
Programming Protocol-Independent Packet Processors

Pat Bosshart†, Dan Daly*, Glen Gibb†, Martin Izzard†, Nick McKeown‡, Jennifer Rexford**,
Cole Schlesinger**, Dan Talayco†, Amin Vahdat¶, George Varghese§, David Walker**

†Barefoot Networks *Intel ‡Stanford University **Princeton University ¶Google §Microsoft Research

ABSTRACT
P4 is a high-level language for programming protocol-inde-

pendent packet processors. P4 works in conjunction with

SDN control protocols like OpenFlow. In its current form,

OpenFlow explicitly specifies protocol headers on which it

operates. This set has grown from 12 to 41 fields in a few

years, increasing the complexity of the specification while

still not providing the flexibility to add new headers. In this

paper we propose P4 as a strawman proposal for how Open-

Flow should evolve in the future. We have three goals: (1)

Reconfigurability in the field: Programmers should be able

to change the way switches process packets once they are

deployed. (2) Protocol independence: Switches should not

be tied to any specific network protocols. (3) Target inde-

pendence: Programmers should be able to describe packet-

processing functionality independently of the specifics of the

underlying hardware. As an example, we describe how to

use P4 to configure a switch to add a new hierarchical label.

1. INTRODUCTION
Software-Defined Networking (SDN) gives operators pro-

grammatic control over their networks. In SDN, the con-

trol plane is physically separate from the forwarding plane,

and one control plane controls multiple forwarding devices.

While forwarding devices could be programmed in many

ways, having a common, open, vendor-agnostic interface

(like OpenFlow) enables a control plane to control forward-

ing devices from different hardware and software vendors.

Version Date Header Fields

OF 1.0 Dec 2009 12 fields (Ethernet, TCP/IPv4)

OF 1.1 Feb 2011 15 fields (MPLS, inter-table metadata)

OF 1.2 Dec 2011 36 fields (ARP, ICMP, IPv6, etc.)

OF 1.3 Jun 2012 40 fields

OF 1.4 Oct 2013 41 fields

Table 1: Fields recognized by the OpenFlow standard

The OpenFlow interface started simple, with the abstrac-

tion of a single table of rules that could match packets on a

dozen header fields (e.g., MAC addresses, IP addresses, pro-

tocol, TCP/UDP port numbers, etc.). Over the past five

years, the specification has grown increasingly more com-
plicated (see Table 1), with many more header fields and

multiple stages of rule tables, to allow switches to expose

more of their capabilities to the controller.

The proliferation of new header fields shows no signs of

stopping. For example, data-center network operators in-

creasingly want to apply new forms of packet encapsulation

(e.g., NVGRE, VXLAN, and STT), which restricts them

to deploying software switches that are easier to extend

with new functionality. Rather than repeatedly extending

the OpenFlow specification, we argue that future switches

should support flexible mechanisms for parsing packets and

matching header fields—and allow controller applications to

leverage these capabilities through a common, open interface

(i.e., a new “OpenFlow 2.0” API). Such a general, extensible

approach would be simpler, more elegant, and more future-

proof than today’s OpenFlow 1.x standard. Recent chip

designs demonstrate that such flexibility can be achieved in

custom ASICs at terabit speeds [1, 2, 3].

Figure 1: P4 is a language to configure switches.

Programming this new generation of switch chips is far

from easy. Each chip has its own low-level interface, akin

to microcode programming. In this paper, we sketch the

design of a higher-level language for programming protocol-

independent packet processors (P4). Figure 1 shows the

relationship between P4—used to configure a switch, telling

it how packets are to be processed—and existing APIs (such

as OpenFlow) that are designed to populate the forwarding

tables in fixed function switches. P4 raises the level of ab-

straction for programming the network, and can serve as a

ar
X

iv
:1

31
2.

17
19

v2
 [

cs
.N

I]
 2

 M
ar

 2
01

4

general interface between the controller and the switches.

That is, we believe that future generations of OpenFlow

should allow the controller to tell the switch how to operate,

rather than be constrained by a fixed switch design. The key

challenge is to find a “sweet spot” that balances the need

for expressiveness with the ease of implementation across a

wide range of hardware and software switches. In designing

P4, we have three main goals:

• Reconfigurability. The controller should be able to re-

define the packet parsing and processing in the field.

• Protocol independence. The switch should not be tied

to specific packet formats. Instead, the controller should

be able to specify (i) a packet parser for extracting header

fields with particular names and types and (ii) a collection

of typed match+action tables that process these headers.

• Target independence. Just as a C programmer does

not need to know the specifics of the underlying CPU, the

controller programmer should not need to know the de-

tails of the underlying switch. Instead, a compiler should

take the switch’s capabilities into account when turning

a target-independent description (written in P4) into a

target-dependent program (used to configure the switch).

To describe the P4 language, we present a simple motivating

example where a network operator wants to support a new

packet-header field and process packets in multiple stages.

We use this to explore how the P4 program specifies headers,

the packet parser, the multiple match+action tables, and the

control flow through these tables. Then, we discuss how a

compiler can map this program to different target switches.

Related work. In 2011, Yadav et al. [4] proposed an ab-

stract forwarding model for OpenFlow, but with less empha-

sis on a compiler. Kangaroo [1] introduced the notion of pro-

grammable parsing. Recently, Song [5] proposed protocol-

oblivious forwarding which shares our goal of protocol inde-

pendence, but is targeted more towards network processors.

The ONF introduced typed tables to express the match-

ing capabilities of switches [6]. Recent work on NOSIX [7]

shares our goal of flexible specification of match+action ta-

bles, but does not consider protocol-independence or pro-

pose a language for specifying the parser, tables, and control

flow. Other recent work proposes a programmatic interface

to the data plane for monitoring, congestion control, and

queue management [8, 9]. The Click modular router [10]

supports flexible packet processing in software, but does not

map programs to a variety of target hardware switches.

2. P4 LANGUAGE BY EXAMPLE
Many network deployments differentiate between an edge

and a core; end-hosts are directly connected to edge devices,

which are in turn interconnected by a high-bandwidth core.

Entire protocols have been designed to support this archi-

tecture (such as MPLS [11] and PortLand [12]), aimed pri-

marily at simplifying forwarding in the core.

Consider an example L2 network deployment with top-of-

rack (ToR) switches at the edge connected by a two-tier core.

We will assume the number of end-hosts is growing and the

core L2 tables are overflowing. To simplify the core, MPLS

is an option, but it is daunting to consider implementing

a label distribution protocol and multiple tags. PortLand

looks interesting, but it requires rewriting MAC addresses,

which may break existing network debugging tools, and re-

quires new agents to respond to ARP requests.

P4 lets us express a custom solution with minimal changes

to the network architecture. We call our toy example mTag :

it combines the hierarchical routing of PortLand with simple

MPLS-like tags. The routes through the core are encoded

by a 32-bit tag composed of four single-byte fields. The 32-

bit tag can carry a “source route” or a destination locator

(like PortLand’s Pseudo MAC). Each core switch need only

examine one byte of the tag and switch on that information.

In our example, the tag is added by the first ToR switch,

although it could also be added by the end-host NIC.

The mTag example is intentionally very simple to focus

our attention on the P4 language. The P4 program for an

entire switch would be many times more complex in practice.

2.1 Underlying Hardware Assumptions
P4 is intended to be target-independent so that one P4

program can be compiled to switches supplied by multiple

different vendors. Compliant hardware platforms will have

to satisfy some basic requirements.

First, the switch must support two modes of execution:

(1) A configuration mode in which information about packet

formats and the structure of match+action tables is com-

municated to the switch for planning purposes, and (2) a

population mode in which rules conforming to the specifi-

cations are added and removed from the tables. Second, to

implement P4 in its full generality, it must be possible to

configure the hardware’s packet parser to identify and ex-

tract new fields from a packet. Third, tables within the tar-

get must support matching of all defined fields. Fourth, the

target must support implementation of a range of protocol-

independent packet-processing primitives, including copy-

ing, addition, removal, and modification of both old and

new fields as well as metadata.

This model makes more requirements of the underlying

hardware than conventional OpenFlow. In particular, Open-

Flow assumes a fixed parser, whereas our model supports a

programmable parser that allows new headers to be defined.

OpenFlow assumes the match+action tables are laid out in

sequence whereas we support both sequential and parallel

processing units. Finally, we require actions to be defined

using reusable, protocol-independent primitives.

2.2 P4 Overview
The P4 language itself is meant to implement an abstrac-

tion on top of compliant hardware. This abstraction will

support the dual modes of hardware operation: configura-

tion and population. In order to do so, a P4 program con-

tains definitions of the following key components:

• Headers: A header definition describes the sequence and

structure of a series of fields. It includes information

about field width, as well as constraints on field values.

• Parsers: A parser definition determines the presence and

order of headers within a packet.

• Tables: Match+action tables are the mechanism for packet

processing. The P4 program defines the fields on which a

table may match and the actions it may execute.

• Actions: P4 supports construction of complex actions

from simpler protocol-independent primitives. These com-

plex actions are available within match+action tables.

• Control Programs: The control program determines

the order of matches and actions that are applied to a

packet. Simple imperative programs describe the flow of

control between match+action tables.

Next, we show how each of these components contributes to

the definition of an idealized mTag processor in P4.

2.3 Header Formats
A design begins with the specification of header formats.

Several domain-specific languages have been proposed for
this [13, 14, 15]; P4 borrows a number of ideas from them.
In general, each header is specified by declaring an ordered
list of field names together with their widths. Optional field
annotations allow constraints on value ranges or maximum
lengths for variable-sized fields. For example, standard Eth-
ernet and VLAN headers are specified as follows:

header ethernet {

fields {

dst_addr : 48; // width in bits

src_addr : 48;

ethertype : 16;

}

}

header vlan {

fields {

pcp : 3;

cfi : 1;

vid : 12;

ethertype : 16;

}

}

The mTag header can be added without altering existing

declarations. The field names indicate that the core has two

layers of aggregation. Each core switch is programmed with

rules to examine one of these bytes depending on its location

in the hierarchy and the direction of travel (up or down).

header mTag {

fields {

up1 : 8;

up2 : 8;

down1 : 8;

down2 : 8;

ethertype : 16;

}

}

2.4 The Packet Parser

P4 assumes the underlying switch can implement a state

machine that traverses packet headers from start to finish,

extracting field values as it goes. The extracted field values

are sent to the match+action tables for processing.

P4 describes this state machine directly as the set of tran-

sitions from one header to the next. Each transition may be

triggered by values in the preceding header. For example,

we describe the mTag state machine as follows.

parser start{

ethernet;

}

parser ethernet {

switch(ethertype) {

case 0x8100: vlan;

case 0x9100: vlan;

case 0x800: ipv4;

// Other cases

}

}

parser vlan {

switch(ethertype) {

case 0xaaaa: mTag;

case 0x800: ipv4;

// Other cases

}

}

parser mTag {

switch(ethertype) {

case 0x800: ipv4;

// Other cases

}

}

Parsing starts in the start state and proceeds until an ex-

plicit stop state is reached or an unhandled case is encoun-

tered (which may be marked as an error). Upon reaching a

state for a new header, the state machine extracts the header

using its specification and proceeds to compute its next tran-

sition. The extracted header is forwarded to match+action

processing in the back-half of the switch pipeline.

The parser for mTag is very simple—it has just four dif-

ferent states. Parsers in real networks require many more

states; for example, the parser defined by Gibb et. al. [16,

Figure 3(e)] expands to over one hundred states.

2.5 Table Specification
Next, the programmer describes how the defined header

fields are to be matched in the match+action stages (e.g.,

should they be exact matches, ranges, or wildcards?) and

what actions should be performed when a match occurs.

In our simple mTag example, the edge switch matches on

the L2 destination and VLAN ID, and picks an mTag to add

to the header. The programmer therefore specifies a table

to match on these fields (see below), with the action to add

the mTag header. The reads attribute declares which fields

to match, qualified by the match type (exact, ternary, etc).

The actions attribute lists the possible actions which may

be applied to a packet by the table. Actions are explained in

the following section. The max size attribute specifies how

many entries the table should support.

The table specification allows a compiler to decide how

much memory it needs, and the type (e.g., TCAM or SRAM)

to implement the table.

table mTag_table {

reads {

ethernet.dst_addr : exact;

vlan.vid : exact;

}

actions {

// At runtime, entries are programmed with params

// for the mTag action. See below.

add_mTag;

}

max_size : 20000;

}

For completeness and for later discussion, we present brief

definitions of other tables that are referenced by the Control

Program (§2.7).

table source_check {

// Verify mtag only on ports to the core

reads {

mtag : defined; // Was mtag parsed?

metadata.ingress_port;

}

actions {

// If inappropriate mTag, send to CPU

fault_to_cpu;

// If mtag found, strip and record in metadata

strip_mtag;

// Otherwise, allow the packet to continue

pass;

}

max_size : 64; // One rule per port

}

table local_switching {

// Reads destination and checks if local

// If miss occurs, goto mtag table.

}

table egress_check {

// Verify egress is resolved

// Do not retag packets received with tag

// Reads egress and whether packet was mTagged

}

2.6 Action Specifications
P4 defines a collection of primitive actions from which

more complicated actions are built. To keep the table speci-

fication simple, actions are defined in action functions. Each

P4 program declares its own action functions.

The add mTag action referred to above is implemented as

follows:

action add_mTag(up1, up2, down1, down2, egr_spec) {

add_header(mTag);

// Copy VLAN ethertype to mTag

copy_field(mTag.ethertype, vlan.ethertype);

// Set VLAN’s ethertype to signal mTag

set_field(vlan.ethertype, 0xaaaa);

set_field(mTag.up1, up1);

set_field(mTag.up2, up2);

set_field(mTag.down1, down1);

set_field(mTag.down2, down2);

// Set the destination egress port as well

set_field(metadata.egress_spec, egr_spec);

}

If an action needs parameters (e.g., the up1 value for the

mTag), it is supplied from the match table at runtime.

In this example, the switch inserts the mTag after the

VLAN tag, copies the VLAN tag’s ethertype into the mTag

to indicate what follows, and sets the VLAN tag’s ether-

type to 0xaaaa to signal mTag. The programmer would also

define a table and action to strip mTags from packets in

the egress edge switch. This action would copy the mTag’s

ethertype back to the VLAN tag.

P4’s primitive actions include:

• set field: Set a specific field in a header to a value.

Masked sets are supported.

• copy field: Copy one field to another.

• add header: Set a specific header instance (and all its

fields) as valid.

• remove header: Delete (“pop”) a header (and all its fields)

from a packet.

• increment: Increment or decrement the value in a field.

• checksum: Calculate a checksum over some set of header

fields (e.g., an IPv4 checksum).

We expect most switch implementations would restrict ac-

tion processing to permit only header modifications that are

consistent with the specified packet format.

2.7 The Control Program
Once tables and actions are defined, the only remaining

task is to specify the flow of control from one table to the

next. Control flow is specified as a program via a collection

of functions, conditionals, and table references.

Figure 2 shows a graphical representation of the control

flow for the mTag implementation on edge switches. Af-

ter parsing, the source check table verifies consistency be-

tween the received packet and the ingress port. For exam-

ple, mTags should only be seen on ports connected to core

switches. This table also strips mTags from the packet, but

records whether the packet had an mTag in metadata. Ta-

bles later in the pipeline may analyze the metadata to avoid

retagging the packet.

A local switching table is then executed. If this table

“misses”, it indicates that the packet is not destined for a

Figure 2: Flow chart for the mTag example.

locally connected host. In that case, the mTag table (de-

fined above) is applied to the packet. Both local and core

forwarding control can be processed by the egress check

table which handles the case of an unknown destination by

sending a notification up the SDN control stack.

The imperative representation of this packet processing

pipeline is as follows:

control main() {

// Verify mTag state and port are consistent

table(source_check);

// If no error from source_check, continue

if (!defined(metadata.ingress_error)) {

// Attempt to switch to end hosts

table(local_switching);

if (!defined(metadata.egress_spec)) {

// Not a known local host; try mtagging

table(mTag_table);

}

// Check for unknown egress state or

// bad retagging with mTag.

table(egress_check);

}

}

3. COMPILING A P4 PROGRAM
For a network to implement our P4 program, we need

a compiler to map the target-independent description onto

the target switch’s specific hardware or software platform.

Doing so involves allocating the target’s resources and gen-

erating appropriate configuration for the device.

3.1 Compiling Packet Parsers
For devices with programmable parsers, the compiler trans-

lates the parser description into a parsing state machine,

while for fixed parsers, the compiler merely verifies that the

parser description is consistent with the target’s parser. De-

tails of generating a state machine and state table entries

can be found in [16].

Table 2 shows state table entries for the vlan and mTag

sections of the parser (§2.4). Each entry specifies the current

state, the field value to match, and a next state. Other

columns are omitted for brevity.

Current State Lookup Value Next State

vlan 0xaaaa mTag

vlan 0x800 ipv4

vlan * stop

mTag 0x800 ipv4

mTag * stop

Table 2: Parser state table entries for the mTag example.

3.2 Compiling Control Programs
The imperative control-flow representation in §2.7 is a

convenient way to specify the logical forwarding behavior of

a switch, but does not explicitly call out dependencies be-

tween tables or opportunities for concurrency. We therefore

employ a compiler to analyze the control program to identify

dependencies and look for opportunities to process header

fields in parallel. Finally, the compiler generates the tar-

get configuration for the switch. There are many potential

targets: for example, a software switch [17], a multicore soft-

ware switch [18], an NPU [19], a fixed function switch [20],

or a reconfigurable match table (RMT) pipeline [2].

We follow a two-stage compilation process. First, we con-

vert the control program to an intermediate table graph rep-

resentation. The table graph is an extension of the tables

declared in the P4 program. The nodes of the graph are the

table declarations, and the edges indicate the order of pro-

cessing. Conditional tests in the control program (e.g., if

defined(mTag)) are replaced with “static” table instances

with fixed entries whose actions determine the next table to

execute, rather than populated at runtime.

Second, the compiler analyzes the table graph to generate

a device-specific configuration for the target switch. Each

target supporting P4 requires a dedicated compiler (or com-

piler back-end) with knowledge of the table resources and

supported parallelism of the target to enable the correct

mapping of tables. We briefly examine how the mTag ex-

ample would be implemented in different kinds of switches:

Software switches: A software switch provides complete

flexibility: the table count, table configuration, and parsing

are under software control. The compiler directly maps the

mTag table graph to switch tables. The compiler uses ta-

ble type information to constrain table widths, heights, and

matching criterion (e.g., exact, prefix, or wildcard) of each

table. The compiler might also optimize ternary or prefix

matching with software data structures.

Hardware switches with RAM and TCAM: A com-

piler can configure hashing to perform efficient exact-matching

using RAM, for the mTag table in edge switches. In con-

trast, the core mTag forwarding table that matches on a

subset of tag bits would be mapped to TCAM.

Switches supporting parallel tables: The compiler

can detect data dependencies and arrange tables in parallel

or in series. In the mTag example, the tables local switching

and mTag table can execute in parallel up to the execution

of the action of setting an mTag.

Switches that apply actions at the end of the pipeline:

For switches with action processing only at the end of a

pipeline, the compiler can tell intermediate stages to gen-

erate metadata that is used to perform the final writes. In

the mTag example, whether the mTag is added or removed

could be represented in metadata.

Switches with a few tables: The compiler can map

a large number of P4 tables to a smaller number of physi-

cal tables. In the mTag example, the local switching could

be combined with the mTag table. When the controller in-

stalls new rules at runtime, the compiler’s rule translator

can “compose” the rules in the two P4 tables to generate

the rules for the single physical table.

4. CONCLUSION
The promise of SDN is that a single control plane can di-

rectly control a whole network of switches. OpenFlow sup-

ports this goal by providing a single, vendor-agnostic API.

But today’s OpenFlow targets fixed-function switches that

recognize a pre-determined set of header fields, and process

packets using a small set of predefined actions. The con-

trol plane cannot express how packets should be processed

to best meet the needs of control applications.

We propose a step towards more flexible switches whose

functionality is specified—and may be changed—in the field.

The programmer decides how the forwarding plane processes

packets without worrying about implementation details. A

compiler transforms an imperative program into a control-

flow graph that can be mapped to many specific target

switches, including optimized hardware implementations.

We emphasize that this is only a first step, designed as

a straw-man proposal for OpenFlow 2.0 to contribute to

the debate. In this proposal, several aspects of a switch re-

main undefined (e.g., congestion-control primitives, queuing

disciplines, traffic monitoring). However, we believe the ap-

proach of having a configuration language—and compilers

that generate low-level configurations for specific targets—

will lead to future switches that provide greater flexibility,

and unlock the potential of software defined networks.

5. REFERENCES
[1] C. Kozanitis, J. Huber, S. Singh, and G. Varghese,

“Leaping multiple headers in a single bound:

Wire-speed parsing using the Kangaroo system,” in

IEEE INFOCOM, pp. 830–838, 2010.

[2] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese,

N. McKeown, M. Izzard, F. Mujica, and M. Horowitz,

“Forwarding metamorphosis: Fast programmable

match-action processing in hardware for SDN,” in

ACM SIGCOMM, 2013.

[3] “Intel Ethernet Switch Silicon FM6000.”

http://www.intel.com/content/dam/www/public/

us/en/documents/white-papers/ethernet-switch-

fm6000-sdn-paper.pdf.
[4] N. Yadav and D. Cohn, “OpenFlow Primitive Set.”

http://goo.gl/6qwbg, July 2011.

[5] H. Song, “Protocol-oblivious forwarding: Unleash the

power of SDN through a future-proof forwarding

plane,” in SIGCOMM HotSDN Workshop, Aug. 2013.

[6] “Openflow forwarding abstractions working group

charter.” http://goo.gl/TtLtw0, Apr. 2013.

[7] M. Raju, A. Wundsam, and M. Yu, “NOSIX: A

lightweight portability layer for the SDN OS,” ACM

SIGCOMM Computer Communications Review, 2014.

[8] V. Jeyakumar, M. Alizadeh, C. Kim, and D. Mazieres,

“Tiny packet programs for low-latency network

control and monitoring,” in ACM SIGCOMM HotNets

Workshop, Nov. 2013.

[9] A. Sivaraman, K. Winstein, S. Subramanian, and

H. Balakrishnan, “No silver bullet: Extending SDN to

the data plane,” in ACM SIGCOMM HotNets

Workshop, Nov. 2013.

[10] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.

Kaashoek, “The Click modular router,” ACM

Transactions on Computer Systems, vol. 18,

pp. 263–297, Aug. 2000.

[11] “Multiprotocol Label Switching Charter.”

http://datatracker.ietf.org/wg/mpls/charter/.

[12] R. Niranjan Mysore, A. Pamboris, N. Farrington,

N. Huang, P. Miri, S. Radhakrishnan, V. Subramanya,

and A. Vahdat, “PortLand: A scalable fault-tolerant

layer 2 data center network fabric,” in ACM

SIGCOMM, pp. 39–50, Aug. 2009.

[13] P. McCann and S. Chandra, “PacketTypes: Abstract

specificationa of network protocol messages,” in ACM

SIGCOMM, pp. 321–333, Aug. 2000.

[14] G. Back, “DataScript - A specification and scripting

language for binary data,” in Generative Programming

and Component Engineering, vol. 2487, pp. 66–77,

Lecture Notes in Computer Science, 2002.

[15] K. Fisher and R. Gruber, “PADS: A domain specific

language for processing ad hoc data,” in ACM

Conference on Programming Language Design and

Implementation, pp. 295–304, June 2005.

[16] G. Gibb, G. Varghese, M. Horowitz, and

N. McKeown, “Design principles for packet parsers,”

in ANCS, pp. 13–24, 2013.

[17] “Open vSwitch website.”

http://www.openvswitch.org.

[18] D. Zhou, B. Fan, H. Lim, M. Kaminsky, and D. G.

Andersen, “Scalable, high performance ethernet

forwarding with CuckooSwitch,” in CoNext,

pp. 97–108, 2013.

[19] “EZChip 240-Gigabit Network Processor for Carrier

Ethernet Applications.”

http:http://www.ezchip.com/p_np5.htm.

[20] “Broadcom BCM56850 Series.”

https://www.broadcom.com/products/Switching/

Data-Center/BCM56850-Series.

http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ethernet-switch-fm6000-sdn-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ethernet-switch-fm6000-sdn-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ethernet-switch-fm6000-sdn-paper.pdf
http://goo.gl/6qwbg
http://goo.gl/TtLtw0
http://datatracker.ietf.org/wg/mpls/charter/
http://www.openvswitch.org
http:http://www.ezchip.com/p_np5.htm
https://www.broadcom.com/products/Switching/Data-Center/BCM56850-Series
https://www.broadcom.com/products/Switching/Data-Center/BCM56850-Series

	1 Introduction
	2 P4 Language By Example
	2.1 Underlying Hardware Assumptions
	2.2 P4 Overview
	2.3 Header Formats
	2.4 The Packet Parser
	2.5 Table Specification
	2.6 Action Specifications
	2.7 The Control Program

	3 Compiling a P4 Program
	3.1 Compiling Packet Parsers
	3.2 Compiling Control Programs

	4 Conclusion
	5 References

