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ABSTRACT

Today’s data centers may contain tens of thousands of cargput
with significant aggregate bandwidth requirements. Thevork
architecture typically consists of a tree of routing andtshing
elements with progressively more specialized and expermsjuip-
ment moving up the network hierarchy. Unfortunately, evdremw
deploying the highest-end IP switches/routers, resuttipglogies
may only support 50% of the aggregate bandwidth availahtleeat
edge of the network, while still incurring tremendous casbn-
uniform bandwidth among data center nodes complicatescappl
tion design and limits overall system performance.

In this paper, we show how to leverage largely commodity Eth-
ernet switches to support the full aggregate bandwidth udtets
consisting of tens of thousands of elements. Similar to Hogters
of commodity computers have largely replaced more speeidli
SMPs and MPPs, we argue that appropriately architectechaad i
connected commodity switches may deliver more performatce
less cost than available from today’s higher-end soluti@hs ap-
proach requires no modifications to the end host networkfate,
operating system, or applications; critically, it is fulbackward
compatible with Ethernet, IP, and TCP.

Categories and Subject Descriptors

C.2.1 Network Architecture and Design]: Network topology;
C.2.2 Network Protocols]: Routing protocols

General Terms
Design, Performance, Management, Reliability

Keywords

Data center topology, equal-cost routing

1. INTRODUCTION

Growing expertise with clusters of commodity PCs have esthbl
a number of institutions to harness petaflops of computgttmmer
and petabytes of storage in a cost-efficient manner. Chustar-
sisting of tens of thousands of PCs are not unheard of in tgeda
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institutions and thousand-node clusters are increasiogigmon
in universities, research labs, and companies. Importaplica-
tions classes include scientific computing, financial asialydata
analysis and warehousing, and large-scale network setvice

Today, the principle bottleneck in large-scale clustersfien
inter-node communication bandwidth. Many applicationstax-
change information with remote nodes to proceed with thosiall
computation. For example, MapReduce [12] must performifsign
icant data shuffling to transport the output of its map phaserb
proceeding with its reduce phase. Applications runningloster-
based file systems [18, 28, 13, 26] often require remote-agede
cess before proceeding with their 1/0O operations. A querga to
web search engine often requires parallel communication evi-
ery node in the cluster hosting the inverted index to rethberbost
relevant results [7]. Even between logically distinct tbus, there
are often significant communication requirements, e.gemnmp-
dating the inverted index for individual clusters perfongisearch
from the site responsible for building the index. Internetvices
increasingly employ service oriented architectures [tiere the
retrieval of a single web page can require coordination anchau-
nication with literally hundreds of individual sub-serg&running
on remote nodes. Finally, the significant communicatioruireg
ments of parallel scientific applications are well known,[8]

There are two high-level choices for building the commutiiza
fabric for large-scale clusters. One option leverages iajieed
hardware and communication protocols, such as InfiniBahdrf2
Myrinet [6]. While these solutions can scale to clustershafut
sands of nodes with high bandwidth, they do not leverage com-
modity parts (and are hence more expensive) and are noehativ
compatible with TCP/IP applications. The second choicenev
ages commodity Ethernet switches and routers to interabiches-
ter machines. This approach supports a familiar management
frastructure along with unmodified applications, opegtgstems,
and hardware. Unfortunately, aggregate cluster bandvedtes
poorly with cluster size, and achieving the highest levélband-
width incurs non-linear cost increases with cluster size.

For compatibility and cost reasons, most cluster commtinica
systems follow the second approach. However, communitatio
bandwidth in large clusters may become oversubscribed lig-a s
nificant factor depending on the communication patternsat i)
two nodes connected to the same physical switch may be able to
communicate at full bandwidth (e.g., 1Gbps) but moving leetm
switches, potentially across multiple levels in a hiergrcimay
limit available bandwidth severely. Addressing theseleoécks
requires non-commodity solutions, e.g., large 10Gbpschei and
routers. Further, typical single path routing along treféatercon-
nected switches means that overall cluster bandwidth isdihby
the bandwidth available at the root of the communicationanihy.



Even as we are at a transition point where 10Gbps technobbgy i  We assume the use of two types of switches, which represent

becoming cost-competitive, the largest 10Gbps switchibansur the current high-end in both port density and bandwidth. fiisg
significant cost and still limit overall available bandwidior the used at the edge of the tree, is a 48-port GigE switch, with I6u
largest clusters. GigE uplinks. For higher levels of a communication hiergrahe
In this context, the goal of this paper is to design a dataetent consider 128-port 10 GigE switches. Both types of switchiesva
communication architecture that meets the following goals all directly connected hosts to communicate with one anaththe

) ) ) ) ) full speed of their network interface.
e Scalable interconnection bandwidth: it should be pos$dsle

an arbitrary host in the data center to communicate with any

other host in the network at the full bandwidth of its local 2.1.2 OverSUbscrllptlo.n o
network interface. Many data center designs introduce oversubscription assasne

to lower the total cost of the design. We define the tewer-

e Economies of scale: just as commaodity personal computers subscriptionto be the ratio of the worst-case achievable aggregate
became the basis for large-scale computing environments, bandwidth among the end hosts to the total bisection baribwid
we hope to leverage the same economies of scale to makea particular communication topology. An oversubscriptignl:1
cheap off-the-shelf Ethernet switches the basis for large- indicates that all hosts may potentially communicate withiteary
scale data center networks. other hosts at the full bandwidth of their network interfgeey., 1

Gb/s for commodity Ethernet designs). An oversubscriptiaiue

of 5:1 means that only 20% of available host bandwidth islavai

able for some communication patterns. Typical designs aee- 0

subscribed by a factor of 2.5:1 (400 Mbps) to 8:1 (125 Mbp§) [1

Although data centers with oversubscription of 1:1 are ibbes$or

1 Gb/s Ethernet, as we discuss in Section 2.1.4, the cosulbr s
We show that by interconnecting commodity switches in a fat- designs is typically prohibitive, even for modest-sizeadzgnters.

tree architecture, we can achieve the full bisection badthwbf Achieving full bisection bandwidth for 10 Gb/s Ethernet & our-

clusters consisting of tens of thousands of nodes. Spdbyjfioae rently possible when moving beyond a single switch.

instance of our architecture employs 48-port Ethernetches ca-

pable of providing full bandwidth to up 27,648 hosts. By leging 2.1.3 Multi-path Routing

e Backward compatibility: the entire system should be back-
ward compatible with hosts running Ethernet and IP. That is,
existing data centers, which almost universally leverage-c
modity Ethernet and run IP, should be able to take advantage
of the new interconnect architecture with no modifications.

strictly commodity switches, we achieve lower cost tharstng Delivering full bandwidth between arbitrary hosts in largkis-
solutions while simultaneously delivering more bandwidilur so-  ters requires a “multi-rooted” tree with multiple core suties (see
lution requires no changes to end hosts, is fully TCP/IP atibfe, Figure 1). This in turn requires a multi-path routing tecius,

and imposes only moderate modifications to the forwardimgfu  sych as ECMP [19]. Currently, most enterprise core switshies
tions of the switches themselves. We also expect that ounapp port ECMP. Without the use of ECMP, the largest cluster tiaat ¢
will be the only way to deliver full bandwidth for large clusters pe supported with a singly rooted core with 1:1 oversubgiorip
once 10 GigE switches become commodity at the edge, given theygyid be limited to 1,280 nodes (corresponding to the badtwi

current lack of any higher-speed Ethernet alternativear(atcost). available from a single 128-port 10 GigE switch).

Even when higher-speed Ethernet solutions become aaiiltitgly To take advantage of multiple paths, ECMP performs stasid

will initially have small port densities at significant cost splitting among flows. This does not account for flow bandwidth
in making allocation decisions, which can lead to overstipgon

2. BACKGROUND even for simple communication patterns. Further, curré®MP

. implementations limit the multiplicity of paths to 8-16, wh is

2.1 Current Data Center Network Topologies often less diversity than required to deliver high bisettimnd-

We conducted a study to determine the current best pradtices ~ Width for larger data centers. In addition, the number oftiray

data center communication networks. We focus here on coritynod ~ table entries grows multiplicatively with the number of lgaton-

designs leveraging Ethernet and IP; we discuss the rethtiprof sidered, which increases cost and can also increase loatency.
our work to alternative technologies in Section 7.

2.1.4 Cost

The cost for building a network interconnect for a large ®us
greatly affects design decisions. As we discussed aboezsob-
scription is typically introduced to lower the total costetd we
give the rough cost of various configurations for differeantrer

2.1.1 Topology

Typical architectures today consist of either two- or thiee|
trees of switches or routers. A three-tiered design (sear€it) has
acoretier in the root of the tree, aaggregationtier in the middle

and anedgetier at the leaves of the tree. A two-tiered design has f hosts and oversubscription using current best practiéésas-
only the core and the edge tiers. Typically, a two-tieredgfesan sume a cost of $7,000 for each 48-port GigE switch at the edge
support between 5K to 8K hosts. Since we target approximatel .4 $700,000 for 128-port 10 GigE switches in the aggregatial

25,000 hoséts, we restrict our attention to the three-tisigite . _ core layers. We do not consider cabling costs in these eaionk.
Switches at the leaves of the tree have some number of GIgE  Figyre 2 plots the cost in millions of US dollars as a function

ports (48-288) as well as some number of 10 GigE uplinks twone  t the total number of end hosts on theaxis. Each curve rep-
more layers of network elements that aggregate and trapaféets resents a target oversubscription ratio. For instanceswithing
between the leaf switches. In the higher levels of the hoeathere hardware to interconnect 20,000 hosts with full bandwidttoag
are switches with 10 GigE ports (typically 32-128) and sigant all hosts comes to approximately $37M. The curve corresipgnd
switching capacity to aggregate traffic between the edges. to an oversubscription of 3:1 plots the cost to interconresad

1we use the terrswitchthroughout the rest of the paper to referto  hosts where the maximum available bandwidth for arbitrargt e
devices that perform both layer 2 switching and layer 3 rayti host communication would be limited to approximately 330ggb




Core

- QD - S .. S - - &  Edge

Figure 1: Common data center interconnect topology. Host tawitch links are GigE and links between switches are 10 GigE.
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Figure 2: Current cost estimate vs. maximum possible number
of hosts for different oversubscription ratios.

We also include the cost to deliver an oversubscription biusing
our proposed fat-tree architecture for comparison.

Overall, we find that existing techniques for deliveringhlgv-
els of bandwidth in large clusters incur significant cost amat
fat-tree based cluster interconnects hold significant geror de-
livering scalable bandwidth at moderate cost. However,oimes
sense, Figure 2 understates the difficulty and expense dbgmg
the highest-end components in building data center aathites.

In 2008, 10 GigE switches are on the verge of becoming commod-
ity parts; there is roughly a factor of 5 differential in pgiper port

per bit/sec when comparing GigE to 10 GigE switches, and this
differential continues to shrink. To explore the histotit@nd,

we show in Table 1 the cost of the largest cluster configumatio
that could be supported using the highest-end switchesablai

in a particular year. We based these values on a historiedy sif
product announcements from various vendors of high-endidB G
switches in 2002, 2004, 2006, and 2008.

We use our findings to build the largest cluster configurattiat
technology in that year could support while maintaining agre
subscription of 1:1. Table 1 shows the largest 10 GigE svéitetil-
able in a particular year; we employ these switches in the aad
aggregation layers for the hierarchical design. Tablesd sthows
the largest commodity GigE switch available in that year;eme

Hierarchical design Fat-tree
Year | 10 GigE | Hosts g?gsé/ GigE Hosts g?gsé/
2002 | 28-port| 4,480 | $25.3K | 28-port | 5,488 | $4.5K
2004 | 32-port| 7,680 | $4.4K | 48-port| 27,648 | $1.6K
2006 | 64-port | 10,240 | $2.1K | 48-port | 27,648 | $1.2K
2008 | 128-port| 20,480 | $1.8K | 48-port | 27,648 | $0.3K

Table 1: The maximum possible cluster size with an oversub-
scription ratio of 1:1 for different years.

ploy these switches at all layers of the fat-tree and at tiye éayer
for the hierarchical design.

The maximum cluster size supported by traditional techesqu
employing high-end switches has been limited by availaloe p
density until recently. Further, the high-end switchesimed pro-
hibitive costs when 10 GigE switches were initially avai&atNote
that we are being somewhat generous with our calculatiartsdo
ditional hierarchies since commaodity GigE switches at there-
gation layer did not have the necessary 10 GigE uplinks gotte
recently. Clusters based on fat-tree topologies on ther dthed
scale well, with the total cost dropping more rapidly andieafas
a result of following commodity pricing trends earlier).sl there
is no requirement for higher-speed uplinks in the fat-togotogy.

Finally, it is interesting to note that, today, it is techallg in-
feasible to build a 27,648-node cluster with 10 Gbps bantiwid
potentially available among all nodes. On the other handta f
tree switch architecture would leverage near-commoditpdi& 10
GigE switches and incur a cost of over $690 million. Whileelik
cost-prohibitive in most settings, the bottom line is thaisinot
even possible to build such a configuration using traditiaggre-
gation with high-end switches because today there is nougtaxt
even Ethernet standard for switches faster than 10 GigE.

2.2 Clos Networks/Fat-Trees

Today, the price differential between commodity and non-
commodity switches provides a strong incentive to builgdascale
communication networks from many small commodity switches
rather than fewer larger and more expensive ones. More tftan fi
years ago, similar trends in telephone switches led Ch@liesto
design a network topology that delivers high levels of baidthv
for many end devices by appropriately interconnecting Emal
commodity switches [11].



We adopt a special instance of a Clos topology callefdta
tree[23] to interconnect commodity Ethernet switches. We orga-
nize ak-ary fat-tree as shown in Figure 3. There &rpods, each
containing two layers ok/2 switches. Eactk-port switch in the
lower layer is directly connected #¢/2 hosts. Each of the remain-
ing k/2 ports is connected tb/2 of the k ports in the aggregation
layer of the hierarchy.

There argk/2)? k-port core switches. Each core switch has one
port connected to each &fpods. The*” port of any core switch
is connected to potflsuch that consecutive ports in the aggregation
layer of each pod switch are connected to core switcheg:¢2)
strides. In general, a fat-tree built witport switches supports
k3 /4 hosts. In this paper, we focus on designs up te 48. Our
approach generalizes to arbitrary valueskor

An advantage of the fat-tree topology is that all switchite e
ments are identical, enabling us to leverage cheap comynoalits
for all of the switches in the communication architecttifeurther,
fat-trees areearrangeably non-blockingneaning that for arbitrary
communication patterns, there is some set of paths thasuaifl-
rate all the bandwidth available to the end hosts in the tmpol
Achieving an oversubscription ratio of 1:1 in practice maydiffi-
cult because of the need to prevent packet reordering forflo@iB.

Figure 3 shows the simplest non-trivial instance of thetrfeg-
with & = 4. All hosts connected to the same edge switch form their
own subnet. Therefore, all traffic to a host connected to timees
lower-layer switch is switched, whereas all other trafficasted.

As an example instance of this topology, a fat-tree builtrfet8-
port GigE switches would consist of 48 pods, each contaiaimg
edge layer and an aggregation layer with 24 switches eacle. Th

we introduce the concept of two-level route lookups to asgith
multi-path routing across the fat-tree. We then preseniatbe-
rithms we employ to populate the forwarding table in eachtciwi
We also describe flow classification and flow scheduling teples
as alternate multi-path routing methods. And finally, wespre
a simple fault-tolerance scheme, as well as describe theaneia
power characteristics of our approach.

3.1 Motivation

Achieving maximum bisection bandwidth in this network re-
quires spreading outgoing traffic from any given pod as gvenl
as possible among the core switches. Routing protocols asich
OSPF2 [25] usually take the hop-count as their metric of fsst-
path,” and in thek-ary fat-tree topology (see Section 2.2), there
are (k/2)? such shortest-paths between any two hosts on differ-
ent pods, but only one is chosen. Switches, therefore, otrate
traffic going to a given subnet to a single port even thougteroth
choices exist that give the same cost. Furthermore, depgruti
the interleaving of the arrival times of OSPF messages, pos
sible for a small subset of core switches, perhaps only anbet
chosen as the intermediate links between pods. This wileae-
vere congestion at those points and does not take advarftpgtého
redundancy in the fat-tree.

Extensions such as OSPF-ECMP [30], in addition to being un-
available in the class of switches under considerationsean
explosion in the number of required prefixes. A lower-levetl p
switch would needk/2) prefixes foreveryother subnet; a total of
k * (k/2)? prefixes.

We therefore need a simple, fine-grained method of traffic dif

edge switches in every pod are assigned 24 hosts each. The netfusion between pods that takes advantage of the structutigeof
work supports 27,648 hosts, made up of 1,152 subnets with 24 topology. The switches must be able to recognize, and gigeiap

hosts each. There are 576 equal-cost paths between anypgiiren
of hosts in different pods. The cost of deploying such a ngtwo
architecture would b&8.64 M, compared t&$37M for the tradi-
tional techniques described earlier.

2.3 Summary

Given our target network architecture, in the rest of thjsgqrave
address two principal issues with adopting this topolodytimernet
deployments. First, IP/Ethernet networks typically budldingle
routing path between each source and destination. For éwven s
ple communication patterns, such single-path routing guitckly
lead to bottlenecks up and down the fat-tree, significamthting
overall performance. We describe simple extensions tonReim-
ing to effectively utilize the high fan-out available froratftrees.
Second, fat-tree topologies can impose significant wirmglex-
ity in large networks. To some extent, this overhead is ieher
in fat-tree topologies, but in Section 6 we present paclagind
placement techniques to ameliorate this overhead. Finadihave
built a prototype of our architecture in Click [21] as debed in
Section 3. An initial performance evaluation presenteddati®n 5
confirms the potential performance benefits of our approach i
small-scale deployment.

3. ARCHITECTURE

In this section, we describe an architecture to interconc@m-
modity switches in a fat-tree topology. We first motivate teed
for a slight modification in the routing table structure. Wern de-
scribe how we assign IP addresses to hosts in the clustert, Nex

2Note that switch homogeneity is not required, as biggerchei
could be used at the core (e.g. for multiplexing). While éidsely
have a longer mean time to failure (MTTF), this defeats th&t co
benefits, and maintains the same cabling overhead.

treatment to, the class of traffic that needs to be evenlyasipréo
achieve this, we propose using two-level routing tablestheead
outgoing traffic based on the low-order bits of the destoratP
address (see Section 3.3).

3.2 Addressing

We allocate all the IP addresses in the network within theapei
10.0.0.0/8 block. We follow the familiar quad-dotted form with
the following conditions: The pod switches are given adsktef
the form10.pod.switch.1, wherepod denotes the pod number (in
[0, k — 1]), and switch denotes the position of that switch in the
pod (in[0, k— 1], starting from left to right, bottom to top). We give
core switches addresses of the farfnk.;.7, wherej and: denote
that switch’s coordinates in thg/2)? core switch grid (each in
[1, (k/2)], starting from top-left).

The address of a host follows from the pod switch it is coreact
to; hosts have addresses of the forhd.pod.switch.ID, where
IDis the host’s position in that subnet (i k/2+1], starting from
left to right). Therefore, each lower-level switch is respible for a
/24 subnet of /2 hosts (fork < 256). Figure 3 shows examples of
this addressing scheme for a fat-tree correspondirigto4. Even
though this is relatively wasteful use of the available addrspace,
it simplifies building the routing tables, as seen below. étbeless,
this scheme scales up to 4.2M hosts.

3.3 Two-Level Routing Table

To provide the even-distribution mechanism motivated in-Se
tion 3.1, we modify routing tables to allow two-level prefookup.
Each entry in the main routing table will potentially haveaatdi-
tional pointer to a small secondary table(sfiffix, port)entries. A
first-level prefix isterminatingif it does not contain any second-
level suffixes, and a secondary table may be pointed to by more
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Figure 3: Simple fat-tree topology. Using the two-level roting tables described in Section 3.3, packets from sourcé€0.0.1.2 to

destination 10.2.0.3 would take the dashed path.

Prefix Output port
10.2.0.0/24 0
10.2.1.0/24 1
0.0.0.0/0 —  Suffix | Output port
0.0.0.2/8 2
0.0.0.3/8 3

Figure 4: Two-level table example. This is the table at swite
10.2.2.1. An incoming packet with destination IP address
10.2.1.2 is forwarded on port 1, whereas a packet with desti-
nation IP address10.3.0.3 is forwarded on port 3.

than one first-level prefix. Whereas entries in the primabojetare
left-handed (i.e./m prefixmasks of the forml™032~™), entries
in the secondary tables are right-handed (/. suffixmasks of
the form032=™1™). If the longest-matching prefix search yields
a non-terminating prefix, then the longest-matching sufiithie
secondary table is found and used.

This two-level structure will slightly increase the rowgitable
lookup latency, but the parallel nature of prefix search ivare
should ensure only a marginal penalty (see below). Thislizelde
by the fact that these tables are meant to be very small. Asrsho
below, the routing table of any pod switch will contain no mor
thank /2 prefixes and:/2 suffixes.

3.4 Two-Level Lookup Implementation

We now describe how the two-level lookup can be implemented
in hardware using Content-Addressable Memory (CAM) [9].
CAMs are used in search-intensive applications and arerfast
than algorithmic approaches [15, 29] for finding a match @Bgfai
a hit pattern. A CAM can perform parallel searches among all
its entries in a single clock cycle. Lookup engines use aiapec
kind of CAM, called Ternary CAM (TCAM). A TCAM can store
don't care bits in addition to matching 0’s and 1's in particular
positions, making it suitable for storing variable lengttefixes,
such as the ones found in routing tables. On the downside, €AM
have rather low storage density, they are very power hurayg,

RAM
TCAM Address | Next hop | Output port
:g;(]);( 00 10.2.0.1 0
— -+ Encoder 01 10.2.1.1 L
X.X.X.2 ’—’_> 10 10.4.1.1 2
X.X.X3 11 10.4.1.2 3

Figure 5: TCAM two-level routing table implementation.

expensive per bit. However, in our architecture, routiriges can
be implemented in a TCAM of a relatively modest sizeehtries
each 32 bits wide).

Figure 5 shows our proposed implementation of the two-level
lookup engine. A TCAM stores address prefixes and suffixes,
which in turn indexes a RAM that stores the IP address of tké ne
hop and the output port. We store left-handed (prefix) esntine
numerically smaller addresses and right-handed (suffitfjesnin
larger addresses. We encode the output of the CAM so that the
entry with the numerically smallest matching address igpuat
This satisfies the semantics of our specific application oflevel
lookup: when the destination IP address of a packet matatasab
left-handed and a right-handed entry, then the left-harhe is
chosen. For example, using the routing table in Figure 5chgia
with destination IP addres$).2.0.3 matches the left-handed entry
10.2.0.X and the right-handed entr.X.X.3. The packet is
correctly forwarded on port 0. However, a packet with desion
IP addresd0.3.1.2 matches only the right-handed enfky X'. X .2
and is forwarded on port 2.

3.5 Routing Algorithm

The first two levels of switches in a fat-tree act as filteriraf-t
fic diffusers; the lower- and upper-layer switches in anyegipod
have terminating prefixes to the subnets in that pod. Hefee, i
host sends a packet to another host in the same pod but on a dif-
ferent subnet, then all upper-level switches in that pod lveive a
terminating prefix pointing to the destination subnet’ststui

For all other outgoing inter-pod traffic, the pod switcheseha
a default/0 prefix with a secondary table matching host IDs (the



least-significant byte of the destination IP address). Weleyrthe
host IDs as a source of deterministic entropy; they will eauaffic
to be evenly spread upward among the outgoing links to the cor

switche$. This will also cause subsequent packets to the same host

to follow the same path, and therefore avoid packet reanderi

In the core switches, we assign terminating first-level pesfi
for all network IDs, each pointing to the appropriate podtadring
that network. Once a packet reaches a core switch, theradslgx
one link to its destination pod, and that switch will inclualéermi-
nating,/16 prefix for the pod of that packét0.pod.0.0/16, port).
Once a packet reaches its destination pod, the receivingrtpyel
pod switch will also include #10.pod.switch.0/24, port) prefix
to direct that packet to its destination subnet switch, wheis
finally switched to its destination host. Hence, traffic aiion oc-
curs only in the first half of a packet'’s journey.

It is possible to design distributed protocols to build tleees-
sary forwarding state incrementally in each switch. Forpdicity
however, we assume a central entity with full knowledge otgr
interconnect topology. This central route control is resole for
statically generating all routing tables and loading thads into
the switches at the network setup phase. Dynamic routingppro
cols would also be responsible for detecting failures ofviiddal
switches and performing path fail-over (see Section 3.8l0W,
we summarize the steps for generating forwarding tableott b
the pods and core switches.

Pod Switches.

In each pod switch, we assign terminating prefixes for sigbnet
contained in the same pod. For inter-pod traffic, we add are-
fix with a secondary table matching host IDs. Algorithm 1 show
the pseudo-code for generating the routing tables for tpeupod
switches. The reason for the modulo shift in the outgoing jsor
to avoid traffic from different lower-layer switches addsed to a
host with the same host ID going to the same upper-layer bwitc

For the lower pod switches, we simply omit tji24 subnet pre-
fix step, in line 3, since that subnet’s own traffic is switchadd
intra- and inter-pod traffic should be evenly split amongupper
switches.

Core Switches.

Since each core switch is connected to every pod (parton-
nected to pod), the core switches contains only terminatifgs
prefixes pointing to their destination pods, as shown in Athm 2.
This algorithm generates tables whose size is linear Mo switch
in the network contains a table with more thafirst-level prefixes
or k/2 second-level suffixes.

Routing Example.

To illustrate network operation using the two-level tables
give an example for the routing decisions taken for a paaken f
sourcel0.0.1.2 to destination 0.2.0.3, as shown in Figure 3. First,
the gateway switch of the source ho$6.0.1.1) will only match
the packet with the/0 first-level prefix, and therefore will forward
the packet based on the host ID byte according to the segondar
table for that prefix. In that table, the packet matche9the).3/8
suffix, which points to port 2 and switct0.0.2.1. Switch10.0.2.1
also follows the same steps and forwards on port 3, conneoted
core switch10.4.1.1. The core switch matches the packet to a ter-
minating10.2.0.0/16 prefix, which points to the destination pod 2

3Since the tables are static, it is possible to fall short afqme
distribution. We examine worst-case communication pastén
Section 5

1 foreachpodz in [0,k — 1] do
2 foreach switchz in [(k/2),k — 1] do

3 foreach subnet in [0, (k/2) — 1] do
4 addPrefix(10z.z.1, 10x.5.0/24,3);
5 end

6 addPrefix(10Q:.z.1, 0.0.0.0/0, 0);

7 foreachhost IDi in [2, (k/2) + 1] do
8 addSuffix(10z.z.1, 0.0.0:/8,

(i — 2+ 2)mod(k/2) + (k/2));

9 end
10 end
11 end

Algorithm 1: Generating aggregation switch routing ta-
bles. Assume Function signatureddPrefix(switch, prefix,
port), addSuffix(switch, suffix, por@ndaddSuf fix adds

a second-level suffix to the last-added first-level prefix.

1 foreachjin [1, (k/2)] do
foreachzin [1, (k/2)] do
foreach destination pod: in [0, (k/2) — 1] do
addPrefix(10.5.7,102.0.0/16, X);
end
6 end
7 end

2
3
4
5

Algorithm 2 : Generating core switch routing tables.

on port 2, and switch0.2.2.1. This switch belongs to the same
pod as the destination subnet, and therefore has a terngrare-
fix, 10.2.0.0/24, which points to the switch responsible for that
subnet,10.2.0.1 on port 0. From there, standard switching tech-
niques deliver the packet to the destination h@s2.0.3.

Note that for simultaneous communication fram0.1.3 to an-
other host10.2.0.2, traditional single-path IP routing would fol-
low the same path as the flow above because both destinations a
on the same subnet. Unfortunately, this would eliminatefihe
fan-out benefits of the fat-tree topology. Instead, our tee@! ta-
ble lookup allows switchl0.0.1.1 to forward the second flow to
10.0.3.1 based on right-handed matching in the two-level table.

3.6 Flow Classification

In addition to the two-level routing technique described\ad)
we also consider two optional dynamic routing techniqueshay
are currently available in several commercial routers R]0,0Our
goal is to quantify the potential benefits of these techrsgioet
acknowledge that they will incur additional per-packet rinead.
Importantly, any maintained state in these schemes is sdfirali-
vidual switches can fall back to two-level routing in case fitate
is lost.

As an alternate method of traffic diffusion to the core swatgh
we perform flow classification with dynamic port-reassignine
pod switches to overcome cases of avoidable local conge&ig.
when two flows compete for the same output port, even though
another port that has the same cost to the destination isuset®.
We define aflow as a sequence of packets with the same entries
for a subset of fields of the packet headers (typically soarm
destination IP addresses, destination transport portpaiticular,
pod switches:

1. Recognize subsequent packets of the same flow, and forward
them on the same outgoing port.



2. Periodically reassign a minimal number of flow output gort
to minimize any disparity between the aggregate flow capac-
ity of different ports.

Step 1 is a measure against packet reordering, while step2 ai
to ensure fair distribution on flows on upward-pointing gadrt the
face of dynamically changing flow sizes. Section 4.2 deseritur
implementation and flow distribution heuristic of the flomssifier
in more detail.

3.7 Flow Scheduling

Several studies have indicated that the distribution afisier
times and burst lengths of Internet traffic is long-tailed][land
characterized by few large long-lived flows (responsiblerfmst
of the bandwidth) and many small short-lived ones [16]. \Wriar
that routing large flows plays the most important role in date-
ing the achievable bisection bandwidth of a network andetioee
merits special handling. In this alternative approach te flean-
agement, we schedule large flows to minimize overlap with one
another. A central scheduler makes this choice, with glibaivl-
edge of all active large flows in the network. In this initi&sign,
we only consider the case of a single large flow originatiragynfr
each host at a time.

3.7.1 Edge Switches

As before, edge switches locally assign a new flow to the4east
loaded port initially. However, edge switches additiopalbtect
any outgoing flow whose size grows above a predefined thréshol
and periodically send notifications to a central schedyeciying
the source and destination for all active large flows. Thpsesents
a request by the edge switch for placement of that flow in an un-
contended path.

Note that unlike Section 3.6, this scheme does not allow edge
switches to independently reassign a flow’s port, regasdiésize.
The central scheduler is the only entity with the authoritytder
a re-assignment.

3.7.2 Central Scheduler

A central scheduler, possibly replicated, tracks all actarge
flows and tries to assign them non-conflicting paths if pdesibhe
scheduler maintains boolean state for all links in the nektvwagni-
fying their availability to carry large flows.

For inter-pod traffic, recall that there af&/2)? possible paths
between any given pair of hosts in the network, and each skthe
paths corresponds to a core switch. When the schedulevescei
a notification of a new flow, it linearly searches through tbeec
switches to find one whose corresponding path componentstdo n
include a reserved link. Upon finding such a path, the scheduler
marks those links as reserved, and notifies the relevaniiamel
upper-layer switches in the source pod with the correctanty
port that corresponds to that flow’s chosen path. A similaraeis
performed for intra-pod large flows; this time for an uncowked
path through an upper-layer pod switch. The scheduler garba
collects flows whose last update is older than a given timegrel
ing their reservations. Note that the edge switches do ramkbl
and wait for the scheduler to perform this computation, bititilly
treat a large flow like any other.

4Finding the optimal placement for all large flows requirethei
knowing the source and destination of all flows ahead of time o
path reassignment of existing flows; however, this greedyite
tic gives a good approximation and achieves in simulatiot 9
efficiency for randomly destined flows among 27k hosts.

3.8 Fault-Tolerance

The redundancy of available paths between any pair of hosts
makes the fat-tree topology attractive for fault-tolemngVe pro-
pose a simple failure broadcast protocol that allows sw#cto
route around link- or switch-failures one or two hops doweesin.

In this scheme, each switch in the network maintaifsdirec-
tional Forwarding Detectiorsession (BFD [20]) with each of its
neighbors to determine when a link or neighboring switchsfai
From a fault-tolerance perspective, two classes of faitame be
weathered: (a) between lower- and upper-layer switchedars
pod, and (b) between core and a upper-level switches. §l¢hel
failure of a lower-level switch will cause disconnection tbe di-
rectly connected hosts; redundant switch elements at vedeare
the only way to tolerate such failures. We describe linkufas
here because switch failures trigger the same BFD alertekgitl
the same responses.

3.8.1 Lower- to Upper-layer Switches

A link failure between lower- and upper-level switches effe
three classes of traffic:

1. Outgoing inter- and intra-pod traffic originating frometh
lower-layer switch. In this case the local flow classifiesset
the ‘cost’ of that link to infinity and does not assign it any
new flows, and chooses another available upper-layer switch

2. Intra-pod traffic using the upper-layer switch as an meer
diary. In response, this switch broadcasts a tag notifylhg a
other lower-layer switches in the same pod of the link fail-
ure. These switches would check when assigning new flows
whether the intended output port corresponds to one of those

tags and avoid it if possible.

3. Inter-pod traffic coming into the upper-layer switch. The
core switch connected to the upper-layer switch has it as
its only access to that pod, therefore the upper-layer bwitc
broadcasts this tag to all its core switches signifyingrits i
ability to carry traffic to the lower-layer switch’s subnet.
These core switches in turn mirror this tag to all upper4taye
switches they are connected to in other pods. Finally, the
upper-layer switches avoid the single affected core switch
when assigning new flows to that subnet.

3.8.2 Upper-layer to Core Switches

A failure of a link from an upper-layer switch to a core affect
two classes of traffic:

1. Outgoing inter-pod traffic, in which case the local rogtia-
ble marks the affected link as unavailable and locally ckeos
another core switch.

. Incoming inter-pod traffic. In this case the core switobetal-
casts a tag to all other upper-layer switches it is direatly-c
nected to signifying its inability to carry traffic to thattae
pod As before, these upper-layer switches would avoid that
core switch when assigning flows destined to that pod.

Naturally, when failed links and switches come back up and
reestablish their BFD sessions, the previous steps aresesl/¢o
cancel their effect. In addition, adapting the scheme ofiGe8.7
to accommodate link- and switch-failures is relatively giea The
scheduler marks any link reported to be down as busy or uravai
able, thereby disqualifying any path that includes it fraonsider-
ation, in effect routing large flows around the fault.

SWe rely on end-to-end mechanisms to restart interruptedsflow



3.9 Power and Heat Issues

Besides performance and cost, another major issue thasaris
in data center design is power consumption. The switches tha
make up the higher tiers of the interconnect in data cenygis t
cally consume thousands of Watts, and in a large-scale @ata c
ter the power requirements of the interconnect can be hdadre
kilowatts. Almost equally important is the issue of heasigfiation
from the switches. Enterprise-grade switches generatdenable
amounts of heat and thus require dedicated cooling systems.
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Figure 6: Comparison of power and heat dissipation.

In this section we analyze the power requirements and heat di
sipation in our architecture and compare it with other tgpep-
proaches. We base our analysis on numbers reported in thghswi
data sheets, though we acknowledge that these reportegs\aile
measured in different ways by different vendors and hengenaota
always reflect system characteristics in deployment.
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Figure 7: Comparison of total power consumption and heat
dissipation.

ProCurve 2900 edge switches and 54 Biglron RX-32 switchés (3
in the aggregation and 18 in the core layer). The fat-trebitec
ture employs 2,880 Netgear GSM 7252S switches. We are able to
use the cheaper NetGear switch because we do not requirggiE0 Gi
uplinks (present in the ProCurve) in the fat-tree interamnFig-
ure 7 shows that while our architecture employs more indizid
switches, the power consumption and heat dissipation isrgrp
to those incurred by current data center designs, with 56e8%
power consumption and 56.5% less heat dissipation. Of eptire
actual power consumption and heat dissipation must be mezhsu
in deployment; we leave such a study to our ongoing work.

4. IMPLEMENTATION

To validate the communication architecture describediggh-
per, we built a simple prototype of the forwarding algorighde-
scribed in the previous section. We have completed a prototy
using NetFPGAs [24]. The NetFPGA contains an IPv4 router im-
plementation that leverages TCAMs. We appropriately medifi
the routing table lookup routine, as described in Sectidn Qur
modifications totaled less than 100 lines of additional caie in-
troduced no measureable additional lookup latency, stipgoour
belief that our proposed modifications can be incorporateulex-
isting switches.

To carry out larger-scale evaluations, we also built a pype
using Click, the focus of our evaluation in this paper. C[2K] is a
modular software router architecture that supports impletation
of experimental router designs. A Click router is a grapharfket
processing modules calletementshat perform tasks such as rout-
ing table lookup or decrementing a packet's TTL. When cldhine
together, Click elements can carry out complex router fonetity
and protocols in software.

4.1 TwolLevelTable

We build a new Click elemenffwolLevelTablewhich imple-
ments the idea of a two-level routing table described iniSe&.3.
This element has one input, and two or more outputs. Thenguti
table’s contents are initialized using an input file thategiall the
prefixes and suffixes. For every packet, the TwolLevelTalglmeht
looks up the longest-matching first-level prefix. If thatfpeés ter-
minating, it will immediately forward the packet on that fixés
port. Otherwise, it will perform a right-handed longesttaoiang
suffix search on the secondary table and forward on the gonels
ing port.

This element can replace the central routing table element o
the standards-compliant IP router configuration exampieiged
in [21]. We generate an analogous 4-port version of the Ierou
with the added modification of bandwidth-limiting elemeatsall
ports to emulate link saturation capacity.

4.2 FlowClassifier

To provide the flow classification functionality describedSec-
tion 3.6, we describe our implementation of the Click eletmen

To compare the power requirement for each class of switch, we FlowClassifierthat has one input and two or more outputs. It

normalize the total power consumption and heat dissipdyotne
switch over the total aggregate bandwidth that a switch uapart
in Gbps. Figure 6 plots the average over three differentchwitod-
els. As we can see, 10 GigE switches (the last three on thésk-ax
consume roughly double the Watts per Gbps and dissipatéiypug
three times the heat of commodity GigE switches when nomzedli
for bandwidth.

Finally, we also calculated the estimated total power comsu
tion and heat dissipation for an interconnect that can stippo
roughly 27k hosts. For the hierarchical design, we emplo§ 57

performs simple flow classification based on the source asti-de
nation IP addresses of the incoming packets, such that guése
packets with the same source and destination exit the same po
(to avoid packet reordering). The element has the addeddajoal
minimizing the difference between the aggregate flow capadi

its highest- and lowest-loaded output ports.

Even if the individual flow sizes are known in advance, thidpr
lem is a variant of the NP-hard Bin Packing optimization prob
lem [17]. However, the flow sizes are in fact not knowipriori,
making the problem more difficult. We follow the greedy heuri



tic outlined in Algorithm 3. Every few seconds, the heudsit-
tempts to switch, if needed, the output port of at most threel
to minimize the difference between the aggregate flow capati
its output ports.

/1 Call on every incom ng packet
1 I ncom ngPacket ( packej
2 begin
Hash source and destination IP fields of packet;
/1 Have we seen this flow before?

w

4 if seen(hashjhen

5 Lookup previously assigned past

6 Send packet on poit;

7 else

8 Record the new flovy;

9 Assign f to the least-loaded upward part

10 Send the packet on part

11 end

12 end

/1 Call every t seconds

13 RearrangeFl ows()

14 begin

15 for i=0 to 2do

16 Find upward port®m.qz andp.,;, with the largest and

smallest aggregate outgoing traffic, respectively;
17 CalculateD, the difference betweepy,q. andp,,in;
18 Find the largest flowf assigned to pogb,,q. Whose size
is smaller thanD;

19 if such a flow existthen
20 Switch the output port of flow to p,in;
21 end
22 end
23 end

Algorithm 3: The flow classifier heuristic. For the experi-
ments in Section %,is 1 second.

Recall that the FlowClassifier element is an alternativehi t
two-level table for traffic diffusion. Networks using theslements
would employ ordinary routing tables. For example, theirauta-
ble of an upper pod switch contains all the subnet prefixdgraess
to that pod like before. However, in addition, we add a /0 grifi
match all remaining inter-pod traffic that needs to be evephgad
upwards to the core layer. All packets that match only thefiyr
are directed to the input of the FlowClassifier. The classifies
to evenly distribute outgoing inter-pod flows among its et$pac-
cording to the described heuristic, and its outputs are ectea
directly to the core switches. The core switches do not nesdasa
sifier, and their routing tables are unchanged.

Note that this solution has soft state that is not neededfwect-
ness, but only used as a performance optimization. Thisifikes
is occasionally disruptive, as a minimal number of flows may b
re-arranged periodically, potentially resulting in pacieordering.
However, it is also adaptive to dynamically changing flovesiand
“fair’ in the long-term®

4.3 FlowScheduler

As described in Section 3.7, we implemented the element
FlowReporter which resides in all edge switches, and detects
outgoing flows whose size is larger than a given threshokkritls
regular notifications to the central scheduler about thesivea
large flows.

The FlowScheduleelement receives notifications regarding ac-
tive large flows from edge switches and tries to find uncorgdnd

SFair in the sense that initial placement decisions are eotigt
being corrected since all flows' sizes are continually teaktto ap-
proximate the optimal distribution of flows to ports.

paths for them. To this end, it keeps the binary status ohallinks
in the network, as well as a list of previously placed flows: &y
new large flow, the scheduler performs a linear search amtbng a
equal-cost paths between the source and destination lwofitslt
one whose path components are all unreserved. Upon findalg su
a path, the flow scheduler marks all the component links asved
and sends notifications regarding this flow’s path to the eorexd
pod switches. We also modify the pod switches to proces®thes
port re-assignment messages from the scheduler.

The scheduler maintains two main data structures: a binmaay a
of all the links in the network (a total of * k  (k/2)? links), and
a hashtable of previously placed flows and their assigneldspat
The linear search for new flow placement requires on ave2age
(k/2)* memory accesses, making the computational complexity of
the scheduler to b (k*) for space and(k?) for time. A typical
value fork (the number of ports per switch) is 48, making both
these values manageable, as quantified in Section 5.3.

5. EVALUATION

To measure the total bisection bandwidth of our design, we ge
erate a benchmark suite of communication mappings to eealua
the performance of the 4-port fat-tree using the TwolLevafa
switches, the FlowClassifier and the FlowScheduler. We @oenp
these methods to a standard hierarchical tree with a 1 oversub-
scription ratio, similar to ones found in current data cedsigns.

5.1 Experiment Description

In the 4-port fat-tree, there are 16 hosts, four pods (eath wi
four switches), and four core switches. Thus, there is d tfta
20 switches and 16 end hosts (for larger clusters, the nuwiber
switches will be smaller than the number of hosts). We multi-
plex these 36 elements onto ten physical machines, inteecbed
by a 48-port ProCurve 2900 switch with 1 Gigabit Etherneldin
These machines have dual-core Intel Xeon CPUs at 2.33Gltz, wi
4096KB cache and 4GB of RAM, running Debian GNU/Linux
2.6.17.3. Each pod of switches is hosted on one machine; each
pod’s hosts are hosted on one machine; and the two remairang m
chines run two core switches each. Both the switches andaiéts h
are Click configurations, running in user level. All virtdialks be-
tween the Click elements in the network are bandwidth-Bahito
96Mbit/s to ensure that the configuration is not CPU limited.

For the comparison case of the hierarchical tree network, we
have four machines running four hosts each, and four maghine
each running four pod switches with one additional uplinkeT
four pod switches are connected to a 4-port core switch ngnoin
a dedicated machine. To enforce the 3.6:1 oversubscriptidine
uplinks from the pod switches to the core switch, these liaes
bandwidth-limited to 106.67Mbit/s, and all other links diraited
to 96Mbit/s.

Each host generates a constant 96Mbit/s of outgoing traffec.
measure the rate of its incoming traffic. The minimum aggega
coming traffic of all the hosts for all bijective communi@atimap-
pings is the effective bisection bandwidth of the network.

5.2 Benchmark Suite

We generate the communicating pairs according to the fatigw
strategies, with the added restriction that any host reseiraffic
from exactly one host (i.e. the mapping is 1-to-1):

e Random: A host sends to any other host in the network with
uniform probability.

e Stride): A host with indexz will send to the host with index
(z + 7) mod 16.



Test Tree | Two-Level Table | Flow Classification | Flow Scheduling
Random 53.4% 75.0% 76.3% 93.5%
Stride (1) 100.0% 100.0% 100.0% 100.0%
Stride (2) 78.1% 100.0% 100.0% 99.5%
Stride (4) 27.9% 100.0% 100.0% 100.0%
Stride (8) 28.0% 100.0% 100.0% 99.9%
Staggered Prob (1.0, 0.0) 100.0% 100.0% 100.0% 100.0%
Staggered Prob (0.5, 0.3) 83.6% 82.0% 86.2% 93.4%
Staggered Prob (0.2, 0.3) 64.9% 75.6% 80.2% 88.5%
Worst cases:

Inter-pod Incoming 28.0% 50.6% 75.1% 99.9%
Same-ID Outgoing 27.8% 38.5% 75.4% 87.4%

Table 2: Aggregate Bandwidth of the network, as a percentagef ideal bisection bandwidth for the Tree, Two-Level Table,Flow
Classification, and Flow Scheduling methods. The ideal biséon bandwidth for the fat-tree network is 1.536Gbps.

e Staggered ProhSubnet P, PodP): Where a host will send
to another host in its subnet with probabili$ubnet P, and
to its pod with probabilityPod P, and to anyone else with
probabilityl — SubnetP — PodP.

e Inter-pod Incoming: Multiple pods send to different hosts i

The FlowScheduler, on the other hand, acts on global knaeled
and tries to assign large flows to disjoint paths, therebyesgiy
93% of the ideal bisection bandwidth for random communication
mappings, and outperforming all other methods in all thechen
mark tests. The use of a centralized scheduler with knoveledg
all active large flows and the status of all links may be infdasor

the same pod, and all happen to choose the same core switchjarge arbitrary networks, but the regularity of the fagttepology

That core switch’s link to the destination pod will be ovéysu
scribed. The worst-cadecal oversubscription ratio for this
caseigk —1): 1.

e Same-ID Outgoing: Hosts in the same subnet send to dif-

ferent hosts elsewhere in the network such that the destina-

tion hosts have the same host ID byte. Static routing tech-
niques force them to take the same outgoing upward port.
The worst-case ratio for this case(is/2) : 1. This is the
case where the FlowClassifier is expected to improve perfor-
mance the most.

5.3 Results

Table 2 shows the results of the above described experiments

These results are averages across 5 runs/permutatiorestgnich-
mark tests, over 1 minute each. As expected, for any ali-jme
communication pattern, the traditional tree saturate$irtke to the
core switch, and thus achieves aro@#¥ of the ideal bandwidth
for all hosts in that case. The tree performs significantlyeoehe
closer the communicating pairs are to each other.

The two-level table switches achieve approximat&i§ of the
ideal bisection bandwidth for random communication patier
This can be explained by the static nature of the tables; watsh
on any given subnet havesa% chance of sending to hosts with the
same host ID, in which case their combined throughput isdthlv
since they are forwarded on the same output port. This mélees t
expectation of both to b&%. We expect the performance for
the two-level table to improve for random communicationhwit
increasingk as there will be less likelihood of multiple flows col-
liding on a single link with highek. The inter-pod incoming case
for the two-level table gives 80% bisection bandwidth; however,
the same-ID outgoing effect is compounded further by camnyes
in the core router.

Because of its dynamic flow assignment and re-allocatioa, th
flow classifier outperforms both the traditional tree and tilve-
level table in all cases, with a worst-case bisection badthvof
approximately75%. However, it remains imperfect because the
type of congestion it avoids is entirely local; it is possild cause
congestion at a core switch because of routing decision i€l
or two hops upstream. This type of sub-optimal routing oscur
because the switches only have local knowledge available.

greatly simplifies the search for uncontended paths.

In a separate test, Table 3 shows the time and space requieme
for the central scheduler when run on a modestly-provigione
2.33GHz commodity PC. For varying we generated fake place-
ment requests (one per host) to measure the average timactesgr
a placement request, and the total memory required for the-ma
tained link-state and flow-state data structures. For aor&twf
27k hosts, the scheduler requires a modest 5.6MB of mematy an
could place a flow in under 0.8ms.

Avg Time/ | Link-state | Flow-state
k| Hosts Req (us) Memory Memory
4 16 50.9 64 B 4 KB

16 | 1,024 55.3 4 KB 205 KB
24 | 3,456 116.8 14 KB 691 KB
32| 8,192 237.6 33 KB 1.64 MB
48 | 27,648 754.43 111 KB 5.53 MB

Table 3: The flow scheduler’s time and memory requirements.

6. PACKAGING

One drawback of the fat-tree topology for cluster inter@msis is
the number of cables needed to interconnect all the machires
trivial benefit of performing aggregation with 10 GigE swiés is
the factor of 10 reduction in the number of cables requireicaias-
fer the same amount of bandwidth up the hierarchy. In ourgseg
fat-tree topology, we do not leverage 10 GigE links or swéh
both because non-commodity pieces would inflate cost ande mo
importantly, because the fat-tree topology critically €egs upon
a large fan-out to multiple switches at each layer in thedniry to
achieve its scaling properties.

Acknowledging that increased wiring overhead is inherertihé
fat-tree topology, in this section we consider some pacigtgch-
nigues to mitigate this overhead. In sum, our proposed pgacka
ing technique eliminates most of the required externalngiand
reduces the overall length of required cabling, which im tsim-
plifies cluster management and reduces total cost. Morgtvisr
method allows for incremental deployment of the network.
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Figure 8: Proposed packaging solution. The only external ca
bles are between the pods and the core nodes.

We present our approach in the context of a maximum-capacity
27,648-node cluster leveraging 48-port Ethernet switcigeshe
building block of the fat-tree. This design generalizes ltsers
of different sizes. We begin with the design of individuatipdhat
make up the replication unit for the larger cluster, see FEdi
Each pod consists of 576 machines and 48 individual 48-pgfE G
switches. For simplicity, we assume each end host takes ep on
rack unit (LRU) and that individual racks can accommodatmé8
chines. Thus, each pod consists of 12 racks with 48 machaws e

We place the 48 switches that make up the first two layers of the
fat-tree in each pod in a centralized rack. However, we asshm
ability to package the 48 switches into a single monolithiit with
1,152 user-facing ports. We call this thed switch Of these ports,
576 connect directly to the machines in the pod, correspontti
connectivity at the edge. Another 576 ports fan out to on¢ qor
each of the 576 switches that make up the core layer in the fat-
tree. Note that the 48 switches packaged in this mannerlgctua
have 2,304 total portsig * 48). The other 1,152 ports are wired
internally in the pod switch to account for the required iatanect
between the edge and aggregation layers of the pod (seeeRByur

We further spread the 576 required core switches that foem th
top of the fat-tree across the individual pods. Assumingtal wf
48 pods, each will house 12 of the required core switchesh®f t
576 cables fanning out from each pod switch to the core, 1P wil
connect directly to core switches placed nearby in the samde p
The remaining cables would fan out, in sets of 12, to coreches
housed in remote pods. Note that the fact that cables mowetsn s
of 12 from pod to pod and in sets of 48 from racks to pod switches
opens additional opportunities for appropriate “cablekpging” to
reduce wiring complexity.

Finally, minimizing total cable length is another importaon-
sideration. To do so, we place racks around the pod switclven t
dimensions, as shown in Figure 8 (we do not consider three di-
mensional data center layouts). Doing so will reduce cahigths
relative to more “horizontal” layouts of individual racks & pod.
Similarly, we lay pods out in & x 7 grid (with one missing spot)

to accommodate all 48 pods. Once again, this grid layoutresll
duce inter-pod cabling distance to appropriate core se#cnd
will support some standardization of cable lengths and agiclg
to support inter-pod connectivity.

We also considered an alternate design that did not colhect t
switches into a central rack. In this approach, two 48-pwitches
would be distributed to each rack. Hosts would intercontette
switches in sets of 24. This approach has the advantagefirey
much shorter cables to connect hosts to their first hop svaitch
for eliminating these cables all together if the racks wegpre-
priately internally packaged. We discarded this approastabse
we would lose the opportunity to eliminate the 576 cable$iwit
each pod that interconnect the edge and aggregation laykese
cables would need to crisscross the 12 racks in each podhgaddi
significant complexity.

7. RELATED WORK

Our work in data center network architecture necessarilgdu
upon work in a number of related areas. Perhaps most closely
related to our efforts are various efforts in building sbéanter-
connects, largely coming out of the supercomputer and welgsi
parallel processing (MPP) communities. Many MPP intereats
have been organized as fat-trees, including systems frankifig
Machines [31, 22] and SGI [33]. Thinking Machines employed
pseudo-random forwarding decisions to perform load bahgnc
among fat-tree links. While this approach achieves good hd-
ancing, it is prone to packet reordering. Myrinet switchglsalso
employ fat-tree topologies and have been popular for akimsed
supercomputers. Myrinet employs source routing based etepr
termined topology knowledge, enabling cut-through loveraty
switch implementations. Hosts are also responsible fail loel-
ancing among available routes by measuring round-tripées.
Relative to all of these efforts, we focus on leveraging cadm
ity Ethernet switches to interconnect large-scale clgstowing
techniques for appropriate routing and packaging.

InfiniBand [2] is a popular interconnect for high-perfornaan
computing environments and is currently migrating to dasater
environments. InfiniBand also achieves scalable bandwidihg
variants of Clos topologies. For instance, Sun recentlyanoed
a 3,456-port InfiniBand switch built from 720 24-port InfirdBd
switches arranged in a 5-stage fat-tree [4]. However, IBénd
imposes its own layer 1-4 protocols, making Ethernet/IFFhire
attractive in certain settings especially as the price &8s Eth-
ernet continues to drop.

Another popular MPP interconnect topology is a Torus, fer in
stance in the BlueGene/L [5] and the Cray XT3 [32]. A torus di-
rectly interconnects a processor to some number of its heigh
in a k-dimensional lattice. The number of dimensions determines
the expected number of hops between source and destinktian.
MPP environment, a torus has the benefit of not having any dedi
cated switching elements along with electrically simplemp-to-
point links. In a cluster environment, the wiring complgxdf a
torus quickly becomes prohibitive and offloading all rogtiand
forwarding functions to commodity hosts/operating sysésityp-
ically impractical.

Our proposed forwarding techniques are related to existing
routing techniques such as OSPF2 and Equal-Cost Multipath
(ECMP) [25, 30, 19]. Our proposal for multi-path leverages
particular properties of a fat-tree topology to achieve dyper-
formance. Relative to our work, ECMP proposes three claskes
stateless forwarding algorithms: (i) Round-robin and mnita-
tion; (ii) Region splitting where a particular prefix is gghto two
with a larger mask length; and (iii) A hashing technique #ydits



flows among a set of output ports based on the source and desti- [9] L. Chisvin and R. J. Duckworth. Content-Addressable and

nation addresses. The first approach suffers from potguaizket
reordering issues, especially problematic for TCP. Thersgap-
proach can lead to a blowup in the number of routing prefixe
In a network with 25,000 hosts, this will require approxieigat
600,000 routing table entries. In addition to increasingtcthe
table lookups at this scale will incur significant latencyor Fhis
reason, current enterprise-scale routers allow for a maxinof

16-way ECMP routing. The final approach does not account for

flow bandwidth in making allocation decisions, which cancgly
lead to oversubscription even for simple communicationepas.

8. CONCLUSIONS

Bandwidth is increasingly the scalability bottleneck imgle:
scale clusters. Existing solutions for addressing thiddmmtck cen-
ter around hierarchies of switches, with expensive, nanfoodity
switches at the top of the hierarchy. At any given point ingtjrthe
port density of high-end switches limits overall clustezesivhile
at the same time incurring high cost. In this paper, we ptesen
data center communication architecture that leveragesnouatity
Ethernet switches to deliver scalable bandwidth for |asgale
clusters. We base our topology around the fat-tree and tresept
techniques to perform scalable routing while remainingkiacd
compatible with Ethernet, IP, and TCP.

Overall, we find that we are able to deliver scalable bandwadit
significantly lower cost than existing techniques. Whilditidnal
work is required to fully validate our approach, we beliehatt
larger numbers of commodity switches have the potentialige d
place high-end switches in data centers in the same way ltiet ¢
ters of commodity PCs have displaced supercomputers fbrdrgl
computing environments.
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