
Mapping the Expansion of Google’s Serving Infrastructure

⇤

Matt Calder
University of Southern California

Xun Fan
USC/ISI

Zi Hu
USC/ISI

Ethan Katz-Bassett
University of Southern California

John Heidemann
USC/ISI

Ramesh Govindan
University of Southern California

ABSTRACT
Modern content-distribution networks both provide bulk con-
tent and act as “serving infrastructure” for web services in
order to reduce user-perceived latency. Serving infrastruc-
tures such as Google’s are now critical to the online economy,
making it imperative to understand their size, geographic
distribution, and growth strategies. To this end, we develop
techniques that enumerate IP addresses of servers in these
infrastructures, find their geographic location, and identify
the association between clients and clusters of servers. While
general techniques for server enumeration and geolocation
can exhibit large error, our techniques exploit the design and
mechanisms of serving infrastructure to improve accuracy.
We use the EDNS-client-subnet DNS extension to measure
which clients a service maps to which of its serving sites. We
devise a novel technique that uses this mapping to geolocate
servers by combining noisy information about client loca-
tions with speed-of-light constraints. We demonstrate that
this technique substantially improves geolocation accuracy
relative to existing approaches. We also cluster server IP ad-
dresses into physical sites by measuring RTTs and adapting
the cluster thresholds dynamically. Google’s serving infras-
tructure has grown dramatically in the ten months, and we
use our methods to chart its growth and understand its con-
tent serving strategy. We find that the number of Google
serving sites has increased more than sevenfold, and most of
the growth has occurred by placing servers in large and small
ISPs across the world, not by expanding Google’s backbone.

⇤The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. Any opinions, findings and
conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of SSC-Pacific.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
IMC’13 October 23-25, Barcelona, Spain.
Copyright 2013 ACM 978-1-4503-1953-9/13/10
http://dx.doi.org/10.1145/2504730.2504754 ...$15.00.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Network
Architecture and Design; C.4 [Performance of Systems]:
Measurement techniques

Keywords
CDN, DNS, Geolocation, Measurement

1. INTRODUCTION
Internet tra�c has changed considerably in recent years,

as access to content is increasingly governed by web serving
infrastructures. These consist of decentralized serving sites
that contain one or more front-end servers. Clients of these
infrastructures are directed to nearby front-ends, which ei-
ther directly serve static content (e.g., video or images from
a content distribution network like Akamai), or use split
TCP connections to relay web acccess requests to back-end
datacenters (e.g., Google’s search infrastructure) [7, 11,28].

Web service providers employ serving infrastructures to
optimize user-perceived latency [31]. They invest heavily in
building out these infrastructures and develop sophisticated
mapping algorithms to direct clients to nearby front-ends. In
recent months, as we discuss later, Google’s serving infras-
tructure has increased sevenfold in size. Given the increas-
ing economic importance of these serving infrastructures, we
believe it is imperative to understand the content serving
strategies adopted by large web service providers, especially
Google. Specifically, we are interested in the geographic and
topological scope of serving infrastructures, their expansion,
and how client populations impact build-out of the serving
infrastructure.

Several prior studies have explored static snapshots of
content-distribution networks [2, 14, 26], often focusing on
bulk content delivery infrastructures [14], new mapping met-
hodology [2], or new DNS selection methods [26]. In con-
trast, our work focuses on web serving infrastructures, devel-
ops more accurate methods to enumerate and locate front-
ends and serving sites, and explores how one infrastructure,
Google’s, grows over ten months of active buildout.

The first contribution of this paper is a suite of meth-
ods to enumerate the IP addresses of front-ends, geolocate
them, and cluster them into serving sites. Our methods ex-
ploit mechanisms used by serving infrastructures to optimize
client-perceived latency. To enumerate the IP addresses, we
use the EDNS-client-subnet prefix extension [9] that some
serving infrastructures, including Google, use to more ac-
curately direct clients to nearby front-ends. A front-end

IP address may sit in front of many physical server ma-
chines. In this work, we focus on mapping out the front-
end IP addresses, but we do not attempt to determine the
number of physical servers. We develop a novel geoloca-
tion technique and show that it is substantially more accu-
rate than previously proposed approaches. Our technique,
client-centric geolocation (CCG), exploits the sophisticated
strategies providers use to map customers to their nearest
serving sites. CCG geolocates a server from the geographic
mean of the (possibly noisy) locations for clients associated
with that server, after using speed-of-light constraints to dis-
card misinformation. While EDNS-client-subnet has been
examined before [23,26], we are the first to use EDNS-client-
subnet to (1) completely enumerate a large content delivery
infrastructure; (2) demonstrate its benefit over existing enu-
meration techniques; and (3) geolocate the infrastructure.
We also cluster the front-end IP addresses into serving sites,
adding dynamic thresholding and RTT-based fingerprinting
to current methods. These changes provide enough resolu-
tion to distinguish di↵erent sites in the same city. These
sites represent unique network locations, a view that IP ad-
dresses, prefixes, or ASes can obscure.

Our second major contribution is a detailed study of Goo-
gle’s web serving infrastructure and its recent expansion over
the last ten months. To our knowledge, we are the first
to observe rapid growth of the serving infrastructure of a
major content provider. We find that Google’s serving in-
frastructure has grown sevenfold in the number of front-end
sites, with serving sites deployed in over 100 countries and
in 768 new ASes. Its recent growth strategy has been to
move away from serving clients from front-ends deployed on
its own backbone and towards serving from front-ends de-
ployed in lower tiers of the AS hierarchy; the number of /24
prefixes served o↵ Google’s network more than quadrupled
during the expansion. Furthermore, these new serving sites,
predictably, have narrow customer cones, serving only the
customers of the AS the site is deployed in. Finally, we find
that the expansion has noticeably shifted the distribution
of geographic distances from the client to its nearest front-
end server, and that this shift can also reduce the error in
geolocating front-ends using client locations alone, but not
enough to obviate the need for CCG’s filtering techniques.

An explicit non-goal of this work is to estimate the in-
crease in Google’s serving capacity: in placing front-ends
in ISPs around the world, Google’s expansion presumably
focused on improving the latency of Web accesses through
split-TCP connections [7, 11, 28], so proximity of front-ends
to clients (this paper), and good path performance between
clients and front-ends (future work) were more important
than capacity increases.

2. BACKGROUND
CDNs and Serving Infrastructures. Adding even a
few hundreds of milliseconds to a webpage load time can
cost service providers users and business [19,33], so providers
seek to optimize their web serving infrastructure to deliver
content quickly to clients. Whereas once a website might
have been served from a single location to clients around
the world, today’s major services rely on much more com-
plicated and distributed infrastructure. Providers replicate
their services at serving sites around the world and try to
serve a client from the closest one [17]. Content delivery

networks (CDNs) initially sped delivery by caching static
content and some forms of dynamic content within or near
client networks.

Today, providers use this type of distributed infrastruc-
ture to speed the delivery of dynamic personalized content
and responses to queries. To do so, providers direct clients
to serving sites in or near the clients’ networks. A client’s
TCP connection terminates at a front-end server in the serv-
ing site, but the front-end proxies the request back to one
of the provider’s large datacenters [28]. This arrangement
has a number of potential advantages compared to direct-
ing the client directly to the datacenter. For example, the
client’s latency to the front-end is less than the client’s la-
tency to the datacenter, allowing TCP to recover faster after
loss, the primary cause of suboptimal performance. More-
over, the front-end can multiplex many clients into a high
throughput connection to the datacenter.

In these types of serving infrastructures, di↵erent classes
of serving sites may serve di↵erent clients. Of course, the
provider will still serve clients near a datacenter directly
from that datacenter. But clients in networks that host
a serving site are served locally. Front-ends deployed in
clients’ ISPs usually serve only clients of that ISP (or the
ISP’s customers), not clients in the ISP’s providers or peers.

DNS-based Redirection. Serving infrastructures use the
Domain Name System (DNS) to direct clients to appropriate
serving sites and front-end servers. When a client queries
DNS to resolve a name associated with a service, the service
returns an IP address for a front-end it believes is near the
client. Traditionally, at resolution time, however, the service
only knows the IP address of the client’s resolver and not
of the client itself, leading to two main complications. The
resolver may be far from the clients it serves, and so the
server closest to the resolver may not be a good choice for
the client. Existing techniques can allow many services to
discover which clients use a particular resolver [22], enabling
services to direct a resolver based on the clients that use it.
However, some resolvers serve clients with diverse locations;
for these cases no server will be well-positioned for all clients
of that resolver.

To overcome this hurdle and provide quality DNS redirec-
tions for clients, a number of Internet providers and CDNs
proposed EDNS-client-subnet [9]. EDNS-client-subnet is
an experimental extension DNS (using its EDNS extension
mechanism) allowing clients to include a portion of their IP
address in their request. This information passes through
possible recursive resolvers and is provided to the authorita-
tive DNS server, allowing a service to select content servers
based on the client location, rather resolver location or in-
ferred client location.

3. GOAL AND APPROACH
Our goal is to understand content serving strategies for

large IPv4-based serving infrastructures, especially that of
Google. Serving strategies are defined by how many serv-
ing sites and front-end servers a serving infrastructure has,
where the serving sites are located geographically and topo-
logically (i.e., within which ISP), and which clients access
which serving sites. Furthermore, services continuously evolve
serving strategies, so we are also interested in measuring the
evolution of serving infrastructures. Of these, Google’s serv-

ing infrastructure is arguably one of the most important, so
we devote significant attention to this infrastructure.

To this end, we develop novel measurement methods to
enumerate front-end servers, geolocate serving sites, and
cluster front-end servers into serving sites. The challenge
in devising these measurement methods is that serving in-
frastructures are large, distributed entities, with thousands
of front-end servers at hundreds of serving sites spread across
dozens of countries. A brute force approach to enumerating
serving sites would require perspectives from a very large
number of topological locations in the Internet, much larger
than the geographic distribution provided by research mea-
surement infrastructures like PlanetLab. Moreover, existing
geolocation methods that rely on DNS naming or geoloca-
tion databases do not work well on these serving infrastruc-
tures where location-based DNS naming conventions are not
consistently employed.

While our measurement methods use these research in-
frastructures for some of their steps, the key insight in the
design of the methods is to leverage mechanisms used by
serving infrastructures to serve content. Because we design
them for serving infrastructures, these mechanisms can enu-
merate and geolocate serving sites more accurately than ex-
isting approaches, as we discuss below.

Our method to enumerate all front-end server IP addresses
within the serving infrastructure uses the EDNS-client-subnet
extension. As discussed in Section 2, Google (and some
other serving infrastructures) use this extension to address
the problem of geographically distributed clients using a re-
solver that prevents the serving infrastructure from opti-
mally directing clients to front-ends. We use this extension
to enumerate front-end IP addresses of a serving infrastruc-
ture from a single location: this extension can emulate DNS
requests coming from every active prefix in the IP address
space, e↵ectively providing a very large set of vantage points
for enumerating front-end IP addresses.

To geolocate front-end servers and serving centers, we
leverage another mechanism that serving infrastructures have
long deployed, namely sophisticated mapping algorithms that
maintain performance maps to clients with the goal of di-
recting clients to the nearest available server. These algo-
rithms have the property that clients that are directed to
the server are likely to be topologically, and probably geo-
graphically, close to the server. We exploit this property to
geolocate front-end servers: essentially, we approximate the
location of a server by the geographical mean of client loca-
tions, a technique we call client-centric geolocation or CCG.
We base our technique on this intuition, but we compensate
for incorrect client locations and varying density of server
deployments.

Finally, we leverage existing measurement infrastructure
(PlanetLab) to cluster front-ends into serving sites. We
model the relative location of a front-end server as a vector
of round-trip-times to many vantage points in the measure-
ment infrastructure, then employ standard clustering algo-
rithms in this high-dimensional space.

Using these measurement methods over a ten month pe-
riod, we are able to study Google’s serving infrastructure
and its evolution. Coincidentally, Google’s infrastructure
has increased sevenfold over this period, and we explore
salient properties of this expansion: where (geographically
or topologically) most of the expansion has taken place, and
how it has impacted clients.

There are interesting aspects of Google’s deployment that
we currently lack means to measure. In particular, we do
not know the query volume from di↵erent clients, and we do
not know the latency from clients to servers (which may or
may not correlate closely with the geographic distance that
we measure). We have left exploration of these to future
work. We do possess information about client a�nity to
front-end servers, and how this a�nity evolves over time
(this evolution is a function of improvements in mapping
algorithms as well as infrastructure rollout): we have left a
study of this to future work.

4. METHODOLOGY
In this section, we discuss the details of our measurement

methods for enumerating front-ends, geolocating them, and
clustering them into serving sites.

4.1 Enumerating Front-Ends
Our first goal is to enumerate the IP addresses of all front-

ends within a serving infrastructure. We do not attempt to
identify when multiple IP addresses belong to one computer,
or when one address fronts for multiple physical computers.
An IP addresses can front hardware from a small satellite
proxy to a huge datacenter, so careful accounting of public
IP addresses is not particularly meaningful.

Since most serving infrastructures use mapping algorithms
and DNS redirection, one way to enumerate front-ends is to
issue DNS requests from multiple vantage points. Each re-
quest returns a front-end near the querying vantage point.
The completeness of this approach is a function of the num-
ber of vantage points.

We emulate access to vantage points around the world
using the proposed client-subnet DNS extension using the
EDNS extension mechanism (we call this approach EDNS-
client-subnet). As of May 2013, EDNS-client-subnet is sup-
ported by Google, CacheFly, EdgeCast, ChinaCache and
CDN 77. We use a patch to dig1 that adds support for
EDNS-client-subnet, allowing the query to specify the client
prefix. In our measurements of Google, we issue the queries
through Google Public DNS’s public recursive nameservers,
which passes them on to the service we are mapping. The
serving infrastructure then returns a set of front-ends it be-
lieves is best suited for clients within the client prefix.

EDNS-client-subnet allows our single measurement site to
solicit the recommended front-end for each specified client
prefix. Using EDNS-client-subnet, we e↵ectively get a large
number of vantage points We query using client prefixes
drawn from 10 million routable /24 prefixes obtained Route-
Views BGP. Queries against Google using this approach
take about a day to enumerate.

4.2 Client-centric Front-End Geolocation
Current geolocation approaches are designed for general-

ity, making few or no assumptions about the target. Unfor-
tunately, this generality results in poor performance when
geolocating serving infrastructure. For example, MaxMind’s
free database [24] places all Google front-ends in Mountain
View, the company’s headquarters. (MaxMind may have
more accurate locations for IPs belonging to eyeball ISPs,
but IPs belonging to transit ISPs will have poor geolocation
results.) General approaches such as CBG [12] work best

1http://wilmer.gaa.st/edns-client-subnet/

when vantage points are near the target [16], but front-ends
in serving infrastructures are sometimes in remote locations,
far from public geolocation vantage points. Techniques that
use location hints in DNS names of front-ends or routers
near front-ends can be incomplete [14].

Our approach combines elements of prior work, adding
the observation that today’s serving infrastructures use priv-
ileged data and advanced measurement techniques to try
to direct clients to nearby front-ends [35]. While we bor-
row many previously proposed techniques, our approach is
unique and yields better results.

We base our geolocation technique on two main assump-
tions. First, a serving infrastructure tries to direct clients to
a nearby front-end, although some clients may be directed to
distant front-ends, either through errors or a lack of deploy-
ment density. Second, geolocation databases have accurate
locations for many clients, at least at country or city granu-
larity, but also have poor granularity or erroneous locations
for some clients.

Combining these two assumptions, our basic approach to
geolocation, called client-centric geolocation (CCG), is to (1)
enumerate the set of clients directed to a front-end, (2) query
a geolocation database for the locations of those clients, and
(3) assume the front-ends are located geographically close
to most of the clients.

To be accurate, CCG must overcome challenges inherent
in each of these three steps of our basic approach:
1. We do not know how many requests di↵erent prefixes send

to a serving infrastructure. If a particular prefix does not
generate much tra�c, the serving infrastructure may not
have the measurements necessary to direct it to a nearby
front-end, and so may direct it to a distant front-end.

2. Geolocation databases are known to have problems in-
cluding erroneous locations for some clients and poor lo-
cation granularity for other clients.

3. Some clients are not near the front-end that serve them,
for a variety of reasons. For example, some front-ends
may serve only clients within certain networks, and some
clients may have lower latency paths to front-ends other
than the nearest ones. In other cases, a serving infrastruc-
ture may direct clients to a distant front-end to balance
load or may mistakenly believe that the front-end is near
the client. Or, a serving infrastructure may not have any
front-ends near a particular client.
We now describe how CCG addresses these challenges.

Selecting client prefixes to geolocate a front-end. To
enumerate front-ends, CCG queries EDNS using all routable
/24 prefixes. However, this approach may not be accurate
for geolocating front-ends, for the following reason. Al-
though we do not know the details of how a serving in-
frastructure chooses which front-end to send a client to, we
assume that it attempts to send a client to a nearby front-
end and that the approach is more likely to be accurate for
prefixes hosting clients who query the service a lot than for
prefixes that do not query the service, such as IP addresses
used for routers.

To identify which client prefixes can provide more accu-
rate geolocation, CCG uses traceroutes and logs of users
of a popular BitTorrent extension, Ono [8]. From the user
logs we obtain a list of 2.6 million client prefixes observed
to participate in BitTorrent swarms with users. We assume
that a serving infrastructure is likely to also observe requests
from these prefixes. We emphasize that we use Ono-derived

traceroutes to obtain IP prefixes for use with EDNS-client-
subnet; other methods for obtaining such prefixes would be
equally applicable to our setting, and Ono itself is not nec-
essary for CCG in the sense that we do not make use of the
actual platform.

Overcoming problems with geolocation databases.
CCG uses two main approaches to overcome errors and lim-
itations of geolocation databases. First, we exclude locations
that are clearly inaccurate, based on approaches described
in the next paragraph. Second, we combine a large set of
client locations to locate each front-end and assume that the
majority of clients have correct locations that will dominate
the minority of clients with incorrect locations. To generate
an initial set of client locations to use, CCG uses a BGP ta-
ble snapshot from RouteViews [25] to find the set of prefixes
currently announced, and breaks these routable prefixes up
into 10 million /24 prefixes.2 It then queries MaxMind’s Ge-
oLiteCity database to find locations for each /24 prefix. We
chose MaxMind because it is freely available and is widely
used in research.

CCG prunes three types of prefix geolocations as untrust-
worthy. First, it excludes prefixes for which MaxMind in-
dicates it has less than city-level accuracy. This heuristic
excludes 1,966,081 of the 10 million prefixes (216,430 of the
2.6 million BitTorrent client prefixes). Second, it uses a
dataset that provides coarse-grained measurement-based ge-
olocations for every IP address to exclude prefixes that in-
clude addresses in multiple locations [13]. Third, it issues
ping measurements from all PlanetLab3 locations to five re-
sponsive addresses per prefix, and excludes any prefixes for
which the MaxMind location would force one of these ping
measurements to violate the speed of light. Combined, these
exclude 8,396 of the 10 million prefixes (2,336 of the 2.6 mil-
lion BitTorrent client prefixes).

With these problematic locations removed, and with sets
of prefixes likely to include clients, CCG assumes that both
MaxMind and the serving infrastructure we are mapping
likely have good geolocations for most of the remaining pre-
fixes, and that the large number of accurate client geoloca-
tions should overwhelm any remaining incorrect locations.

Dealing with clients directed to distant front-ends.
Even after filtering bad geolocations, a client may be geo-
graphically distant from the front-end it is mapped to, for
two reasons: the serving infrastructure may direct clients to
distant front-ends for load-balancing, and in some geograph-
ical regions, the serving infrastructure deployment may be
sparse so that the front-end nearest to a client may still be
geographically distant.

To prune these clients, CCG first uses speed-of-light con-
straints, as follows. It issues pings to the front-end from
all PlanetLab nodes and use the speed of light to estab-
lish loose constraints on where the front-end could possibly
be [12]. When geolocating the front-end, CCG excludes any
clients outside of this region. This excludes 4 million out of
10 million prefixes (1.1 million out of 2.6 million BitTorrent
client prefixes). It then estimates the preliminary location
for the front-end as the weighted average of the locations of

2In Section 5.1, we verify that /24 is often the correct prefix
length to use.
3As we show later, we have found that PlanetLab contains
a su�cient number of vantage points for speed-of-light fil-
tering to give accurate geolocation.

10M prefixes 2.6M prefixes
No city-level accuracy -1.9M (19.5%) -216K (8.1%)
Multiple locations and
client location speed-of-
light violations

-8K (.08%) -2K (.08%)

Front-End location
speed-of-light violations

-4M (40%) -1.1M (41%)

Outside one standard
deviation

-392K (3.9%) -214K (8%)

Remaining 3.7M (37%) 1M (39%)

Table 1: Summary of the number of client prefixes ex-
cluded from CCG by filtering. 10M is the 10 million client
prefix set and 2.6M is the 2.6 million BitTorrent client
prefix set.

the remaining client prefixes, then refines this estimate by
calculating the mean distance from the front-end to the re-
maining prefixes, and finds the standard deviation from the
mean of the client-to-front-end distances. Our final filter
excludes clients that are more than a standard deviation be-
yond the mean distance to the front-end, excluding 392,668
out of 10 million prefixes (214,097 out of 2.6 million BitTor-
rent client prefixes).

Putting it all together. In summary, CCG works as
follows. It first lists the set of prefixes directed to a front-
end, then filters out all prefixes except those observed to
host BitTorrent clients. Then, it uses MaxMind to geolo-
cate those remaining client prefixes, but excludes: prefixes
without city-level MaxMind granularity; prefixes that in-
clude addresses in multiple locations; prefixes for which the
MaxMind location is not in the feasible actual location based
on speed-of-light measurements from PlanetLab and M-Lab;
and prefixes outside the feasible location for the front-end.
(Table 1 shows the number of prefixes filtered at each step.)
Its preliminary estimate for the front-end location is the ge-
ographic mean of the remaining clients that it serves. Cal-
culating the distances from remaining clients to this prelim-
inary location, CCG further exclude any clients more than
a standard deviation beyond the mean distance in order to
refine our location estimate. Finally, it locates the front-end
as being at the geographic mean of the remaining clients
that it serves.

4.3 Clustering front-ends
As we discuss later, CCG is accurate to within 10s of kilo-

meters. In large metro areas, some serving infrastructures
may have multiple serving sites, so we develop a methodol-
ogy to determine physically distinct serving sites. We cluster
by embedding each front-end in a higher dimensional met-
ric space, then clustering the front-end in that metric space.
Such an approach has been proposed elsewhere [21, 27, 38]
and our approach di↵ers from prior work in using better
clustering techniques and more carefully filtering outliers.

In our technique, we map each front-end to a point in high
dimensional space, where the coordinates are RTTs from
landmarks (in our case, 250 PlanetLab nodes at di↵erent
geographical sites). The intuition underlying our approach
is that two front-ends at the same physical location should
have a small distance in the high-dimensional space.

Each coordinate is the smallest but one RTT of 8 consec-
utive pings (a large enough sample size to obtain a robust
estimate of propagation latency), and we use the Manhattan

IPs /24s ASes Countries
Open resolver 23939 1207 753 134
EDNS-client-subnet 28793 1445 869 139
Benefit +20% +20% +15% +4%

Table 2: Comparison of Google front-ends found by
EDNS and open resolver. EDNS providers significant
benefit over the existing technique.

distance between two points for clustering (an exploration of
other distance norms is left to future work). In computing
this Manhattan distance, we (a) omit coordinates for which
we received fewer than 6 responses to pings and (b) omit
the highest 20% of coordinate distances to account for out-
liers caused by routing failures, or by RTT measurements
inflated by congestion. Finally, we normalize this Manhat-
tan distance. Despite these heuristic choices, our clustering
method works well, as shown in Section 5.3.

The final step is to cluster front-ends by their pairwise
normalized Manhattan distance. We use the OPTICS al-
gorithm [3] for this. OPTICS is designed for spatial data,
and, instead of explicitly clustering points, it outputs an or-
dering of the points that captures the density of points in
the dataset. As such, OPTICS is appropriate for spatial
data where there may be no a priori information about ei-
ther the number of clusters or their size, as is the case for
our setting. In the output ordering, each point is annotated
with a reachability distance: when successive points have
significantly di↵erent reachability distances, that is usually
an indication of a cluster boundary. As we show in Sec-
tion 5 this technique, which dynamically determines cluster
boundaries, is essential to achieving good accuracy.

5. VALIDATION
In this section, we validate front-end enumeration, geolo-

cation, and clustering.

5.1 Coverage of Front-End Enumeration
Using EDNS-client-subnet can improve coverage over pre-

vious methods that have relied on using fewer vantage points.
We first quantify the coverage benefits of EDNS-client-subnet.
We then explore the sensitivity of our results to the choice of
prefix length for EDNS-client-subnet, since this choice can
also a↵ect front-end enumeration.

Open Resolver vs EDNS-client-subnet Coverage. An
existing technique to enumerate front-ends for a serving in-
frastructure is to issue DNS queries to the infrastructure
from a range of vantage points. Following previous work [14],
we do so using open recursive DNS (rDNS) resolvers. We
use a list of about 200,000 open resolvers4; each resolver is
e↵ectively a distinct vantage point. These resolvers are in
217 counties, 14,538 ASes, and 118,527 unique /24 prefixes.
Enumeration of Google via rDNS takes about 40 minutes.
This dataset forms our comparison point to evaluate the cov-
erage of the EDNS-client-subnet approach we take in this
paper.

Table 2 shows the added benefit over rDNS of enumerat-
ing Google front-ends using EDNS-client-subnet. Our ap-
proach uncovers at least 15-20% more Google front-end IP
4Used with permission from Duane Wessels, Packet Pushers
Inc.

addresses, prefixes, and ASes than were visible using open
resolvers. By using EDNS-client-subnet to query Google on
behalf of every client prefix, we obtain a view from loca-
tions that lack open recursive resolvers. In Section 6.1, we
demonstrate the benefit over time as Google evolves, and
in Section 7 we describe how we might be able to use our
Google results to calibrate how much we would miss using
rDNS to enumerate a (possibly much larger or smaller than
Google) serving infrastructure that does not support EDNS-
client-subnet.

Completeness and EDNS-client-subnet Prefix Length.
The choice of prefix length for EDNS-client-subnet queries
can a↵ect enumeration completeness. Prefix lengths shorter
than /24 in BGP announcements can be too coarse for enu-
meration. We find cases of neighboring /24s within shorter
BGP announcement prefixes that are directed to di↵erent
serving infrastructure. For instance we observed an ISP an-
nouncing a /18 with one of its /24 subprefixes getting di-
rected to Singapore while its neighboring prefix is directed
to Hong Kong.

Our evaluations query using one IP address in each /24
block. If serving infrastructures are doing redirections at
finer granularity, we might not observe some front-end IP
addresses or serving sites. The reply to the EDNS-client-
subnet query returns a scope, the prefix length covering the
response. Thus, if a query for an IP address in a /24 block
returns a scope of, say /25, it means that the corresponding
redirection holds for all IP addresses in the /25 covering the
query address, but not the other half of the /24. For almost
75% of our /24 queries, the returned scope was also for a
/24 subnet, likely because it is the longest globally routable
prefix. For most of the rest, we saw a /32 prefix length scope
in the response, indicating that Google’s serving infrastruc-
ture might be doing very fine-grained redirection. We refer
the reader to related work for a study of the relationship
between the announced BGP prefix length and the returned
scope [34].

For our purposes, we use the returned scope as a basis
to evaluate the completeness of our enumeration. We took
half of the IPv4 address space and issued a series of queries
such that their returned scopes covered all addresses in that
space. For example, if a query for 1.1.1.0/24 returned a
scope of /32, we would next query for 1.1.1.1/32. These
brute force measurements did not uncover any new front-end
IP addresses not seen by our /24 queries, suggesting that the
/24 prefix approach in our paper likely provides complete
coverage of Google’s entire front-end serving infrastructure.

Enumeration Over Time. Front-ends often disappear
and reappear from one day to the next across daily enu-
meration. Some remain active but are not returned in any
EDNS-client-subnet requests, others become temporarily in-
active, and some may be permanently decommissioned. To
account for this variation and obtain an accurate and com-
plete enumeration, we accumulate observations over time,
but also test which servers still serve Google search on a
daily basis. We check liveness by issuing daily, rate-limited,
HTTP HEAD requests to the set of cumulative front-end IP
addresses we observe.

The Daily row in Table 3 shows a snapshot of the num-
ber of IPs, /24s, and ASes that are observed on 2013-8-8.
The Cumulative row shows the additional infrastructure ob-
served earlier in our measurement period but not on that

IPs /24s ASes
Daily 22959 1213 771
Cumulative +5546 +219 +93

–Inactive -538 -24 -8
Active 27967 (+22%) 1408 (+16%) 856 (+11%)

Table 3: A snapshot from 2013-8-8 showing the di↵er-
ences in number of IPs, /24s, and ASes observed cumu-
latively across time versus what can be observed within
a day. Some front-end IP addresses may not be visible
in a daily snapshot. However, IP addresses may be tem-
porarily drained or become permanently inactive or be
reassigned. Acquiring an accurate and complete snapshot
of active serving infrastructure requires accumulating ob-
servations over time and testing which remain active.

day, and the Inactive row indicates how many of those were
not serving Google search on 2013-8-8. This shows that the
front-ends that are made available through DNS on a given
day is only a subset of what may be active on a given day.
For example, for several consecutive days in the first week
of August 2013, all our queries returned IP addresses from
Google’s network, suggesting a service drain of the front-
ends in other networks. Our liveness probes confirmed that
the majority of front-ends in other networks still actively
served Google search when queried, even though no DNS
queries directed to them. In the future, we will examine
whether we can use our approach to infer Google mainte-
nance periods and redirections away from outages, as well
as assess whether these shifts impact performance.

5.2 Accuracy of Client-Centric Geolocation
Client-centric geolocation using EDNS-client-subnet shows

substantial improvement over traditional ping based tech-
niques [12], undns [32], and geolocation databases [24].

Dataset. To validate our approach, we use the subset of
Google front-ends with hostnames that contain airport codes
hinting at their locations. Although the airport code does
not represent a precise location, we believe that it is reason-
able to assume that the actual front-end is within a few 10s
of kilometers of the corresponding airport. Airport codes
are commonly used by network operators as a way to debug
network and routing issues so having accurate airport codes
is an important diagnostic tool. Previous work has show
that only 0.5% of hostnames in a large ISP had misleading
names [39], and so we expect that misnamed Google front-
ends only minimally distort our results. A limitation of our
validation is that we cannot validate against Google hosted
IPs that do not have airport codes because popular geoloca-
tion databases such as MaxMind place these IPs in Mountain
View, CA. Using all 550 front-ends with airport codes, we
measure the error of our technique as the distance between
our estimated location and the airport location from data
collected on April 17, 2013.

Accuracy. Figure 1 shows the distribution of error for
CCG, as well as for three traditional techniques. We com-
pare to constraint-based geolocation (CBG), which uses lat-
ency-based constraints from a range of vantage points [12],
a technique that issues traceroutes to front-ends and locates
the front-ends based on geographic hints in names of nearby
routers [14], and the MaxMind GeoLite Free database [24].
We o↵er substantial improvement over existing approaches.
For example, the worst case error for CCG is 409km, whereas

CBG, the traceroute-based technique, and MaxMind have
errors of over 500km for 17%, 24%, and 94% of front-ends,
respectively. CBG performs well when vantage points are
close to the front-end [16], but it incurs large errors for
the half of the front-ends in more remote regions. The
traceroute-based technique is unable to provide any location
for 20% of the front-ends because there were no hops with
geographic hints in their hostnames near to the front-end.
The MaxMind database performs poorly because it places
most front-ends belonging to Google in Mountain View, CA.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

C
D

F
 o

f
e

st
im

a
te

d
 lo

ca
tio

n

Error (km)

client-centric geolocation (CCG)
CBG

undns
Maxmind

Figure 1: Comparison of our client-centric geolocation
against traditional techniques, using Google front-ends
with known locations as ground truth.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

C
D

F
 o

f
e

st
im

a
te

d
 lo

ca
tio

n

Error (km)

client-centric geolocation (CCG)
CCG only sol
CCG only std

CCG only eyeballs
CCG no filtering

Figure 2: Impact of our various techniques to filter client
locations when performing client-centric geolocation on
Google front-ends with known locations.

Importance of Filtering. Figure 2 demonstrates the
need for the filters we apply in CCG. The CCG no filtering
line shows our basic technique without any filters, yielding
a median error of 556km. Only considering client eyeball
prefixes we observed in the BitTorrent dataset reduces the
median error to 484km and increases the percentage of front-
ends located with error less than 1000km from 61% to 74%.
Applying our standard deviation filtering improves the me-
dian to 305km and error less than 1000km to 86%. When
using speed-of-light constraints measured from PlanetLab
and MLab to exclude client locations outside the feasible
location for a front-end and to exclude clients with infeasi-
ble MaxMind locations, we obtain a median error of 26km,
and only 10% of front-end geolocations have an error greater
than 1000km. However, we obtain our best results by simul-
taneously applying all three filters.

Case Studies of Poor Geolocation. CCG’s accuracy
depends upon its ability to draw tight speed-of-light con-
straints, which in turn depends (in our current implemen-
tation), on Planetlab and M-Lab deployment density. We
found one instance where sparse vantage point deployments
a↵ected CCG’s accuracy. In this instance, we observe a set
of front-ends in Stockholm, Sweden, with the arn airport
code, serving a large group of client locations throughout
Northern Europe. However, our technique locates the front-
ends as being 409km southeast of Stockholm, pulled down
by the large number of clients in Oslo, Copenhagen and
northern Germany. Our speed of light filtering usually ef-
fectively eliminates clients far from the actual front-end. In
this case, we would expect Planetlab sites in Sweden to fil-
ter out clients in Norway, Denmark and Germany. However,
these sites measure latencies to the Google front-ends in the
24ms range, yielding a feasible radius of 2400km. This loose
constraint results in poor geolocation for this set of front-
ends.

It is well-known that Google has a large datacenter in The
Dalles, Oregon, and our map (Fig. 7) does not show any sites
in Oregon. In fact, we place this site 240km north, just south
of Seattle, Washington. A disadvantage of our geolocation
technique is that large datacenters are often hosted in re-
mote locations, and our technique will pull them towards
large population centers that they serve. In this way, the
estimated location ends up giving a sort of “logical” serv-
ing center of the server, which is not always the geographic
location.

We also found that there are instances where we are un-
able to place a front-end. In particular, we observed that
occasionally when new front-ends were first observed during
the expansion, there would be very few /24 client networks
directed to them. These networks may not have city-level
geolocation information available in MaxMind so we were
unable to locate the corresponding front-ends.

5.3 Accuracy of Front-End Clustering
To validate the accuracy of our clustering method, we run

clustering on three groups of nodes for which we have ground
truth: 72 PlanetLab servers from 23 di↵erent sites around
world; 27 servers from 6 sites all in California, USA, some
of which are very close (within 10 miles) to each other; and
finally, 75 Google front-end IP addresses, that have airport
codes in their reverse DNS names, out of 550 (14%) having
airport codes and of 8,430 (0.9%) total Google IP addresses
as of Apr 16th, 2013. These three sets are of di↵erent size
and geographic scope, and the last set is a subset of our tar-
get so we expect it to be most representative. In the absence
of complete ground truth, we have had to rely on more ap-
proximate validation techniques: using PlanetLab, selecting
a subset of front-ends with known locations, and using air-
port codes (we have justified this choice in Section 5.2). We
also discuss below some internal consistency checks on our
clustering algorithm that gives us greater confidence in our
results.

The metric we use for the accuracy of clustering is the
Rand Index [29]. The index is measured as the ratio of the
sum of true positives and negatives to the ratio of the sum of
these quantities and false positives and negatives. A Rand
index equal to 1 means there are no false positives or false
negatives.

Experiment Rand Index False negative False positive
PlanetLab 0.99 1% 0
CA 0.97 0 3%
Google 0.99 1% 0

Table 4: Rand index for our nodesets. Our clustering al-
gorithm achieves over 97% across all nodesets, indicating
very few false positives or negatives.

 0

 1

 2

 3

 4

 5

 0 10 20 30 40 50 60 70

R
e
a
ch

a
b
ili

ty
 d

is
ta

n
ce

Google front-ends (OPTICS output order)

mrs

muc mil

sof

eze

sin syd bom del

Figure 3: Distance plot of Google servers with airport
codes. Servers in the same cluster have low reachability
distance to each other thus are output in sequence as
neighbors. Cluster boundaries are demarcated by large
impulses in the reachability plot.

Table 4 shows the Rand index for the 3 node sets for
which we have ground truth. We see that in each case,
the Rand index is upwards of 97%. This accuracy arises
from two components of the design of our clustering method:
eliminating outliers which result in more accurate distance
measures, and dynamically selecting the cluster boundary
using our OPTICS algorithm.

Our method does have a small number of false positives
and false negatives. In the California nodeset, the method
fails to set apart USC/ISI nodes from nodes on the USC
campus (10 miles away, but with the same upstream con-
nectivity) which leads to 3% false positive. In the Planet lab
nodeset, some clusters have low reachability distance that
confuses our boundary detection method, resulting in some
clusters being split into two. The Google nodeset reveals
one false negative which we actually believe to be correct:
the algorithm correctly identifies two distinct serving sites
in mrs, as discussed below.

To better understand the performance of our method, Fig-
ure 3 shows the output of the OPTICS algorithm on the
Google nodeset. The x-axis in this figure represents the or-
dered output of the OPTICS algorithm, and the y-axis the
reachability distance associated with each node. Impulses in
the reachability distance depict cluster boundaries, and we
have verified that the nodes within the cluster all belong to
the same airport code. In fact, as the figure shows, the al-
gorithm is correctly able to identify all 9 Google sites. More
interesting, it shows that, within a single airport code mrs,
there are likely two physically distinct serving sites. We be-
lieve this to be correct, from an analysis of the DNS names
associated with those front-ends: all front-ends in one serv-
ing site have a prefix mrs02s04, and all front-ends in the
other serving site have a prefix mrs02s05.

In addition, Figure 4 shows the OPTICS output when us-
ing reverse-TTL (as proposed in [21]) instead of RTT for the
metric embedding. This uses the same set of Google servers
as in our evaluation using RTT for metric embedding. We

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 10 20 30 40 50 60 70

T
T

L
 R

e
a
ch

a
b
ili

ty
 d

is
ta

n
ce

Google front-ends (OPTICS output order)

mrs muc mil sof
eze

syd sin

bom del

Figure 4: The output of the OPTICS clustering algo-
rithm when reverse-TTL is used for the metric embed-
ding. When using this metric, the clustering algorithm
cannot distinguish serving sites at Bombay (bom) and
Delhi (del) in India, while RTT-based clustering can.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

2012-10-01

2012-11-01

2012-12-01

2013-01-01

2013-02-01

2013-03-01

2013-04-01

2013-05-01

2013-06-01

2013-07-01

2013-08-01

C
u
m

u
la

tiv
e
 c

lu
st

e
rs

 o
b
se

rv
e
d
 b

y
E

D
N

S

Date

Figure 6: Growth in the number of points of presence
hosting Google serving infrastructure over time.

could see that reverse-TTL based embedding performs rea-
sonably well but results in the OPTICS algorithm being un-
able to distinguish between serving sites in bom and del.
RTT-based clustering is able to di↵erentiate these serving
sites. Moreover, although reverse-TTL suggests the possibil-
ity of two sites in mrs, it mis-identifies which servers belong
to which of these sites (based on reverse DNS names).

Finally, we also perform some additional consistency checks.
We run our clustering algorithm against all Google front-end
IPs that have airport codes (6.5%, 550 out of 8430). We find
that except for the kind of false negative we mentioned above
(multiple serving site within same airport code), the false
positive rate of our clustering is 0, which means we never
merge two di↵erent airport codes together. Furthermore,
when our algorithm splits one airport code into separate
clusters, the resulting clusters exhibit naming consistency —
our algorithm always keeps IPs that have same hostname
pattern <airport code><two digit>s<two digit>, such as
mrs02s05, in the same cluster.

In summary, our clustering method exhibits over 97% ac-
curacy on three di↵erent test datasets. On the Google IPs
that have airport codes, our clustering show one kind of false
negative that we believe to be correct and no false positive
at all.

6. MAPPING GOOGLE’S EXPANSION
We present a longitudinal study of Google’s serving in-

frastructure. Our initial dataset is from late October to
early November of 2012 and our second dataset covers March
through August of 2013. We are able to capture a substan-
tial expansion of Google infrastructure.

 0

 5000

 10000

 15000

 20000

 25000

 30000

2012-10-01

2012-11-01

2012-12-01

2013-01-01

2013-02-01

2013-03-01

2013-04-01

2013-05-01

2013-06-01

2013-07-01

2013-08-01

C
u

m
u

la
tiv

e
 I

P
s

O
b

se
rv

e
d

Date

EDNS
Open resolver

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

2012-10-01

2012-11-01

2012-12-01

2013-01-01

2013-02-01

2013-03-01

2013-04-01

2013-05-01

2013-06-01

2013-07-01

2013-08-01

C
u

m
u

la
tiv

e
 /

2
4

s
o

b
se

rv
e

d

Date

EDNS
Open resolver

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

2012-10-01

2012-11-01

2012-12-01

2013-01-01

2013-02-01

2013-03-01

2013-04-01

2013-05-01

2013-06-01

2013-07-01

2013-08-01

C
u

m
u

la
tiv

e
 A

S
e

s
o

b
se

rv
e

d

Date

EDNS
Open resolver

Figure 5: Growth in the number of IP addresses (a), /24 prefixes (b), and ASes/countries (c) observed to be serving
Google’s homepage over time. During our study, Google expanded rapidly at each of these granularities.

 0

 20

 40

 60

 80

 100

 120

 140

2012-10-01

2012-11-01

2012-12-01

2013-01-01

2013-02-01

2013-03-01

2013-04-01

2013-05-01

2013-06-01

2013-07-01

2013-08-01

C
u
m

u
la

tiv
e
 c

o
u
n
tr

ie
s

o
b
se

rv
e
d

Date

EDNS
Open resolver

Figure 8: Number of countries hosting Google serving
infrastructure over time.

6.1 Growth over time
For each snapshot that we capture, we use EDNS-client-

subnet to enumerate all IP addresses returned for www.google.
com. Figure 5(a) depicts the number of server IP addresses
seen in these snapshots over time.5 The graph shows slow
growth in the cumulative number of Google IP addresses
observed between November 2012 and March 2013, then a
major increase in mid-March in which we saw approximately
3,000 new serving IP addresses come online. This was fol-
lowed by another large jump of 3,000 in mid-May. Over the
month of June, we observed 11,000 new IPs followed by an
increase of 4,000 across July.

By the end of our study, the number of serving IP ad-
dresses increased sevenfold. Figure 5(b) shows this same
trend in the growth of the number of /24s seen to serve
Google’s homepage. In Figure 5(c), we see 8X growth in the
number of ASes originating these prefixes, indicating that
this large growth is not just Google adding new capacity to
existing serving locations. Figure 6 shows the growth in the
number of distinct serving sites within those ASes.

Figure 7 shows the geographic locations of Google’s serv-
ing infrastructure at the beginning of our measurements and
in our most recent snapshot. We observe two types of expan-
sion. First, we see new serving locations in remote regions of
countries that already hosted servers, such as Australia and
Brazil. Second, we observe Google turning up serving infras-
tructure in countries that previously did not appear to serve
Google’s homepage, such as Vietnam and Thailand. Of new
front-end IP addresses that appeared during the course of
our study, 95% are in ASes other than Google. Of those
addresses, 13% are in the United States and 26% are in Eu-
rope, places that would appear to be well-served directly

5It is not necessarily the case that each IP address maps to
a distinct front-end.

from Google’s network.6 In the future, we plan to investi-
gate the performance impact of these front-ends. In addi-
tion, 21% are in Asia, 13% are in North America (outside
the US), 11% are in South America, 8% are in Africa, and
8% are in Oceania. A link to an animation of the worldwide
expansion is available at http://mappinggoogle.cs.usc.edu.

Figure 8 depicts this growth in the number of countries
hosting serving infrastructure, from 58 or 60 at the begin-
ning of our study to 139 in recent measurements.7 We in-
tend to continue to run these measurements indefinitely to
continue to map this growth.

6.2 Characterizing the Expansion
To better understand the nature of Google’s expansion,

we examine the types of networks where the expansion is
occurring and how many clients they serve. Table 5 classifies
the number of ASes of various classes in which we observe
serving infrastructure, both at the beginning and at the end
of our study. It also depicts the number of /24 client prefixes
(of 10 million total) served by infrastructure in each class of
AS. We use AS classifications from the June 28, 2012 dataset
from UCLA’s Internet Topology Collection [37],8 except that
we only classify as stubs ASes with 0 customers, and we
introduce a Tiny ISP class for ASes with 1-4 customers.

As seen in the table, the rapid growth in ASes that host
infrastructure has mainly been occurring lower in the AS
hierarchy. Although Google still directs the vast majority of
client prefixes to servers in its own ASes, it has begun di-
recting an additional 8% of them to servers o↵ its network,
representing a 393% increase in the number served from out-
side the network. By installing servers inside client ISPs,
Google allows clients in these ISPs to terminate their TCP
connections locally (likely at a satellite server that proxies
requests to a datacenter [7,11,28], as it is extremely unlikely
that Google has su�cient computation in these locations
to provide its services). We perform reverse DNS lookups
on the IP addresses of all front-ends we located outside of
Google’s network. More than 20% of them have hostnames
that include either ggc or google.cache. These results sug-
gest that Google is reusing infrastructure from the Google
Global Cache (GGC), Google’s content distribution network
built primarily to cache YouTube videos near users.9 It is

6In contrast, when we submitted the paper in May, only 13%
were in the US or Europe. We added in the new expansion
in those regions in preparing the final version of the paper.
7We base our locations on our CCG approach, which may
distort locations of front-ends that are far from their clients.
8UCLA’s data processing has been broken since 2012, but
we do not expect the AS topology to change rapidly.
9GGC documentation mentions that the servers may be
used to proxy Google Search and other services.

www.google.com
www.google.com
http://mappinggoogle.cs.usc.edu

 180° W 135° W 90° W 45° W 0° 45° E 90° E 135° E 180° E

 90° S

 45° S

 45° N

 90° N

Google AS
Other AS 2012−10−28
Other AS 2013−8−14

Figure 7: A world wide view of the expansion in Google’s infrastructure. Note that some of the locations that appear
floating in the Ocean are on small islands. These include Guam, Maldives, Seychelles, Cape Verde and Funchal.

November 2012 May 2013 August 2013
ASes Clients ASes Clients ASes Clients

Google 2 9856K 2 (+0%) 9658K (-2%) 2 (+0%) 9067K (-8%)
Tier 1 2 481 2 (+0%) 201 (-58%) 4 (+100%) 35K (+7278%)
Large 30 111K 46 (+53%) 237K (+114%) 123 (+310%) 410K (+270%)
Small 35 37K 64 (+83%) 63K (+71%) 319 (+811%) 359K (+870%)
Tiny 23 31K 41 (+78%) 57K (+84%) 206 (+796%) 101K (+228%)
Stub 13 21K 36 (+177%) 38K (+81%) 201 (+1446%) 79K (+281%)

Table 5: Classification of ASes hosting Google serving infrastructure at the beginning, middle, and end of our study. We
count both the number of distinct ASes and the number of client /24 prefixes served. Growth numbers for May and August
are in comparison to November. Google still directs 90% of the prefixes to servers within its own network, but it is evolving
towards serving fewer clients from its own network and more clients from smaller ASes around the world.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

C
D

F
 o

f
IS

P
s

Number of serving sites

All
Stub ISP
Tiny ISP

Small ISP
Large ISP
Tier-1 ISP

Figure 9: CDF of number of sites in di↵erent types of
ISP.

possible that the servers were already in use as video caches;
if so, this existing physical deployment could have enabled
the rapid growth in front-ends we observed.

Figure 9 depicts a slightly di↵erent view of the Google ex-
pansion. It charts the cumulative distribution of the number
of serving sites by ISP type. Overall, nearly 70% of the ISPs
host only one serving site. Generally speaking, smaller ISPs
host fewer serving sites than larger ISPs. The biggest ex-
ceptions are a Tiny ISP in Mexico hosting 23 serving sites
consisting of hundreds of front-end IPs, and a Stub national

mobile carrier with 21 sites. Befitting their role in the In-
ternet, most Large and Tier 1 ISPs host multiple sites. For
example, a Large ISP in Brazil serves from 23 sites.

Whereas Google would be willing to serve any client from
a server located within the Google network, an ISP hosting
a server would likely only serve its own customers. Serving
its provider’s other customers, for example, would require
the ISP to pay its provider for the service! We check this
intuition by comparing the location in the AS hierarchy of
clients and the servers to which Google directs them. Of
clients directed to servers outside of Google’s network, 93%
are located within the server’s AS’s customer cone (the AS
itself, its customers, their customers, and so on) [20]. Since
correctly inferring AS business relationship is known to be
a hard problem [10], it is unclear whether the remaining
7% of clients are actually served by ISPs of which they are
not customers, or (perhaps more likely) whether they rep-
resent limitations of the analysis. In fact, given that 40%
of the non-customer cases stem from just 7 serving ASes,
a small number of incorrect relationship or IP-to-AS infer-
ences could explain the counter-intuitive observations.

Google’s expansion of infrastructure implies that, over
time, many clients should be directed to servers that are
closer to them than where Google directed them at the be-
ginning of the study. Figure 10(a) shows the distribution
of the distance from a client to our estimate of the location

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500 3000 3500 4000

C
D

F
 o

f
cl

ie
n

ts

Distance from Client to Estimated Front-end Location (km)

2013-8-14
2012-10-29

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500 3000 3500 4000

C
D

F
 o

f
cl

ie
n

ts

Distance from Client to Estimated Front-end Location (km)

Other AS only 2013-8-14
Other AS only 2013-10-29

Figure 10: (a) Distances from all BitTorrent client prefixes to estimated front-end locations to which Google directs them.
(b) Comparison of the distances between the set of clients served by front-ends outside of Google’s network on 2013-8-14
and their estimated front-end locations on 2013-8-14 and 2012-10-29.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000

C
D

F
 o

f
e
st

im
a
te

d
 lo

ca
tio

n

Error (km)

client-centric geolocation (CCG) 2013-4-14
CCG no filtering 2013-4-14
CCG no filtering 2013-3-20

CCG no filtering 2012-10-29

Figure 11: As Google expands, clients become closer to
their front-ends, improving accuracy of filter-less client-
based geolocation.

of the server serving it. We restrict the clients to those in
our BitTorrent eyeball dataset (2.6 million client prefixes)
and geolocate all client locations using MaxMind. Some of
the very large distances shown in both curves could be ac-
curacy limitations of the MaxMind GeoLite Free database,
especially in regions outside of the United States. Overall,
results show that in mid-August 2013, many clients are sub-
stantially closer to the set of servers they are directed to than
in October of 2012. For example, the fraction of client pre-
fixes within 500km of their front-ends increases from 39% to
64%, and the fraction within 1000km increases from 54% to
78%. Figure 10(b) shows the distribution of distances only
for the set of client prefixes that were directed to front-ends
outside of Google’s network on 2013-8-14. The top curve
shows the distances between the clients and front-ends on
2013-8-14 while the bottom curve shows the distances be-
tween this same set of clients and the front-ends that they
were served by on 2012-10-29. The figure shows that the
set of clients that have moved o↵ of Google’s network are
now much closer to their front-ends in August of 2013 than
in October of 2012. The fraction of client prefixes within
500km of their front-ends has increased from 21% to 89%,
and the fraction within 1000km increased from 36% to 96%.
Because many of the newer front-ends seem to be satellites
that likely proxy tra�c back to datacenters, it is hard to
know the impact that decreasing the distance from client to
front-end will have on application performance [28].

6.3 Impact on Geolocation Accuracy
A side-e↵ect of Google directing more clients to front-ends

closer to them is that our geolocation technique should be-
come more accurate over time, since we base it on the as-
sumption that front-ends are near their clients. To verify
that assumption, we apply our basic geolocation approach–
without any of our filters that increase accuracy–to the data-
sets from three points in time. We chose dates to coincide
with the large jumps in Google servers that we observe in
Figure 5. Using the airport code-based ground truth dataset
from Section 5.2, Figure 11 shows the distribution of error in
geolocation using these three datasets and, for comparison,
the most recent dataset using all our filters. We can see that
there is steady reduction in error over time, with median er-
ror decreasing from 817km in October 2012, to 610km in
March 2013, and 475km in April 2013. However, our filters
still provide substantial benefit, yielding a median error of
only 22km.

7. USING OUR MAPPING
In addition to our evaluation of Google’s serving infras-

tructure so far, our mapping is useful to the research com-
munity, for what it says about clients, and for what it can
predict about other serving infrastructure. Our data is pub-
licly available at http://mappinggoogle.cs.usc.edu.

The Need for Longitudinal Research Data. Our re-
sults show the limitations of one-o↵ measurement studies—a
snapshot of Google’s serving infrastructure in October would
have missed the rapid growth of their infrastructure and po-
tentially misrepresented their strategy. We believe the re-
search community needs long-term measurements, and we
intend to refresh our maps regularly. We will make our on-
going data available to the research community, and we plan
to expand coverage from Google to include other providers’
serving infrastructures.

Sharing the Wealth: From Our Data to Related
Data. Our mapping techniques assume the target sharing
infrastructure is pervasive and carefully and correctly engi-
neered. We assume that (a) Google directs most clients to
nearby front-ends; (b) Google’s redirection is carefully en-
gineered for “eyeball” prefixes that host end-users; and (c)
Google will only direct a client to a satellite front-end if the
client is a customer of the front-end’s AS. Google has eco-
nomic incentives to ensure these assumptions. In practice,
these assumptions are generally true but not always, and

http://mappinggoogle.cs.usc.edu

our design and evaluation has carefully dealt with excep-
tions (such as clients occasionally being directed to distant
front-ends).

If we accept these assumptions, our maps allow us to ex-
ploit Google’s understanding of network topology and user
placement to improve other datasets. Prior work has used
Akamai to chose detour routes [35]; we believe our mapping
can improve geolocation, peer selection, and AS classifica-
tion.

Geolocation is a much studied problem [12, 13, 16], and
availability of ground truth can greatly improve results. With
clients accessing Google from mobile devices and comput-
ers around the world, Google has access to ample data and
measurement opportunity to gather very accurate client lo-
cations. An interesting future direction is to infer prefix
location from our EDNS-client-subnet observations, and use
that coarse data to re-evaluate prefixes that existing datasets
(such as MaxMind) place in very di↵erent locations. The
end result would be either higher accuracy geolocation or,
at least, identification of prefixes with uncertain locations.

Researchers designed a BitTorrent plugin that would di-
rect a client to peer with other users the plugin deemed to
be nearby, because the potential peer received similar CDN
redirections as the client’s [8]. However, with the existing
plugin, the client can only assess similarity of other users of
the plugin who send their CDN front-end mappings. Just as
we used EDNS-client-subnet to obtain mappings from arbi-
trary prefixes around the world, we could design a modified
version of the plugin that would allow a client to assess the
nearness of an arbitrary potential peer, regardless of whether
the peer uses the plugin or not. By removing this barrier,
the modified plugin would be much more widely applicable,
and could enhance the adoption of such plugins.

Finally, in Section 6.2, we showed that 90% of prefixes
served in ASes other than Google are within the customer
cone of their serving AS. The remaining 10% of prefixes
likely represent problems with either our IP-to-AS map-
ping [15] or with the customer cone dataset we used [20].
From talking to the researchers behind that work and shar-
ing our results with them, it may be necessary to move
to prefix-level cones, to accommodate the complex relation-
ships between ASes in the Internet. The client-to-front-end
data we generate could help resolve ambiguities in AS rela-
tionships and lead to better inference in the future.

Mapping Other Providers. While our techniques will
apply directly for some providers, we will need to adapt
them for others, and we describe the challenges and po-
tential approaches here. Our studies of Google combine
observations using EDNS-client-subnet and open recursive
resolvers. EDNS-client-subnet support is increasing. How-
ever, some networks such as Akamai do not support it, and
we are restricted to using open resolvers for them.

In Section 5.1, we demonstrated that even using hundreds
of thousands of open DNS resolvers would miss discovering
much of Google’s infrastructure. Table 2 showed that ED-
NS-client-subnet found 20% more front-end IPs than open
resolvers, but we cannot assume that ratio holds on other
infrastructures. We would expect open resolvers to su�ce
to uncover all of a ten-front-end infrastructure, for example,
but we would expect an even bigger gap on Akamai than on
Google, since Akamai serves from many more locations.

We may be able to use our results from Google to project
results for other providers that support only open resolvers.

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 20000 40000 60000 80000 100000

N
u

m
b

e
r

o
f

G
o

o
g

le
 I

P
 a

d
d

re
ss

e
s

Number of vantage points (one per /24)

resolver min
resolver max

resolver mean
EDNS with resolver /24s min
EDNS with resolver /24s max

EDNS with resolver /24s mean

Figure 12: The relation between number of Google IP
addresses discovered and the number of vantage points.
Using one open resolver per /24 block and one EDNS
query per /24 block.

We select one open recursive resolver from each /24 in which
we know one (there are 110,000 such prefixes). Then, we se-
lect one of these /24s at a time and resolve www.google.com
from the open resolver in the prefix and via an EDNS query
for that prefix. Figure 12 depicts the growth in the number
of Google front-end IP addresses discovered by the two ap-
proaches as we issue additional measurements (1000 trials).
Using resolvers in a set of prefixes yields very similar results
to issuing EDNS queries for that same set of prefixes, so that
the benefit of EDNS is primarily that we can issue queries
for many more prefixes than we have access to resolvers in.

We extrapolate these growth curves to understand the im-
pact of having more resolvers. To test this theory, we fit
power law curves to the open resolver lines (R = 0.97 in
all cases). We project that access to resolvers in all 10M
routable /24 prefixes, predicting discovery of 6990–8687 IP
addresses of Google front-end servers (as of May 4th, 2013).
Using EDNS-client-subnet queries for these 10M prefixes, we
found 8563 IP addresses, within the range, so the extrapo-
lation approach may be reasonable. In the future, we plan
to apply it to predict the size of Akamai and other infras-
tructures that do not yet support EDNS-client-subnet. We
can use our Google results to characterize which regions our
set of open resolvers has good coverage in, in order to flag
portions of other infrastructures as more or less complete.

Google lends itself to client-centric geolocation because
our EDNS-client-subnet measurements uncover the client
to front-end mappings, and Google’s deployment is dense
enough that most clients are near front-ends. We will have
to adapt the strategy for deployments where one or both of
those properties do not hold. Akamai uses a resolver’s geolo-
cation in mapping decisions [5], and so it may be possible to
geolocate Akamai servers based on the locations of the open
resolvers they serve, even though we cannot directly measure
which clients they serve. We will verify the soundness of this
approach by geolocating Google front-ends using resolver lo-
cations. If the approach is generally accurate, we can also
use it to flag suspicious resolver locations and only use the
remainder when geolocating Akamai (or other) servers.

CDNs such as Edgecast support EDNS queries to discover
client-to-front-end mappings, but they lack the density of
servers of Akamai and Google and so necessarily direct some
clients to distant servers. Since our geolocation approach
assumes front-ends are near clients, it may not be sound to
assume that the front-end is at the geographic center of the
clients. Edgecast publishes its geographic points of presence
on its website, so we can use its deployment as ground truth

www.google.com

to evaluate approaches to map other providers that do not
publish this information. We will investigate whether our
aggressive pruning of distant clients su�ces for Edgecast.
If not, straightforward alternate approaches may work well
for these sparse deployments. For example, these small de-
ployments tend to be at well-connected Internet exchange
points, where we likely have a vantage point close enough to
accurately use delay-based geolocation [12,16].

8. RELATED WORK
Closest to our work is prior research on mapping CDN in-

frastructures [1,2,14,36]. Huang et al. [14] map two popular
content delivery networks, Akamai and Limelight, by enu-
merating their front-ends using a quarter of a million open
rDNS resolvers. They geolocate and cluster front-ends using
a geolocation database and also use the location of penulti-
mate hop of traceroutes to front-ends. Ager et al. [2] chart
web hosting structures as a whole. They start by prob-
ing several sets of domain names from dozens of vantage
points to collect service IP addresses, rely entirely on Max-
Mind [24] for geolocation, and use feature-based clustering
where the goal of clustering is to separate front-ends belong-
ing to di↵erent hosting infrastructures. Torres et al. [36]
use a small number of vantage points in the US and Europe
and constraint-based geolocation to approximately geolocate
serving sites in the YouTube CDN, with the aim of under-
standing video server selection strategies. Finally, Adhikari
et al. [1] use open resolvers to enumerate YouTube servers
and geolocation databases to geolocate them, with the aim
of reverse-engineering the caching hierarchy and logical orga-
nization of YouTube infrastructure using DNS namespaces.

In contrast to these pieces of work, our enumeration e↵ec-
tively uses many more vantage points to achieve complete
coverage, our geolocation technique leverages client loca-
tions for accuracy instead of relying on geolocation databases,
and our clustering technique relies on a metric embedding in
high-dimensional space to di↵erentiate between nearby sites.

In addition to this prior work, simultaneous work appear-
ing at the same conference as this paper also used ED-
NS-client-subnet to expose CDN infrastructure [34]. While
our work focuses on characterizing Google’s rapid expan-
sion, including geolocating and clustering front-ends, that
work addresses complementary issues including measuring
other EDNS-client-subnet-enabled infrastructures. Our re-
sults di↵er from that work, as our work exposes 30% more
/24 prefixes and 12% more ASes hosting front-ends that are
actively serving Google search. We believe our additional
coverage results from our more frequent mapping and accu-
mulation of servers over time, since a single snapshot may
miss some infrastructure (see Table 3). Some in the op-
erations community also independently recognized how to
use EDNS-client-subnet to enumerate a CDN’s servers, al-
though these previous measurements presented just a small-
scale enumeration without further investigation [23].

Several other pieces of work are tangentially related to
ours. Previous work exploits the observation that two clients
directed to the same or nearby front-ends are likely to be
geographically close [8, 35]. Our work uses this observation
to geolocate front-ends. Mao et al. [22] quantify the prox-
imity of clients to their local DNS resolvers and find that
clients in di↵erent geographic locations may use the same
resolver. The EDNS-client-subnet extension we use was de-
signed to permit serving infrastructures to more accurately

direct clients to serving sites in these cases. Otto et al. [26]
examine the end-to-end impact that di↵erent DNS services
have on CDN performance. It is the first work to study the
potential of EDNS-client-subnet to address the client CDN
mapping problem, using the extension as intended, but does
not repurpose EDNS to map infrastructure, as we do.

Finally, several strands of research explored complemen-
tary problems associated with serving infrastructures, in-
cluding characterizing and diagnosing latency of providers
[7,11,17,18,40]; geolocating ASes using client locations [30];
verifying data replication strategies for cloud providers [4];
and analyzing content usage in large CDNs [6]. Some of this
research describes how providers use distributed front-ends
as proxies to improve client performance [7, 11, 28]. Our
work demonstrates the rapid expansion–and new strategy
of front-ends in other networks–of Google’s infrastructure
to delivery on this approach.

9. CONCLUSIONS
As the role of interactive web applications continues to

grow in our lives, and the mobile web penetrates remote re-
gions of the world more than wired networks ever had, the
Internet needs to deliver fast performance to everyone, ev-
erywhere, at all times. To serve clients around the world
quickly, service providers deploy globally distributed serv-
ing infrastructure, and we must understand these infras-
tructures to understand how providers deliver content to-
day. Towards that goal, we developed approaches specific to
mapping these serving infrastructures. By basing our tech-
niques around how providers architect their infrastructures
and guarding our techniques against noisy data, we accu-
rately map the geographically-distributed serving sites.

We apply our techniques to mapping Google’s serving in-
frastructure and track its rapid expansion over the period
of our measurement study. During that time, the num-
ber of serving sites grew more than sevenfold, and we see
Google deploying satellite front-ends around the world, in
many cases distant from any known Google datacenters. By
continuing to map Google’s and others’ serving infrastruc-
tures, we will watch the evolution of these key enablers of
today’s Internet, and we expect the accurate maps to enable
future work by us and others to understand and improve
content delivery on a global scale.

Acknowledgments
We thank our shepherd, Aditya Akella, and the anonymous
IMC reviewers for their valuable feedback. We also grate-
fully acknowledge Bernhard Ager, Georgios Smaragdakis,
Florian Streibelt, and Nikolaos Chatzis for their feedback
on earlier versions of this paper.

Xun Fan, Zi Hu, and John Heidemann are partially sup-
ported by the U.S. Department of Homeland Security Sci-
ence and Technology Directorate, Cyber Security Division,
via SPAWAR Systems Center Pacific under Contract No.
N66001-13-C-3001. John Heidemann is also partially sup-
ported by DHS BAA 11-01-RIKA and Air Force Research
Laboratory, Information Directorate under agreement num-
ber FA8750-12-2-0344. Matt Calder and Ramesh Govindan
were partially supported by the U.S. National Science Foun-
dation grant number CNS-905596.

10. REFERENCES
[1] Vijay Kumar Adhikari, Sourabh Jain, Yingying Chen,

and Zhi-Li Zhang. Vivisecting YouTube: An active
measurement study. In INFOCOM, 2012.

[2] Bernhard Ager, Wolfgang Mühlbauer, Georgios
Smaragdakis, and Steve Uhlig. Web content
cartography. In IMC, 2011.

[3] Mihael Ankerst, Markus M. Breunig, Hans-peter
Kriegel, and Jörg Sander. OPTICS: Ordering points
to identify the clustering structure. In SIGMOD, 1999.

[4] Karyn Benson, Rafael Dowsley, and Hovav Shacham.
Do you know where your cloud files are? In Cloud
Computing Security Workshop, 2011.

[5] Arthur Berger, Nicholas Weaver, Robert Beverly, and
Larry Campbell. Internet nameserver IPv4 and IPv6
address relationships. In IMC, 2013.

[6] Meeyoung Cha, Haewoon Kwak, Pablo Rodriguez,
Yong-Yeol Ahn, and Sue Moon. I Tube, You Tube,
Everybody Tubes: Analyzing the World’s Largest
User Generated Content Video System. In IMC, 2007.

[7] Yingying Chen, Sourabh Jain, Vijay Kumar Adhikari,
and Zhi-Li Zhang. Characterizing roles of front-end
servers in end-to-end performance of dynamic content
distribution. In IMC, 2011.

[8] David Cho↵nes and Fabian E. Bustamante. Taming
the torrent: A practical approach to reducing
cross-ISP tra�c in peer-to-peer systems. In
SIGCOMM, 2008.

[9] C. Contavalli, W. van der Gaast, S. Leach, and
E. Lewis. Client subnet in DNS requests, April 2012.
Work in progress (Internet draft
draft-vandergaast-edns-client-subnet-01).

[10] Xenofontas Dimitropoulos, Dmitri Krioukov, Marina
Fomenkov, Bradley Hu↵aker, Young Hyun, k. c. cla↵y,
and George Riley. AS relationships: Inference and
validation. ACM CCR, 37(1):29–40, January 2007.

[11] Tobias Flach, Nandita Dukkipati, Andreas Terzis,
Barath Raghavan, Neal Cardwell, Yuchung Cheng,
Ankur Jain, Shuai Hao, Ethan Katz-Bassett, and
Ramesh Govindan. Reducing web latency: the virtue
of gentle aggression. In SIGCOMM, 2013.

[12] Bamba Gueye, Artur Ziviani, Mark Crovella, and
Serge Fdida. Constraint-based geolocation of Internet
hosts. IEEE/ACM TON, 14(6):1219–1232, December
2006.

[13] Zi Hu and John Heidemann. Towards geolocation of
millions of IP addresses. In IMC, 2012.

[14] Cheng Huang, Angela Wang, Jin Li, and Keith W.
Ross. Measuring and evaluating large-scale CDNs.
Technical Report MSR-TR-2008-106, Microsoft
Research, October 2008.

[15] iPlane. http://iplane.cs.washington.edu.
[16] Ethan Katz-Bassett, John P. John, Arvind

Krishnamurthy, David Wetherall, Thomas Anderson,
and Yatin Chawathe. Towards IP geolocation using
delay and topology measurements. In IMC, 2006.

[17] Rupa Krishnan, Harsha V. Madhyastha, Sridhar
Srinivasan, Sushant Jain, Arvind Krishnamurthy,
Thomas Anderson, and Jie Gao. Moving beyond
end-to-end path information to optimize CDN
performance. In IMC, pages 190–201, 2009.

[18] Ang Li, Xiaowei Yang, Srikanth Kandula, and Ming
Zhang. CloudCmp: comparing public cloud providers.
In IMC, 2010.

[19] Greg Linden. Make data useful.
http://sites.google.com/site/glinden/Home/
StanfordDataMining.2006-11-28.ppt, 2006.

[20] M. Luckie, B. Hu↵aker, A. Dhamdhere, V. Giotsas,
and k cla↵y. AS relationships, customer cones, and
validation. In IMC, 2013.

[21] Harsha V. Madhyastha, Tomas Isdal, Michael Piatek,
Colin Dixon, Thomas Anderson, Arvind

Krishnamurthy, and Arun Venkataramani. iPlane: An
information plane for distributed services. In OSDI,
2006.

[22] Z. M. Mao, C. D. Cranor, F. Douglis, M. Rabinovich,
O. Spatscheck, and J Wang. A precise and e�cient
evaluation of the proximity between web clients and
their local DNS servers. In USENIX Annual Technical
Conference, 2002.

[23] Mapping CDN domains. http://b4ldr.wordpress.
com/2012/02/13/mapping-cdn-domains/.

[24] MaxMind.
http://www.maxmind.com/app/ip-location/.

[25] David Meyer. RouteViews.
http://www.routeviews.org.

[26] John S. Otto, Mario A. Sánchez, John P. Rula, and
Fabián E Bustamante. Content delivery and the
natural evolution of DNS. In IMC, 2012.

[27] Venkata N. Padmanabhan and Lakshminarayanan
Subramanian. An investigation of geographic mapping
techniques for Internet hosts. In SIGCOMM, 2001.

[28] Abhinav Pathak, Y. Angela Wang, Cheng Huang,
Albert Greenberg, Y. Charlie Hu, Randy Kern, Jin Li,
and Keith W. Ross. Measuring and evaluating TCP
splitting for cloud services. In PAM, 2010.

[29] William M Rand. Objective criteria for the evaluation
of clustering methods. Journal of the American
Statistical association, 66(336):846–850, 1971.

[30] Amir H Rasti, Nazanin Magharei, Reza Rejaie, and
Walter Willinger. Eyeball ASes: from geography to
connectivity. In IMC, 2010.

[31] Steve Souders. High-performance web sites.
Communications of the ACM, 51(12):36–41, December
2008.

[32] Neil Spring, Ratul Mahajan, and David Wetherall.
Measuring ISP topologies with Rocketfuel. ACM
CCR, 32(4):133–145, 2002.

[33] Stoyan Stefanov. Yslow 2.0. In CSDN SD2C, 2008.
[34] Florian Streibelt, Jan Böttger, Nikolaos Chatzis,

Georgios Smaragdakis, and Anja Feldmann. Exploring
EDNS-client-subnet adopters in your free time. In
IMC, 2013.

[35] Ao-Jan Su, David R. Cho↵nes Aleksandar
Kuzmanovic, and Fabi’an E. Bustamante. Drafting
behind Akamai (Travelocity-based detouring). In
SIGCOMM, 2006.

[36] Ruben Torres, Alessandro Finamore, Jin Ryong Kim,
Marco Mellia, Maurizio M Munafo, and Sanjay Rao.
Dissecting video server selection strategies in the
YouTube CDN. In ICDCS, 2011.

[37] UCLA Internet topology collection.
http://irl.cs.ucla.edu/topology/.

[38] Qiang Xu and Jaspal Subhlok. Automatic clustering
of grid nodes. In Proc. of 6th IEEE International
Workshop on Grid Computing, 2005.

[39] Ming Zhang, Yaoping Ruan, Vivek S Pai, and Jennifer
Rexford. How DNS misnaming distorts Internet
topology mapping. In USENIX Annual Technical
Conference, 2006.

[40] Yaping Zhu, Benjamin Helsley, Jennifer Rexford, Aspi
Siganporia, and Sridhar Srinivasan. LatLong:
Diagnosing wide-area latency changes for CDNs. IEEE
Transactions on Network and Service Management,
9(1), September 2012.

http://iplane.cs.washington.edu
http://sites.google.com/site/glinden/Home/StanfordDataMining.2006-11-28.ppt
http://sites.google.com/site/glinden/Home/StanfordDataMining.2006-11-28.ppt
http://b4ldr.wordpress.com/2012/02/13/mapping-cdn-domains/
http://b4ldr.wordpress.com/2012/02/13/mapping-cdn-domains/
http://www.maxmind.com/app/ip-location/
http://www.routeviews.org
http://irl.cs.ucla.edu/topology/

	Introduction
	Background
	Goal and Approach
	Methodology
	Enumerating Front-Ends
	Client-centric Front-End Geolocation
	Clustering front-ends

	Validation
	Coverage of Front-End Enumeration
	Accuracy of Client-Centric Geolocation
	Accuracy of Front-End Clustering

	Mapping Google's Expansion
	Growth over time
	Characterizing the Expansion
	Impact on Geolocation Accuracy

	Using Our Mapping
	Related Work
	Conclusions
	References

