters have evolved to server virtualization [9] or
other comparable technologies [26], they are still all cen-
tered around the concept of “server”, which aggregates
slices of hardware resources within a server. The opera-
tors/schedulers plan virtual machines (VMs) to meet the
computational demands and place jobs across the VMs.

In contrast, the usage model of a disaggregated data-
center does not necessarily follow the same approach;
since computation, storage, and I/O functions can be
completely disseminated across the datacenter, we do not
need to restrict our usage model within the VM-oriented
architecture. However, we note that the VM model can
be still useful, as in this way we can leverage the existing
software infrastructure, such as hypervisors, operating
systems, datacenter middleware, and applications with
little or no modification. Thus in this paper we assume
that computational resources are still utilized by aggre-
gating them to form VMs, while each resource is now
physically disaggregated across the datacenter.

Assumption 2: local/remote memory

While disaggregation of I/O devices is relatively straight-
forward as briefly discussed above, memory disaggrega-
tion brings a set of new challenges in terms of perfor-
mance. Since memory access from CPUs must run at
very high speed (we discuss this in more detail in §3),
similarly to prior work [16, 17], we assume that each
CPU blade retains some amount of local memory that
acts as a cache for remote memory; thus disaggregating
memory can be viewed as expanding the memory hier-
archy to include a remote level. While remote memory
may be allocated to any CPUs in the datacenter, local
memory is dedicated to its co-located CPU. As we shall
see, the assumption of local memory is necessary to en-
sure reasonable performance given the increased latency
to access remote memory.

Assumption 3: page-level remote memory access

We assume that CPU blades access remote memory at
the page-granularity (4 KB in x86) over the fabric. While
typical memory access between CPU and DRAM in tra-
ditional servers occurs in the unit of cache-line size (64 B
in x86), it is known that page-level access better exploits
spatial locality in common memory access patterns and
amortizes the round-trip latency more effectively [16].
In addition, page-level access requires little or no modi-
fication to the virtual memory subsystem of hypervisor
or operating system, and it is completely transparent to
user-level applications. We further assume that those re-
motely accessed pages are not shared by multiple VMs
at a given time, in order to not introduce cache coherence
traffic across the network.

Prior work

As mentioned earlier, there is growing interest in disag-
gregation in both industry and research [2, 6, 15–17]. We
build on these efforts – in particular prior work on under-
standing how memory might be disaggregated [16, 17]
as a starting point. To date, these efforts consider dis-
aggregation at server or rack scale and, as such, they
use specialized interconnects designed for their specific
context and do not discuss network support for disag-
gregation more generally nor consider the possibility of
leveraging known datacenter network technologies to

3

Communication type Latency (ns) Bandwidth (Gbps)

CPU - CPU 10 200
CPU - Memory 20 300
CPU - 10G NIC > 103 10
CPU - Disk (SSD) > 104 5
CPU - Disk (HDD) > 106 1

Table 1: Typical latency and peak bandwidth requirements
within a traditional server. Numbers vary between hardware.

enable disaggregation; e.g., the network in SeaMicro’s
architecture implements a 3D torus interconnect, which
only disaggregate I/O and does not scale beyond the rack.

3 Latency/Bandwidth Requirements

In a disaggregated datacenter, traffic between resources
that was contained within a server is now carried on the
“external” network. As other types of interconnects, the
key requirements will be low latency and high throughput
to enable this disaggregation. We review the communica-
tion types between resources within a server in Table 1, to
examine the feasibility and limitation of such a network.
For I/O traffic, such as network interfaces and disks, the
required latency and bandwidth level is sufficiently low
to consolidate them within the unified network.

Besides I/O, we expect that we cannot fully embrace
CPU-to-CPU (cache coherence) and CPU-to-memory
traffic into the external network, due to their high band-
width and extremely low latency requirements. We can
avoid or reduce those traffic in the network by making
two decisions. First, we can keep each VM from spanning
multiple CPU blades, to eliminate CPU-to-CPU traffic.
Since latest server-class x86 CPUs already have 8-16
cores and Moore’s law is keeping pace, we posit that this
single-CPU restriction is reasonable1. Second, as men-
tioned earlier, instead of fully disaggregating memory,
we envisage that each CPU has a small amount of private,
directly connected local memory. In order to meet elastic
memory capacity demands beyond local memory, VMs
may access remote memory. While the basic idea was
previously proposed [16], we extend this idea further by
examining if we can push remote memory access to the
datacenter scale, rather than within servers/racks over
dedicated links.

As briefly discussed, we assume that the remote mem-
ory is managed at the page granularity, in conjunction
with virtual memory page replacement algorithms of
either the hypervisor or the operating system [17]. We
take this approach as it not only guarantees frequently-
accessed remote pages to be cached locally, but also
transparently supports unmodified applications. For each
1Or alternatively, a single CPU blade can still house “multiple”
CPU sockets just as servers do today, to contain low-latency,
high-bandwidth CPU-to-CPU traffic within the blade. In this
case, the scheduler will need to take it into account when mak-
ing scheduling decisions.

0

0.2

0.4

0.6

0.8

1

GraphLab Memcached Pig

R
el

at
iv

e
pe

rf
or

m
an

ce

1us/100G 1us/40G 1us/10G 10us/100G 10us/40G 10us/10G Disk

Figure 3: Application-level performance degradation with
disaggregated memory, over various network configurations.
75% of the working set size was configured as remote memory.
Memcached with disk-based swap performed too slow to get
the benchmark result.

paging operation there are two main sources of perfor-
mance penalty: i) software overhead for trap and page
eviction and ii) page transfer time over the network. In
this section, we focus on the latter one, by looking into
the performance requirements of the network to support
remote memory access, without introducing significant
performance penalty.

We conduct a series of experiments to examine how
network latency and bandwidth affect application per-
formance with remote memory access. For the experi-
ment, we consider three popular datacenter workloads:
GraphLab [19], a machine learning toolkit (with the col-
laborative filtering example provided in the package);
Memcached [3], an in-memory, key-value store (with
the YCSB cloud benchmark tool [11]); and Pig [20], a
data-analysis platform based on Hadoop [1] (with the Pig-
Mix benchmark suite [5]). We emulated remote memory
access by implementing a special swap device (backed
by physical memory rather than a disk) and injecting
artificial delays to emulate network round-trip latency
and bandwidth for each paging operation. We measure
relative performance on the basis of throughput or com-
pletion time as compared to the zero-delay case. Note
that the experiment results do not account for the de-
lay caused by software overhead2 for page operations.
The result should be interpreted as relative performance
degradation over different network configurations, not
the absolute performance of disaggregation.

Figure 3 depicts the results with six latency/bandwidth
combinations, given 25% of local memory capacity of
the measured memory footprint for each workload. We
observe two interesting points from the result. First, use

2The per-page overhead was reported to be around 2-6 µs in the
research prototype implemented in Xen, depending on the page
replacement algorithm [17]. We optimistically expect that it
can be further reduced to sub-micro seconds with faster CPUs
and software optimization.

4

0

0.2

0.4

0.6

0.8

1

100.0% 87.5% 75.0% 62.5% 50.0% 37.5% 25.0% 12.5%

R
el

at
iv

e
th

ro
ug

hp
ut

Local memory ratio

1us / 40G
3us / 40G
5us / 40G
10us / 40G
20us / 40G
40us / 40G

Figure 4: Memcached performance with varying memory ratio
and round-trip latency

of remote memory can drastically improve application
performance when the working set size is bigger than
physical memory, as compared to traditional disk-based
swap. Since the working set size is hard to predict in
advance, memory tends to be highly over-provisioned in
datacenter servers to prevent thrashing. Disaggregated
remote memory can reduce this waste by providing an
elastic memory capacity pooled at the datacenter scale.
Second, low latency is more important than high band-
width. The 100 Gbps bandwidth did not provide any sig-
nificant improvement over the 40 Gbps link. In contrast,
10 µs round-trip latency causes noticeable performance
degradation, as compared to the 1 µs case.

To examine the role of latency in memory disaggre-
gation, we take a closer look at how memcached per-
formance overhead varies along the round-trip latency
configurations. For the experiment, we fixed the band-
width at 40 Gbps and varied the amount of local memory
from 1 GB to 8 GB, out of the total 8 GB working set size.
Figure 4 again confirms that low latency will be crucial in
the implementation of resource disaggregation. The low
latency (10 µs) cases show fairly constant performance
over any local memory ratio, while the performance of
high latency (� 20 µs) cases quickly degrades as we rely
more on remote memory.

The desired 40 Gbps bandwidth is already within reach,
as the latest interconnect standards, such as PCIe, Ether-
net, and InfiniBand, already provide sufficient capacity.
Also, we found that the average link utilization for re-
mote memory access was pretty low (< 5 Gbps), regard-
less of workloads and network configurations, implying
that the aggregated bandwidth at the network core can be
quite low. These facts strongly indicate that we should
more focus on latency than bandwidth, for the design
of the unified network. Although the very low (10 µs)
end-to-end latency sounds challenging, we expect it to
be feasible in the foreseeable future, as we discuss in the
following section.

We admit that our simple experiments presented here
leave many questions unanswered. For example, network

congestion may cause spikes in latency, adversely affect-
ing application performance. Also, besides latency and
bandwidth issues, the network must be able to scale up to
millions of disaggregated resources. We discuss some of
these issues in the following section but leave an in-depth
exploration to future work.

4 Research Directions

In this section, we briefly discuss some of the research
questions that disaggregation raises on three fronts: i)
approaches to building low-latency networks, ii) network
architecture, and iii) systems architecture. Each of these
merits a paper in itself; as such, what follows is more
an enumeration than an in-depth discussion of potential
issues.

4.1 Realizing Low Latency Networks

As demonstrated in §3, building low latency networks—
with round-trip times under of 10 µs—will be critical for
large scale disaggregation. Fortunately, this is a topic
of that has been receiving a great deal of attention in
recent research and, coincidentally, a recent paper [24]
argues the feasibility of such low latency in datacenter
networks in the near future. The authors cite the growing
prevalence of cut-through switches and vendor plans for
tighter integration of IO capabilities into the CPU as key
enabling factors.

In addition to the hardware trends, we believe there
are many opportunities to further reduce network latency
including improved protocol designs [7] and all-optical
switches with no buffering. The effectiveness and suit-
ability of these approaches for disaggregation is a topic
for future work.

An orthogonal approach to reducing latency is to try
and reduce the network distance between the resources
allocated to a job, in much the same way that map-reduce
schedulers today aim for data locality in scheduling tasks.
Future research should study how to best distribute re-
source blades across racks and the design of scheduler
optimizations for low latency.

Finally, an important goal should be to achieve laten-
cies that are not just low but also deterministic since
high variability will lead to unpredictable application
performance. An intriguing possibility here is the use
of TDMA-based network architectures as proposed in
recent work by Vattikonda et al. [27]

4.2 Network Architecture

We can probably build networks for disaggregated data-
centers using existing networking technologies such as
Ethernet, InfiniBand, or PCIe. An interesting research
question – if only to understand what change might be
desirable – is to ask what the ideal network architecture
in support of disaggregation might look like.

5

It is worth noting that disaggregation effectively blurs
the lines between what used to be separate intra- and
inter-server networks. E.g., in Figure 2(a) we see that
today’s server architecture includes networks for commu-
nication between CPUs (e.g., Intel QuickPatch Intercon-
nect or AMD HyperTransport protocols), between CPUs
and memory (DDR3) and to peripheral devices (e.g.,
based on the PCIe protocol). Traditionally, these intra-
and inter-server technologies have evolved very differ-
ently. Basic concepts such as variable-sized packets and
best-effort service are common in inter-server networks
but not so in intra-server links/networks. The network
in a disaggregated datacenter combines aspects of both –
e.g., it is resource-centric (like intra-server networks to-
day) but is less tightly integrated with the endpoints and
must operate at scale (like existing inter-server networks)
– and hence picking new network abstractions should be
done carefully.

A starting point might be to ask whether packets are
the right abstraction. Since both existing intra- (except
for CPU-to-memory DDR3) and inter-server link pro-
tocols today use packet-like switched technologies, we
believe packets remain the right abstraction. An open
question however is whether we would be better served
with solutions that allow us to amortize per-packet pro-
cessing overheads (for reduced latency) such as larger
MTUs or a “packet bursts” abstraction.

A second question regards communication reliabil-
ity. Clearly, the resource endpoints must see an end-to-
end abstraction of reliable communication, however, it
is not clear whether we need reliability at the level of
individual network links (as found in intra-server link
technologies and some inter-server links such as Infini-
Band) or whether end-to-end retransmissions (as used
with Ethernet networks) will suffice. Our conjecture is
that end-to-end retransmissions should be adequate given
the low RTTs we envisage, however this is an important
question that warrants more rigorous exploration.

Another related question is whether we need support
for bandwidth reservations, or fair resource sharing mech-
anisms, or whether pure statistical multiplexing with end-
to-end congestion control will suffice. There are many
calls for reservations and fairness [21, 22, 25] even in
existing datacenter networks – if the case for these mech-
anisms in existing datacenters proves compelling then it
is likely to be only stronger in a disaggregated datacenter
(since the network’s impact on application performance
is only greater). We leave exploring the case for such
mechanisms and the form of necessary solutions to fu-
ture work.

4.3 Systems Architecture

The cost of hardware and its maintenance has been the
most powerful driving force of datacenter evolution, such

as migration from powerful mainframes to commodity
servers [8]. We believe that a disaggregated datacenter
will be cheaper than the server-oriented architecture,
because i) the operator has finer-grained control over
provisioning decisions, ii) disaggregated resources can
simplify management complexity, and iii) the unified
network cuts out a layer of integration (in lieu of the
PCIe-Ethernet-PCIe traverse in current server-to-server
communication). In some sense, disaggregation is an
extreme extrapolation of the streamlining and customiza-
tion efforts that have been made by the biggest datacen-
ters [4, 10]. Although the cost reduction from disaggre-
gation is hard to quantify at this point, we suspect that
cost savings might turn out to be one of the strongest
motivations for disaggregated datacenters.

In this paper, we tried to answer if we can disaggre-
gate resources across an entire datacenter. While we are
positive that disaggregation is feasible and quite likely
going to happen as evidenced by our experiments and
the current trends, one question still remains; what is the
right scale for disaggregation? Resources can be disag-
gregated at many different levels, such as server, rack,
pod, datacenter, or something else. The answer will de-
pend on the level of savings due to disaggregation and
the networking costs, and we will need to quantify this
trade-off.

While the VM-as-a-unit assumption made in §2 is a
good starting point as it can readily utilize existing soft-
ware infrastructures, we speculate that disaggregation
may enable a more intuitive abstraction for modern data-
center applications. Jobs can be most naturally described
in terms of their resource requirements – e.g., “give me
200 CPU cores, 1 TB memory, and 100 Gbps Internet
connectivity” – but today application developers and dat-
acenter operators must map their resource demand to
the granularity of servers or VMs. One can view dis-
aggregation as changing the abstraction offered by the
infrastructure from that of a “pool of servers” to that of
a “pool of resources”. We believe that the latter offers
greater flexibility and will prove to be a more natural and
powerful abstraction.

Finally, one avenue ripe for exploration is that of net-
work management for disaggregated datacenters. Instead
of a standalone network management solution, we en-
visage a unified resource management architecture as a
combination of the centralized network controller archi-
tectures advocated by work on 4D [12] and SDN [13]
and the job schedulers found in existing datacenters [14].
This tight integration of network and resource scheduling
can enable greater flexibility; for example, a scheduler
can seamlessly migrate resources to detour congested
links (recall that disaggregation decouples resource usage
from its physical location). The design of such unified
schedulers is an interesting topic for future work.

6

5 References

[1] Apache Hadoop. http://hadoop.apache.org/.
[2] HP Moonshot System. http://goo.gl/fteii.
[3] Memcached - a distributed memory object caching

system. http://memcached.org/.
[4] Open Compute Project.
http://www.opencompute.org/.

[5] PigMix benchmark tool. http://cwiki.apache.
org/confluence/display/PIG/PigMix.

[6] SeaMicro Technology Overview.
http://seamicro.com/sites/default/

files/SM_TO01_64_v2.5.pdf.
[7] M. Alizadeh, S. Yang, M. Sharif, S. Katti,

N. McKeown, B. Prabhakar, and S. Shenker.
pFabric: Minimal Near-Optimal Datacenter
Transport. In Proc. SIGCOMM, 2013.

[8] T. E. Anderson, D. E. Culler, and D. Patterson. A
case for NOW (networks of workstations). Micro,
IEEE, 15(1):54–64, 1995.

[9] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the Art of Virtualization. In
Proc. SOSP, 2003.

[10] L. A. Barroso, J. Dean, and U. Holzle. Web search
for a planet: The Google cluster architecture.
Micro, IEEE, 23(2):22–28, 2003.

[11] B. F. Cooper, A. Silberstein, E. Tam,
R. Ramakrishnan, and R. Sears. Benchmarking
cloud serving systems with YCSB. In Proc. SoCC,
2010.

[12] A. Greenberg, G. Hjalmtysson, D. A. Maltz,
A. Myers, J. Rexford, G. Xie, H. Yan, J. Zhan, and
H. Zhang. A clean slate 4D approach to network
control and management. ACM SIGCOMM
Computer Communication Review, 35(5):41–54,
2005.

[13] N. Gude, T. Koponen, J. Pettit, B. Pfaff,
M. Casado, N. McKeown, and S. Shenker. Nox:
towards an operating system for networks. ACM
SIGCOMM Computer Communication Review,
38(3):105–110, 2008.

[14] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi,
A. D. Joseph, R. Katz, S. Shenker, and I. Stoica.
Mesos: A platform for fine-grained resource
sharing in the data center. In Proc. NSDI, 2011.

[15] Intel Newsroom. Intel, Facebook Collaborate on
Future Data Center Rack Technologies.
http://newsroom.intel.com/community/

intel_newsroom/blog/2013/01/16/intel-

facebook-collaborate-on-future-data-

center-rack-technologies.
[16] K. Lim and J. Chang and T. Mudge and P.

Ranganathan and S. K. Reinhardt and T. F.
Wenisch. Disaggregated Memory for Expansion
and Sharing in Blade Servers. In Proc. ISCA, 2009.

[17] K. Lim and Y. Turner and J. R. Santos and A.
AuYoung and J. Chang and P. Ranganathan and T.
F. Wenisch. System-level implications of
disaggregated memory. In Proc. HPCA, 2012.

[18] Kshitij Sudan, Saisanthosh Balakrishnan, Sean Lie,
Min Xu, Dhiraj Mallick, Gary Lauterbach, and
Rajeev Balasubramonian. A Novel System
Architecture for Web Scale Applications Using
Lightweight CPUs and Virtualized I/O. In Proc.
HPCA, 2013.

[19] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson,
C. Guestrin, and J. M. Hellerstein. Graphlab: A
new framework for parallel machine learning.
2010.

[20] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig latin: a not-so-foreign language
for data processing. In Proc. SIGMOD, 2008.

[21] L. Popa, G. Kumar, M. Chowdhury,
A. Krishnamurthy, S. Ratnasamy, and I. Stoica.
FairCloud: sharing the network in cloud computing.
In Proc. SIGCOMM, 2012.

[22] L. Popa, P. Yalagandula, S. Banerjee, J. C. Mogul,
and Y. T. J. R. Santos. ElasticSwitch: Practical
Work-Conserving Bandwidth Guarantees for Cloud
Computing. In Proc. SIGCOMM, 2013.

[23] C. Reiss, J. Wilkes, and J. L. Hellerstein. Google
cluster-usage traces: format + schema. Technical
report, Google Inc., Mountain View, CA, USA,
Nov. 2011. Revised 2012.03.20. Posted at URL
http://code.google.com/p/

googleclusterdata/wiki/TraceVersion2.
[24] S. Rumble, D. Ongaro, R. Stutsman,

M. Rosenblum, and J. Ousterhout. It’s time for low
latency. In Proc. HotOS, 2011.

[25] A. Shieh, S. Kandula, A. Greenberg, and C. Kim.
Seawall: performance isolation for cloud
datacenter networks. In Proc. HotCloud, 2010.

[26] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier,
and L. Peterson. Container-based operating system
virtualization: a scalable, high-performance
alternative to hypervisors. In Proc. EuroSys, 2007.

[27] B. C. Vattikonda, G. Porter, A. Vahdat, and A. C.
Snoeren. Practical TDMA for datacenter Ethernet.
In Proc. EuroSys, 2012.

7

