
Taking an AXE to L2 Spanning Trees

James McCauley

UC Berkeley / ICSI

Alice Sheng

UC Berkeley

Ethan J. Jackson

UC Berkeley

Barath Raghavan

ICSI

Sylvia Ratnasamy

UC Berkeley

Scott Shenker

UC Berkeley / ICSI

ABSTRACT

I think that I shall never see
a structure more wasteful than a tree.
Most links remain idle and unused
while others are overloaded and abused.
And with each failure comes disruption
caused by the ensuing tree construction.
Thus, L2 must discard its spanner,
requiring flooding in a different manner.
For the tree’s fragile waste to be abated,
trim no branches and detect packets duplicated.

(With apologies to Radia Perlman and Joyce Kilmer.)

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network Pro-
tocols

Keywords
L2 routing, spanning tree

1 Introduction
Layer 2 was originally developed to provide local connec-
tivity while requiring little configuration. This plug-and-play
property ensures that when new hosts arrive (or move), there
is no need to (re)configure the host or manually (re)configure
switches with new routing state. This is in contrast to IP
(layer 3) where one must assign an IP address to newly ar-
riving hosts, and when a host moves to a new subnet, either
its address or the routing tables must be updated. Thus, even
though L3 has developed various plug-and-play features of
its own (e.g., DHCP), L2 has traditionally and continues to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HotNets ’15 November 16–17 2015, Philadelphia, PA USA
Copyright 2015 ACM 978-1-4503-4047-2 ...$15.00.
DOI: http://dx.doi.org/10.1145/2834050.2834097

play an important role in situations involving host mobility
where such reconfiguration would be burdensome.

Because it must seamlessly cope with newly arrived hosts,
a traditional L2 switch uses flooding to reach hosts for which
it does not already have forwarding state. When a new host
sends traffic, the switches “learn” how to reach this host
by recording the port on which the host’s packets arrived.
To make this flood-and-learn approach work, the network
maintains a spanning tree, which removes links from the
network in order to make looping impossible (which in turn
makes learning simple because there is only one path to each
host from any given location).

This approach, first developed by Mark Kempf and Radia
Perlman at DEC in the early 80s [10,17], is the bedrock upon
which much of modern networking has been built, and it has
persisted through major changes in networking technologies
(e.g., dramatic increases in speeds, the death of multiple ac-
cess media). However, users now demand better performance
and availability from their networks, and this approach is
widely seen as having two important drawbacks. First, the use
of a spanning tree leaves many of the network links unused,
and in fact the bisection bandwidth is merely the bandwidth of
a single link. Second, whenever one of the links on the span-
ning tree fails, the entire tree must be reconstructed; while
modern spanning tree protocol variants (e.g., RSTP) are vastly
improved over the earlier incarnations, we continue to hear
anecdotal reports that in practice spanning tree convergence
times are an ongoing problem.

In this paper we present a new approach to L2, called the
All conneXion Engine or AXE, that retains the original goal
of plug-and-play, but can use all network links (and can even
support ECMP for multipath) and provides extremely fast
recovery from failures (only packets already on the wire or
in the queue destined for the failed link are lost when a link
goes down). AXE is not a panacea, in that it does not natively
support fine-grained traffic engineering to deal with elephant
flows (as in [2]), though (as we discuss later) such designs
can be implemented on top of AXE. However, we see AXE
as being a fairly general replacement for current Ethernets
and other high-bandwidth networks where traffic engineering
for local delivery is not required.

We recognize that there is a vast body of related work in

1

this area, involving efforts to (i) improve spanning tree (e.g.,
RSTP, MSTP, MISTP, PVST), (ii) reshape L2 to use normal
routing and provide plug-and-play via mappings to translate
addresses to destination switches (e.g., SPB, TRILL), (iii)
avoid using L2 by using L3 almost exclusively (as in many
high-performance datacenter environments), (iv) optimize
designs for special topologies and/or use cases (as in F10 [13],
VL2 [6], and DSR [7]), and (v) achieve rapid failure recovery
(e.g., F10 [13], FCP [11], DDC [12]).1 We do not have space
to elaborate on each of these developments, but we note that
none of these designs combine AXE’s features of plug-and-
play, instantaneous recovery from failures, and ability to work
on general topologies.

2 Design
We now turn to AXE’s design, starting with an overview, then
delving into more detail with a lengthy piece of pseudocode.

2.1 Overview
AXE follows traditional L2 in using a flood-and-learn ap-
proach, but with two major changes. First, flooding in AXE
avoids loops not with a spanning tree, but with the use of
switch-based packet deduplication (which we describe be-
low), which is enabled by having each packet carry a nonce
that, along with its source address, renders it unique over end-
to-end timescales. Second, while AXE uses learning (where
packets from a host establish forwarding entries toward that
host), AXE’s learning process must also compensate for the
lack of a spanning tree and “unlearn” failed paths (which
helps reestablish the appropriate routing state after a failure).

Even with these two deviations from classic L2, AXE’s
operation is conceptually quite simple. When a packet arrives
at a switch which does not have forwarding state for it, or
does have forwarding state but it points towards a failed link,
the packet is flooded. Packet deduplication eliminates looping
regardless of topology, so AXE does not need to wait for a
complicated failure recovery process when links go down;
packets are merely flooded to find new paths around failures.
These floods traverse all links2 so many routes are explored,
including all shortest path routes (assuming no packet drops,
and where by shortest we mean lowest delay given current
conditions). Thus, in the ideal case, AXE routes all packets
along shortest paths, which enables far better use of network
resources than spanning tree. Moreover, when extended to
the ECMP case (as we explain later), AXE can fully exploit
multiple equal cost paths.

Of course, nothing is quite this simple. We next describe a
few other aspects of the design, then present the pseudocode
for its implementation of unipath delivery.

1In addition, there is a wealth of work on new transport mechanisms
(e.g., [3, 4, 15, 18]) but that is largely orthogonal to our focus here.
2A link is traversed only in one direction if the packet arrives at the
other end before the packet destined in the other direction has been
enqueued. If not, then the packet traverses the link in both directions,
but neither copy of the packet is forwarded further.

AXE Packet Header: In addition to standard Ethernet fields
(only two of which we explicitly use in AXE: the src and dst
addresses), the AXE header additionally contains two flags
(the “learnable” flag L and the “flooded” flag F), a hop count
(HC), and a nonce. In order to maintain compatibility with
unmodified hosts, we expect this header to be applied to
packets at the first hop switch (in virtualized datacenters, this
may well be a virtual switch). When created, the L flag is
set, the F flag is unset, the hop count is zero (though it is
incremented before leaving the first hop), and the nonce is set
to the current value of a counter (which is then incremented).
We make no strong claims as to the appropriate size for each
of these fields, but note that if the entire header were 32
bits, one could allocate two bits for the flags, six for HC
(allowing up to 64 hops), and the remaining 24 for the nonce.
As we discuss below, it is desirable for a <nonce,src> tuple
to uniquely identify packets in-flight (or copies thereof); by
the time we have wrapped the nonce space, we would like to
be sure that any earlier packets with the same nonce have left
the network.3

Queueing: Packets are forwarded using one of two queues,
depending on whether the packet has the flood (F) bit set. The
flood packet queue gets high priority, ensuring that packets
to destinations without routing state are delivered quickly (so
routes can be learned from the response quickly).

Failure Detection: AXE does not implement its own failure
detection mechanism, but leverages existing physical detec-
tion techniques or BFD [9]. It is true that in some current
deployments the delay in detecting failures is far greater than
the time it takes for routing to repair them. However, there
are known techniques for rapidly detecting hardware fail-
ures (e.g., as in SONET), so in this paper we are focused on
rapid recovery (for which there are no current proposals for
topology-agnostic mechanisms that support plug-and-play).

Packet Deduplication: We eliminate duplicate packets us-
ing what we call a wilt filter (because it provides approximate
set membership with false negatives – the opposite of a Bloom
filter’s approximate set membership with false positives). The
wilt filter is essentially a hash table, where each entry contains
a <src, nonce, L> tuple. On reception, a packet’s src, nonce,
and L fields are hashed along with an arbitrary per-switch salt
(e.g., the Ethernet address of one of its interfaces), and the
hash value is used to look up an entry in the filter’s table. If
the src, nonce, and L in the table entry match the packet, the
packet is a duplicate and the filter returns true. If the values
stored in the table entry do not match the packet, the values
in the table entry are overwritten with the current packet’s
values, and the filter returns false. Note that the response that
a packet is a duplicate can only be wrong if the nonce has
been repeated, which is unlikely given the size of the nonce
field we are using. The negative response, however, can hap-

3With a 24 bit nonce space, it would take a 10 Gbit network trans-
mitting min-sized packets over 1.16 seconds to wrap the counter,
which seems more than sufficient.

2

pen simply when two packets hash to the same value: the
second would overwrite the first, and if another copy of the
first arrived later, it would not be detected as a duplicate. We
lower the probability of these false negatives by only apply-
ing packet deduplication to flooded packets (since those are
the only ones likely to loop), and the per-switch salt value
decreases the chance that the same false negative will happen
at two different switches.

Avoiding Meltdown: Because deduplication is not perfect,
and there are many failure modes (e.g., routes not learned due
to dropped packets, etc.), one cannot rule out corner cases
where a routing loop is established or where floods drown
out normal path-following traffic. To prevent meltdown in
such cases, we introduce two safety measures. First, when
a packet’s hop count exceeds a threshold value, a switch
will erase its forwarding state for the packet’s destination
and drop the packet. This ensures that a loop is broken the
first time a packet gets caught in it. Subsequent packets will
reach a switch without forwarding state for the destination,
be flooded, and new correct state can be learned from the
ensuing response.

Second, we institute an approximate global quota on the
rate of floods. As flooded packets appear on every link, each
switch can simply count the bytes in each non-duplicate flood
packet it receives; all switches should be computing approxi-
mately the same count. When this number exceeds a threshold,
a switch can halt generating new floods until the flood load
is again acceptable. This ensures that the network does not
enter a state where floods overwhelm all other traffic.

2.2 Algorithm
In Figure 1, we show a pseudocode implementation of the
AXE algorithm as would be implemented for handling pack-
ets on a switch for unipath routing. This pseudocode is fairly
lengthy, and even so omits some of the more nuanced aspects
of the actual algorithm. One might ask: why is this, given
that L2 learning algorithms are completely straightforward?
The reason is that AXE must cope with two issues that do
not exist in standard L2 learning: the existence of multiple
paths (because there is no spanning tree), and the need to react
quickly to failures (which requires unlearning some routes).
We want to learn short paths (i.e., select wisely from the mul-
tiple possible outgoing ports) but also respond quickly when
paths change (which requires recognizing when old paths
are no longer valid). Thus, there is a tension between finding
good paths (always select the shortest path you’ve seen) and
finding new paths (always select the most recent path you’ve
seen), and our code tries to walk the fine line between them.

The code is largely divided into two phases: an ingress por-
tion largely involving deduplication and learning/unlearning,
and an egress portion responsible for forwarding a packet
towards its destination. In addition to the header fields and
deduplication interface, the code utilizes (as do all learning
algorithms) a learning table that associates an address with
a port on which that address was seen (and, in our case, also

includes the hop count of the packet from which the entry
was learned).

To ease understanding of the pseudocode, it is useful to
have some sense of how the “learnable” or L header flag is
used (which, as a reminder, defaults to “on”). In general, when
a packet arrives at a switch, we wish to learn that the source
of the packet can be reached via the ingress port. However,
there are cases where this is a bad idea. For example, when a
packet reaches a failure in AXE, it is typically flooded (line
57) – this is how we achieve very high rates of delivery even
during failures. However, when being flooded from a failure,
a packet must go backwards (line 58), as it may be that the
only remaining path to the destination lies back toward the
source. As a packet travels backwards, one certainly does not
wish to learn from this packet, as one would be learning the
entirely incorrect direction. Thus, when packets are flooded
after reaching a failure, the L flag is switched off (line 55),
indicating that they are unlikely to be suitable for learning.
For the same reason, the L flag is switched off when a packet
makes a hairpin turn (line 62) – when it reaches a switch that
has a forwarding entry pointing back the way the packet came
(a situation that can occur due to the two queue design when
a flooded packet “passes” an already queued non-flood packet
on a switch; when the non-flood one reaches the next switch,
the flooded one has already changed the switch’s state).

The counter case is when a packet is simply following a
path or is flooded from its first hop (line 53). In such cases,
the L bit can (and should) be left in its default (enabled)
state. Also note that the L bit is included in the wilt filter
entries (lines 11, 12, and 56). This is so that a packet which is
intentionally traveling backward (e.g., in response to a failure)
is not seen as a duplicate and dropped.

A final note is that the pseudocode has separate operations
to check the wilt filter and to update it, though these are a
single operation in our abstract description in Section 2.1. We
separate them here as there is a case where we update the
filter but need not check for duplication (line 56).

While the pseudocode and discussion thus far has been on
unipath delivery, extending AXE to support ECMP requires
only three changes: modifying the table structure, enabling
the learning of multiple ports, and encouraging the learning of
multiple ports. We extend the table by switching to a bitmap
of learned ports (rather than a single number), and by keeping
track of the nonce of the packet from which the entry was
learned. Upon receiving a packet with the L bit set, rather
than simply always replacing the existing entry, if the hop
count and nonce are the same, we include the ingress port in
the learned ports bitmap. If these two fields do not match, we
replace (or don’t replace) the entry based on the same criteria
as for the unipath algorithm.

A problem with this multipath approach is that while it is
easy to learn multiple paths in one direction – the originator
must flood to find the recipient, and this flood allows learning
multiple paths – it is not as easy to learn multiple paths in the
reverse direction, as packets back to the originator will follow

3

one of the equal cost paths and therefore only establish state
along that single path. To address this, we need to flood in
the reverse direction as well, encouraging multipath learning
in both directions. To do so, we add another port bitmap to
each table entry – a “flooded” bitmap. When a packet is going
to be forwarded using an entry, if the bit corresponding to the
ingress port is 0 (“hasn’t yet been flooded”) and the packet’s
hop count is 1 (this is its first hop), we set the flooded bit
for the port, and perform a flood. This is a first-hop flood, so
L is set, and it therefore allows learning multiple paths. The
obvious downside here is some additional flooding, but the
upside is that equal cost paths are discovered quickly.

3 Evaluation
In this section, we evaluate AXE by attempting to answer
three questions about whether and how well AXE works,
primarily by using simulations performed in ns-3 [16]: (i)
How well does AXE perform on a static network? (ii) How
well does AXE perform in the presence of failures? (iii) How
many entries are required for the wilt filter?

For some of these, we compare AXE to “Idealized Routing”
which responds to network failures by executing an all-pairs
shortest path algorithm after a specified delay (and has a sepa-
rate routing entry for each host). This is an attempt to simulate
the impact of the convergence times which arise in various
routing algorithms without having to implement, configure
(in terms of the many constants that determine the conver-
gence behavior), and then simulate each algorithm. Note that
the time to actually compute the paths is not included in the
simulated time – only the arbitrary and adjustable delay.

We do not compare directly to spanning tree, for two rea-
sons. In terms of effectively using links, spanning tree’s limi-
tations are clear (the bisection bandwidth is that of a single
link), and AXE is essentially as good as Idealized Routing
(where the bisection bandwidth depends in detail on the net-
work topology and link speeds). In terms of failure recovery,
spanning tree is strictly worse than Idealized Routing (in that
failures in spanning trees impact more flows). Thus, we view
Idealized Routing as a more worthy target, providing more
ambitious benchmarks against which we can compare.

3.1 Simulation Scenarios
We perform minute-long simulations in two quite different
scenarios – a datacenter case and a university campus case.
The former is a fat tree [1] with 128 hosts as might be used in a
small virtualized cluster. For this experiment, we assume that
links have small propagation delay (0.3us). Our other scenario
is a topology modeled after that of our university campus, and
we assume somewhat longer propagation delays (3.5us). As
we do not have specific host information for this topology
(and it is likely to be fairly dynamic due to wireless users),
we simply assign approximately 2,000 hosts to switches at
random. While we would have liked to include more hosts,
we limited the number in order to make simulation times
manageable for Idealized Routing – neither our global path
computation nor ns-3’s IP forwarding table is optimized for

1: . We begin with the ingress phase.
2: if p.HC > MAX_HOP_COUNT then
3: . Either the forwarding state loops or this is an old flood which
4: . the wilt filter has never caught.
5: Table.Unlearn(p.EthDst) . Break looping forwarding state.
6: return . Drop the packet.
7: end if
8:
9: . Check and update the deduplication wilter.

10: if p.F then
11: IsDuplicate Wilter.Contains(< p.EthSrc, p.Nonce, p.L >)
12: Wilter.Insert(< p.EthSrc, p.Nonce, p.L >)
13: else
14: . Non-floods aren’t deduped; assume it’s not a duplicate.
15: IsDuplicate False
16: end if
17:
18: SrcEntry Table.Lookup(p.EthSrc)
19: if !IsDuplicate and !p.L and SrcEntry and SrcEntry.HC == 1 then
20: . We’re seeing (for the first time) a packet which probably originated
21: . from this switch and then hit a failure. Since our forwarding state
22: . apparently led the packet to a failure; unlearn it.
23: Table.Unlearn(p.EthDst)
24: end if
25:
26: if !SrcEntry . No table entry, may as well learn.
27: or p.HC < SrcEntry.HC . Always learn a better hop count.
28: or (p.L and !IsDuplicate) . Common case, learnable non-duplicate.
29: then
30: Table.Learn(p.EthSrc, p.InPort, p.HC) . Update learning table.
31: end if
32:
33: . Now, the egress phase.
34: if IsDuplicate then
35: return . We’ve already dealt with this packet; drop the duplicate.
36: end if
37:
38: if p.F then
39: . Flooded packets just keep flooding.
40: Flood(p) . Send out all ports except InPort.
41: return . And we’re done.
42: end if
43:
44: DstEntry Table.Lookup(p.EthDst) . Look up the output port.
45: if !DstEntry or IsPortDown(DstEntry.Port) then . No valid entry.
46: if !p.L then
47: return . Packet has hairpinned already. Drop and give up.
48: end if
49:
50: p.F True . About to flood the packet.
51: if p.HC == 1 then
52: . This is the packet’s first hop. L is already set.
53: Flood(p) . Flood learnably out all ports except InPort.
54: else
55: p.L False . Not the first hop, don’t learn from the flood.
56: Wilter.Insert(< p.EthSrc, p.Nonce, p.L >) . Update wilter.
57: Flood(p) . Sends out all ports except InPort.
58: Out put(p, p.InPort) . Send backwards too.
59: end if
60: else if DstEntry.Port == p.InPort then . Packet wants to hairpin.
61: if p.L then . If learnable, try once to send it back.
62: p.L False . No longer learnable.
63: Out put(p, p.InPort)
64: end if
65: else
66: Out put(p,DstEntry.Port) . Output in the common case.
67: end if

Figure 1: AXE psuedocode for processing a packet p.

large numbers of unaggregated hosts.

For each topology, we evaluate a UDP traffic load and a
TCP traffic load. Although large amounts of UDP may be
rare in the wild, using it as a test case helps isolate network

4

properties (whether AXE or Idealized Routing) from the con-
founding aspects of TCP congestion control with its feedback
loop and retransmissions. Our UDP sources merely send max-
size packets at a fixed rate. For each UDP packet received,
the receiver sends back a short “acknowledgment” packet to
create two-way traffic (which is important in any learning
scenario). For TCP traffic, rather than sending at a fixed rate,
we create flows in order to maintain an average rate (choosing
flow sizes from an empirical distribution [5]).

We generate traffic somewhat differently for the two scenar-
ios. For the datacenter case, we model significant “east-west”
traffic by choosing half of the hosts at random as senders, and
assigning each sender an independent set of hosts as receivers
(each set equaling one quarter of the total hosts). For the
campus topology, we believe traffic is concentrated at a small
number of internet gateways and on-campus servers, so all
hosts share the same set of about twenty receivers.

In terms of UDP sending rates, in the datacenter case we
use a per-host rate of 100 Mbps, and evaluate using both 10
Gbps and 1 Gbps links. In the campus case, we use a per-host
rate of 1 Mbps, and again we test both 10 Gbps links and 1
Gbps links. For TCP, we pick the arrival patterns to roughly
match these per-host sending rates.

In terms of failures, we perform two classes of simulations:
one using no link failures (for comparison), and one using a
randomized failure model based on the “Individual Link Fail-
ures” in [14] but scaled to a considerably higher failure rate
in order to better demonstrate results under failure conditions
for simulations of manageable duration.

3.2 Static Networks
Here we show no graphs, but merely summarize the results
of our simulations. In terms of setting up routes in static
networks, the unipath version of AXE produced shortest path
routes equivalent to Idealized Routing in both topologies,
and in the datacenter topology the multipath version of AXE
produced multiple paths that were equivalent to an ECMP-
enabled version of Idealized Routing. This is clearly superior
to spanning tree, but no better than what typical L3 routing
algorithms can do (and L2 protocols like SPB and TRILL that
also use routing algorithms).

3.3 Dynamic Networks
To characterize the behavior of AXE in a network undergoing
failures and recovery, we first look at the number of dropped
packets with UDP traffic, which is shown in Figure 2. These
conditions represent a very high failure rate: 15 failures over
one minute for the datacenter case and 171 failures over one
minute for the campus case. In the datacenter case, AXE
incurs zero drops, while Idealized Routing incurs increasingly
many as the routing delay grows. In the campus case, the high
failure rate and the smaller number of redundant paths leads
to network partitions, and all packets sent to disconnected
destinations are necessarily lost. We ignore these packets in
our graph, showing only the “unnecessary” losses (packets
sent to connected destinations but which routing could not

0"

2957"

4895"

7599"

12415"

18473"

26570"

0"

517"

820"

1517"

2441"

3556"

6741"

0" 5000" 10000" 15000" 20000" 25000" 30000"

AXE"

5ms"

10ms"

20ms"

40ms"

80ms"

160ms"

Packets Dropped!

R
ou

tin
g!

Datacenter! Campus!

Figure 2: Comparison of unnecessary drops for AXE versus Ideal-
ized Routing with various specified convergence times.

0"

5"

10"

15"

20"

25"

30"

35"

5ms" 10ms" 20ms" 40ms" 80ms" 160ms"
N

um
be

r o
f F

lo
w

s!
Routing Delay

Datacenter!
Campus!

Figure 3: Number of flows where Idealized Routing suffers signifi-
cantly higher FCT delay than AXE.

deliver). We see that AXE suffers no unnecessary losses,
while Idealized Routing has significantly more.

TCP recovers losses through retransmissions, so we instead
measure the impact of routing on flow completion time (FCT).
We find that when comparing FCTs under AXE and Idealized
Routing, either they are very close, or Idealized Routing is
significantly worse (by two seconds or more) due to TCP
timeouts. Figure 3 shows the number of flows where the flow
completion times using Idealized Routing are significantly
worse than when using AXE (there are no cases where AXE
is significantly worse than Idealized Routing).

Lastly, we look at whether AXE’s use of flooding upon
failure imposes too heavy a burden on the network. For this
metric, we examine all packets seen on every link, and find
the fraction that are being flooded (i.e., the ones with the F bit
set). Figure 4 shows that the traffic devoted to floods is quite
small, even under our extremely stressful failure scenarios.4

3.4 Wilt Filter Size
Deduplication using the wilt filter method is subject to false
negatives – it may sometimes fail to detect a duplicate. When
this happens occasionally, it presents little problem: dupli-
cates are generally detected on neighboring switches, at the
same switch the next time it cycles around, or – in the worst
case – they reach the maximum hop count and are dropped.
However, persistent failure to detect duplicates runs the risk

4Note that this is the fraction of offered traffic, not the fraction of
the link, that is consumed by floods.

5

0.00%$ 0.10%$ 0.20%$ 0.30%$ 0.40%$ 0.50%$ 0.60%$ 0.70%$ 0.80%$

Datacenter$

Campus$

Percentage of packets that are flooded!

Heavy$Failures$ No$Failures$

Figure 4: Fraction of packets on all links with flood bit set in various
experiments.

of creating a positive feedback loop: the failure to detect du-
plicates leads to more packets, which further decreases the
chance of detecting duplicates.

The false negative rate of the wilt filter is inversely corre-
lated with the filter size, so it is important to run with filter
sizes big enough to avoid melting down due to false negatives.
To see how large the filter size should be, we ran simulations
using filter sizes ranging between 50 and 1,600. Our simula-
tions were a worst case, as we used the UDP traffic model
(which, unlike TCP, does not back down when the network
efficiency begins degrading), and we did not use the global
flood quota described in Section 2.1.

Figure 5 shows the numbers of lost packets (which we use
as evidence of harm caused by false negatives) for the data-
center network with 1 Gbit links. Even under heavy failures,
the number of losses goes to zero with very modest sized
filters (⇡500). Unsurpisingly, the number required to achieve
lossless performance with 10 Gbit links was even smaller.

3.5 Summary
Our simulations indicate that AXE works — using links as
effectively as shortest path routing (and ECMP) and recov-
ering from failures rapidly while supporting plug-and-play
(as we installed no routing state ahead of time). The biggest
remaining question is how well it scales as the number of
hosts grows. Preliminary simulations on our campus network
with 10,000 hosts indicate that the percentage of flood pack-
ets remains low (0.71%) and there are no unnecessary packet
drops even in unrealistically severe failure scenarios, all with
a relatively small wilt filter. We expect that AXE scales to
even larger sizes, and are actively exploring its scaling limits.

4 Discussion and Future Work
What we have presented here is a very preliminary version
of what we hope is a promising approach. There are many
other design options to be explored, and they fall in to two
categories: improving current features or adding new ones.

In terms of improving the implementation of features al-
ready present in AXE, we continue to look at alternate ways
of: preventing loops (using timing-based learning to prevent
loops), detecting duplicates (using a sliding window to track
sequential nonces per source), failure response (sending pack-
ets back to their source before reflooding), route optimization
(by having periodic floods, so that AXE does not have persis-

18058839'

15' 12'
2'

6'
2' 3' 2'

50' 75' 100' 125' 250' 500+'

Lo
st

 P
ac

ke
ts
!

Wilt'Filter'Size'

Heavy'Failures' No'Failures'

'0'''''''''''0''''''0'0'

Figure 5: Effect of wilt filter size on UDP traffic in the datacenter
with 1 Gbps links.

tent suboptimal routes), and meltdown prevention (pruning
unicast addresses when hosts are not responding)5. All of
these will be more fully explored in future work.

More interestingly, there are ways we can expand the func-
tionality of AXE. For instance, a trivial change allows AXE
to mimic the per-VLAN functionality of many STP variants
(e.g., PVST, PVST+, MSTP, MISTP), although AXE’s ability
to use all links and recover from failures quickly may render
some of the motivation for this moot. More interestingly, we
are currently evaluating an AXE-native multicast design with
fast recovery properties similar to our unicast design, as well
as a preliminary anycast design. We are also pursuing a hybrid
which layers Hedera-like traffic engineering [2] atop AXE,
allowing AXE to handle mice flows and recovery quickly
while the TE solution handles elephants efficiently.

Beyond improving and extending AXE, hardware imple-
mentation is another path for future work. An exciting first
step we are pursuing is a P4 [8] version, and we note that
the basic algorithmic pieces of AXE (most significantly, the
packet deduplication) are implementable within P4 with a
small caveat. As there is no P4 action to add new table rows,
whenever a new MAC is first observed, an agent (running on
the switch) is required to add corresponding new table entries.

Ultimately, our goal is to develop AXE as a general-purpose
replacement for off-the-shelf Ethernet, providing essentially
instantaneous failure recovery, unicast that makes efficient
use of bandwidth (not just shortest paths, but also ECMP-
like behavior), and direct multicast and anycast support —
while retaining Ethernet’s plug-and-play characteristics. We
are not aware of any other design that strikes this balance.
While we do not see AXE as a contender for special-purpose
high-performance datacenter environments (where plug-and-
play is largely irrelevant), in most other cases we see it as a
promising alternative to today’s designs.

5 Acknowledgements
This material is based upon work supported by sponsors in-
cluding Intel, AT&T, and the National Science Foundation
under Grant No. 1117161, 1343947, and 1040838.

5This is a problem that all learning based solutions face: if a host
never sends a packet, then all packets sent to it will always be
flooded.

6

6 References

[1] AL-FARES, M., LOUKISSAS, A., AND VAHDAT, A. A
Scalable, Commodity Data Center Network
Architecture. In Proc. of SIGCOMM (2008).

[2] AL-FARES, M., RADHAKRISHNAN, S., RAGHAVAN,
B., HUANG, N., AND VAHDAT, A. Hedera: Dynamic
Flow Scheduling for Data Center Networks. In Proc. of
NSDI (2010).

[3] ALIZADEH, M., GREENBERG, A., MALTZ, D. A.,
PADHYE, J., PATEL, P., PRABHAKAR, B., SENGUPTA,
S., AND SRIDHARAN, M. Data Center TCP (DCTCP).
In Proc. of SIGCOMM (2010).

[4] ALIZADEH, M., YANG, S., SHARIF, M., KATTI, S.,
MCKEOWN, N., PRABHAKAR, B., AND SHENKER, S.
pFabric: Minimal Near-optimal Datacenter Transport.
In Proc. of SIGCOMM (2013).

[5] BENSON, T., AKELLA, A., AND MALTZ, D. Network
Traffic Characteristics of Data Centers in the Wild. In
Proc. of ACM Internet Measurement Conference (IMC)
(2012).

[6] GREENBERG, A., HAMILTON, J. R., JAIN, N.,
KANDULA, S., KIM, C., LAHIRI, P., MALTZ, D. A.,
PATEL, P., AND SENGUPTA, S. VL2: A Scalable and
Flexible Data Center Network. In Proc. of SIGCOMM
(2009).

[7] JOHNSON, D. B. Routing in Ad Hoc Networks of
Mobile Hosts. In Proc. WMCSA (1994).

[8] JOSE, L., YAN, L., VARGHESE, G., AND MCKEOWN,
N. Compiling Packet Programs to Reconfigurable
Switches. In Proc. of NSDI (2015).

[9] KATZ, D., AND WARD, D. Bidirectional Forwarding
Detection (BFD). RFC 5880 (Proposed Standard),
2010.

[10] KEMPF, M. Bridge Circuit for Interconnecting
Networks, 1986. US Patent 4,597,078.

[11] LAKSHMINARAYANAN, K., CAESAR, M., RANGAN,
M., ANDERSON, T., SHENKER, S., AND STOICA, I.
Achieving Convergence-free Routing Using
Failure-carrying Packets. In Proc. of SIGCOMM
(2007).

[12] LIU, J., PANDA, A., SINGLA, A., GODFREY, B.,
SCHAPIRA, M., AND SHENKER, S. Ensuring
Connectivity via Data Plane Mechanisms. In Proc. of
NSDI (2013).

[13] LIU, V., HALPERIN, D., KRISHNAMURTHY, A., AND
ANDERSON, T. F10: A Fault-Tolerant Engineered
Network. In Proc. of NSDI (2013).

[14] MARKOPOULOU, A., IANNACCONE, G.,
BHATTACHARYYA, S., CHUAH, C.-N., AND DIOT, C.
Characterization of Failures in an IP Backbone. In Proc.
of INFOCOM (2004).

[15] MITTAL, R., SHERRY, J., RATNASAMY, S., AND
SHENKER, S. Recursively Cautious Congestion
Control. In Proc. of NSDI (2014).

[16] ns-3. http://www.nsnam.org/.
[17] PERLMAN, R. An Algorithm for Distributed

Computation of a Spanning Tree in an Extended LAN.
In Proc. of NSDI (1985).

[18] PERRY, J., OUSTERHOUT, A., BALAKRISHNAN, H.,
SHAH, D., AND FUGAL, H. Fastpass: A Centralized
"Zero-queue" Datacenter Network. In Proc. of
SIGCOMM (2014).

7

http://www.nsnam.org/

	Introduction
	Design
	Overview
	Algorithm

	Evaluation
	Simulation Scenarios
	Static Networks
	Dynamic Networks
	Wilt Filter Size
	Summary

	Discussion and Future Work
	Acknowledgements
	References

