
Why Flow-Completion Time is the Right Metric
for Congestion Control

Nandita Dukkipati
Computer Systems Laboratory

Stanford University
Stanford, CA 94305-9025

nanditad@stanford.edu

Nick McKeown
Computer Systems Laboratory

Stanford University
Stanford, CA 94305-9025

nickm@stanford.edu

ABSTRACT
Users typically want their flows to complete as quickly as
possible. This makes Flow Completion Time (FCT) an im-
portant - arguably the most important - performance met-
ric for the user. Yet research on congestion control focuses
almost entirely on maximizing link throughput, utilization
and fairness, which matter more to the operator than the
user. In this paper we show that with typical Internet flow
sizes, existing (TCP Reno) and newly proposed (XCP) con-
gestion control algorithms make flows last much longer than
necessary - often by one or two orders of magnitude. In
contrast, we show how a new and practical algorithm - RCP
(Rate Control Protocol) - enables flows to complete close to
the minimum possible.

1. WHY WE SHOULD MAKE FLOWS
COMPLETE QUICKLY

When users download a web page, transfer a file, send/read
email, or involve the network in almost any interaction, they
want their transaction to complete in the shortest time; and
therefore, they want the shortest possible flow completion
time (FCT).1 They care less about the throughput of the
network, how efficiently the network is utilized, or the la-
tency of individual packets; they just want their flow to
complete as fast as possible. Today, most transactions are
of this type and it seems likely that a significant amount of
traffic will be of this type in the future [1]2. So it is perhaps
surprising that almost all work on congestion control focuses
on metrics such as throughput, bottleneck utilization and
fairness. While these metrics are interesting – particularly
for the network operator – they are not very interesting to
the user; in fact, high throughput or efficient network utiliza-
tion is not necessarily in the user’s best interest. Certainly,
as we will show, these metrics are not sufficient to ensure a
quick FCT.
Intuition suggests that as network bandwidth increases

flows should finish proportionally faster. For the current
Internet, with TCP, this intuition is wrong. Figure 1 shows
how improvements in link bandwidth have not reduced FCT
by much in the Internet over the past 25 years. With a 100-
fold increase in bandwidth, FCT has reduced by only 50%
for typical downloads. While propagation delay will always

1
FCT = time from when the first packet of a flow is sent (in TCP,

this is the SYN packet) until the last packet is received.
2
Real-time streaming of audio and video are the main exceptions, but

they represent a tiny fraction of traffic.

 1

 10

 100

 1 10 100

R
el

at
iv

e
F

C
T

 Im
pr

ov
em

en
t

Relative Bandwidth Improvement

45 Mbps [’80] 90 Mbps [’81]
417 Mbps [’86] 1.7 Gbps [’88]

2.5 Gbps [’91]

10 Gbps [’97]

flow size = 100 MB
10 MB
1 MB

Equal improvement in FCT and bandwidth

Figure 1: Improvement in flow-completion time as
a function of link bandwidth for the Internet, nor-
malized to 45 Mbps introduced in 1980. Flows have
an RTT of 40 ms and complete in TCP slow-start.
Plot inspired by Patterson’s illustration of how la-
tency lags bandwidth in computer systems [2].

place a lower bound, FCT is dominated by TCP’s congestion
control mechanisms which make flows last multiple RTTs
even if a flow is capable of completing within one round-trip
time (RTT).
So can we design congestion control algorithms that make

flows finish quickly? Unfortunately, it is not usually possi-
ble to provably minimize the FCT for flows in a general net-
work, even if their arrival times and durations are known [3].
Worse still, in a real network flows come and go unpre-
dictably and different flows take different paths! It is in-
tractable to minimize FCT. So instead congestion control
algorithms are focussed on efficiently using bottleneck link
(and only for long-lived flows) because this is easier to achieve.
But we believe - and it is the main argument of this paper
- that instead of being deterred by the complexity of the
problem, we should find algorithms that come close to min-
imizing FCTs, even if they are heuristic.
A well-known and simple method that comes close to min-

imizing FCT is for each router to use processor-sharing (PS)
– a router divides outgoing link bandwidth equally among

ACM SIGCOMM Computer Communication Review 59 Volume 36, Number 1, January 2006

ongoing flows.3 On the face of it, TCP seems to approxi-
mate PS — if several infinitely long TCP flows with the same
round-trip time share a bottleneck, TCP will eventually con-
verge on a fair-share allocation. Similarly, eXplicit Control
Protocol (XCP) [4]4 will converge on the fair-share alloca-
tion by gradually (explicitly) assigning excess bandwidth to
slow flows and reducing the rate of fast flows. But because
they react over many round-trip times, neither TCP nor
XCP come close to processor-sharing for a mix of flow-sizes
that represent the current usage of the Internet: both can
have expected FCTs one or two orders of magnitude larger
than need-be. Figure 2, obtained with ns-2, illustrates how
much longer TCP and XCP flows take when compared to
ideal PS. The simulation conditions (explained in the cap-
tion) were chosen to be representative of traffic over a back-
bone link today, and this graph is representative of hundreds
of graphs we obtained for a variety of network conditions and
traffic models [6]. The values for PS are derived analytically.
There are three main reasons why TCP and XCP lead to

such long FCTs:
1) Stretching flows to last many Round Trip Times (RTT)
even if they are capable of finishing within one/few RTTs
TCP: When a TCP flow starts, the source doesn’t know

the rate to use, and so it uses a small value to start with
and ramps the rate over multiple RTTs. This is the well-
known slow-start phase. Essentially, the source starts with a
conservative rate, and forces the flow to last multiple RTTs.
Hence, a typical flow today never leaves slow-start; and a
flow of size L has a FCT given by [log2(L + 1) + 1/2] ×
RTT + L/C (excluding the queueing delay). For example
with a typical flow size today of 15 packets, an RTT of 200
ms and a user connected via 1Mb/s link, TCP will force
the flow to last 800 ms – about 4 times longer than the
minimum possible. Over time, as bandwidth-delay products
increase, the discrepancy will get worse. For example, in
Figure 3 the link capacity is 100 packets/RTT. Two flows,
each with size 50 packets, arrive at the start of every RTT
beginning from t = 0. In PS, both flows would complete
in one RTT, the equilibrium number of flows in system is
2 and the link utilization would be 100%. With TCP slow-
start, the number of flows in the system evolves as shown
in Figure 3. In steady-state there are 12 flows - six times
higher than for PS; consequently the flow duration is six
times higher than need-be.
The problem is not limited to slow-start. As Figure 2

shows even flows that have entered AIMD phase have long
FCTs. This is because AIMD increases the window sizes
even slowly.
XCP: XCP can be even more conservative in giving band-

width to flows than TCP, particularly to new flows. This is
why there are always more active, incomplete flows. XCP
gradually reduces the window size of existing flows and in-
creases the window size of new flows, making sure the bot-
tleneck is never over-subscribed. It takes multiple RTTs for

3
On a single link, it is known that Shortest Remaining Processing

Time (SRPT) minimizes expected FCT; yet trying to emulate PS
is a good goal to start with because: a) FCTs in PS come close to
SRPT, b) unlike SRPT, PS does not need information on flow sizes –
which is often unavailable to the routers, c) flow durations in PS are
invariant of the flow size distribution and finally, but probably of less
importance, d) PS is inherently fair among flows.
4
XCP is designed to work well in networks with large per-flow

bandwidth-delay product. The routers provide feedback - incremen-
tal window changes - to the sources over multiple round-trip times,
which works well when all flows are long-lived.

 0.1

 1

 10

 100

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

A
ve

ra
ge

 F
lo

w
 D

ur
at

io
n

[s
ec

s]

Flow Size [pkts]

XCP
TCP

Slow Start
PS

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 50 100 150 200 250 300
N

um
be

r
of

 A
ct

iv
e

F
lo

w
s

Time (secs)

XCP
TCP

PS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

Li
nk

 U
til

iz
at

io
n

Time (secs)

XCP [avg = 0.84]
TCP [avg = 0.91]

mean offered load

Figure 2: The top plot shows the average flow duration

versus flow size under TCP and XCP from a simulation with

Poisson flow arrivals, flow sizes are Pareto distributed with

mean = 30 pkts (1000 byte/pkt) and shape = 1.4, link-

capacity = 2.4 Gbps, Round Trip Time = 100 ms, offered

load = 0.9. The middle plot shows the number of active flows

versus time. In both plots the PS values are computed from

analytical expressions. The bottom plot shows the offered

load and the link utilization for the two protocols measured

over 100 ms time intervals.

49
49
50
50

...
t = 1
4 Flows

t = 5
12 Flows

50

50

100 pkts/RTT

t = 0
2 Flows

Figure 3: An example illustrating how flows in TCP slow-

start accumulate over time.

ACM SIGCOMM Computer Communication Review 60 Volume 36, Number 1, January 2006

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000flo
w

 d
el

ay
 (

R

T
T

s)
 a

nd

 A
ct

iv
e

#f
lo

w
s

Time (# RTTs)

PS Delay = 1 RTT

PS #Active flows = 2

 0

 0.5

 1

 0 1000 2000 3000 4000 5000

Li
nk

 u
til

iz
at

io
n

Time (# RTTs)

Figure 4: XCP flows can accumulate over time. Two flows

arrive at the start of every RTT, with flow sizes 99 pkts (flow

1) and 1 pkt (flow 2); link of capacity = 100 packets/RTT. In

the first RTT, the server asks both flows to send C×RT T
2 =

50 packets. Flow 2 completes; flow 1 waits for more RTTs

competing for bandwidth with newly arriving flows. At the

start of second RTT, there are 3 flows so the server gives out
C×RT T

3 = 33.33 packets to each of 3 flows. This continues until

the system reaches a steady-state of 100 flows.

most flows to reach their fair share rate (which is changing
as new flows arrive). Many flows complete before they reach
their fair share rate. In general, XCP stretches flows over
multiple RTTs to avoid over-subscribing the bottleneck link.
This prolongs flows and so the number of active/ongoing
flows grows, which in turn reduces the rate of new flows,
and so on. Our many simulations showed that new flows in
XCP start slower than with slow-start in TCP.
Every control interval, XCP carefully hands out spare ca-

pacity to ongoing flows. While this works well if all flows
are long-lived, it is inefficient for a typical mix of flow-sizes.
Short flows – that are about to finish – cannot use the band-
width they are given while other flows which deserve more
bandwidth land up waiting more RTTs for their share. The
following example shows how XCP leads to long FCTs even
when the link utilization is high. Consider two new flows
starting every RTT, flow 1 = 99 packets, flow 2 = 1 packet
and the link-capacity = 100 packets/RTT. In the kth RTT
each flow is told to send (C × RTT)/N(k) packets where
N(k) is the number of ongoing flows in RTT k 5. Figure 4
shows that even though the link utilization is eventually
100%, the number of flows keep growing until there are 100
competing flows each sending one packet per RTT. The FCT
in this system is 50 times worse than ideal PS, even while
the link utilization in both is 100%.
2) Bandwidth hogging
Both TCP and XCP allow flows to hog the bottleneck

link, which increases the FCT for other flows. TCP does
this by favoring flows with short RTTs; in fact, flows with
long RTTs can be made to have arbitrarily small rates (i.e.
a large FCT) even when the bottleneck link is fully utilized.
In addition, both TCP and XCP allocate excess bandwidth
slowly to new flows. So when there is a mix of flow-sizes
(for example, the heavy-tailed mix of flow-sizes in today’s

5Although not identical, this is similar to what XCP would
do.

 0
 50

 100
 150
 200
 250
 300

 101 102 103 104 105 106 107 108

S
eq

. N
o.

RTT number

XCP

flow 1
flow 2
flow 3

 0
 50

 100
 150
 200
 250
 300

 101 102 103 104 105 106 107 108 109

S
eq

. N
o.

RTT number

TCP

flow 1
flow 2
flow 3

Figure 5: Example illustrating unfair bandwidth sharing.

A long flow is keeping the link occupied, 3 flows of size 300

pkts each, start in RTT number 100. Before TCP and XCP

get a chance to take bandwidth away from the long flow and

give these new flows their fair share, the flows are done. Link

capacity = 100 Mbps, RTT = 0.1s. Under PS, the three flows

would have finished in 1 RTT.

Internet), the long flows will converge on their fair share,
while the short flows don’t have time to reach their fair
share before they finish. This is illustrated in Figure 5 in
which a long flow keeps the link occupied, and three new
flows start in the same RTT, each of size 300 packets. With
PS, the three flows would finish in one RTT; but XCP and
TCP make them last eight times longer.
The problem is in general more pronounced in XCP. When

link is close to full utilization only 10% of link capacity
is available for all newly arriving flows through bandwidth
shuffling – bandwidth is slowly reclaimed from ongoing flows
and distributed to new flows. Favoring early flows over new
flows nudges XCP toward an M/G/1-FCFS discipline (for
heavy-tailed jobs FCFS has the worst mean job-completion
time among many known scheduling disciplines), instead of
the more desirable M/G/1-PS.
3) Filling up buffers
TCP will try to fill the buffers at the bottleneck link - until

a packet is dropped. While this leads to high utilization of
the bottleneck link, it increases queueing delay, RTT and the
FCT. Flows that arrive when queue occupancy is high will
experience large and highly variable delays. In this regard,
XCP is better than TCP because it always drives the buffer
towards empty.
[7] gives evidence on why merely modifying TCP’s AIMD

will not ensure quick FCTs and using AQM schemes such
as RED can lead to even worse FCTs than Drop Tail.

2. ACHIEVING SHORT FCTS
We recently described a simple congestion control algo-

rithm called the Rate Control Protocol (RCP) that greatly
reduces FCTs for a broad range for network and traffic char-
acteristics [5]. RCP achieves this by explicitly emulating
PS at each router. In RCP, a router assigns a single rate,
R(t), to all flows that pass through it 6; i.e. unlike XCP,

6
Every packet header carries a rate field, Rp which is set to ∞ by

the source. When a router receives a packet, if R(t) at the router is
smaller than Rp, then Rp ← R(t); otherwise it is unchanged. The

ACM SIGCOMM Computer Communication Review 61 Volume 36, Number 1, January 2006

it does not maintain a different rate to each flow. RCP is
an adaptive algorithm that updates the rate assigned to the
flows, to approximate processor sharing in the presence of
feedback delay, without any knowledge of the number of on-
going flows. It has three main characteristics that make it
simple and practical: a) The flow rate, R(t), is picked by the
routers based on very little information (the current queue
occupancy and the aggregate input traffic rate). b) Each
router assigns a single rate for all flows passing through it.
c) The router requires no per-flow state or per-packet calcu-
lations.
In the basic RCP algorithm, every router maintains a sin-

gle fair-share rate, R(t), that it offers to all flows. It updates
R(t) approximately once per RTT. Intuitively, to emulate
processor sharing the router should offer the same rate to
every flow, try to fill the outgoing link with traffic, and keep
the queue occupancy close to zero. The following rate up-
date equation is based on this intuition:

R(t) = R(t − T)(1 +

T
d0
(α(C − y(t))− β q(t)

d0
)

C
) (1)

where d0 is a moving average of the RTT measured across all
packets, T is the update rate interval (i.e., how often R(t)
is updated) and is less than or equals d0, R(t − T) is the
last updated rate, C is the link capacity, y(t) is the mea-
sured input traffic rate during the last update interval, q(t)
is the instantaneous queue size, and α, β are parameters
chosen for stability and performance. The basic idea is: If
there is spare capacity available (i.e., C − y(t) > 0), then
share it equally among all flows. On the other hand if there
is a queue building up (q(t) > 0), then the link is oversub-
scribed and the flow rate is decreased evenly. The expression

α(C −y(t))−β q(t)
d0

is the desired aggregate change in traffic
in the next control interval, and dividing this expression by
the number of ongoing flows, gives the change in traffic rate
needed per flow. Built into Equation (1) is the routers esti-

mate of the number of flows, N(t), as N̂(t) = C
R(t−T)

. Note

that the equation bears some similarity to the XCP control
equation because both RCP and XCP are trying to emulate
PS, but the manner in which they converge to PS are very
different. The precise differences are elaborated in [5].
Example: Figure 6 shows the Average Flow Completion
Time (AFCT) versus flow size for RCP, TCP, XCP and PS.
The AFCT of RCP is close to that of PS and it is always
lower than that of XCP and TCP. For flows up to 2000 pkts,
TCP delay is 4 times higher than in RCP, and XCP delay is
as much as 30 times higher for flows around 2000 pkts. Note
the logscale of the y-axis. With longer flows (> 2000 pkts),
the ratio of XCP and RCP delay still remains around 30,
while TCP and RCP are similar. More simulations under
different network topologies, conditions and traffic charac-
teristics are discussed in [6].
We have seen in several examples throughout this paper

that increasing network bandwidth doesn’t help a flow finish
faster if it is artificially forced to last several RTTs. This
was not a concern when link speeds were small and the FCT
was dominated by transmission delay. With increasing link
speeds, the discrepancy will grow, and flows will not com-
plete any faster.

destination copiesRp into the acknowledgment packets, so as to notify
the source. The source transmits at rate Rp, which corresponds to
the smallest offered rate along the path.

 0.1

 1

 10

 100

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
ve

ra
ge

 F
lo

w
 C

om
pl

et
io

n
T

im
e

[s
ec

]

flow size [pkts] (normal scale)

XCP (avg.)
TCP (avg.)
RCP (avg.)
Slow-Start

PS

 0.1

 1

 10

 100

 10000 100000

A
ve

ra
ge

 F
lo

w
 C

om
pl

et
io

n
T

im
e

[s
ec

]

flow size [pkts] (log scale)

XCP (avg.)
TCP (avg.)
RCP (avg.)
Slow-Start

PS

Figure 6: Average Flow Completion Time (AFCT) for dif-

ferent flow sizes when C = 2.4 Gb/s, RTPD=0.1s, and ρ =

0.9. Flows are pareto distributed with E[L] = 25 pkts, shape

= 1.2. The top plot shows the AFCT for flow sizes 0 to 2000

pkts; the bottom plot shows the AFCT for flow sizes 2000 to

104 pkts.

3. REFERENCES
[1] A. M. Odlyzko, “The Internet and other networks:

Utilization rates and their implications,” In Information
Economics and Policy, 12 (2000), Pages 341-365.

[2] D. A. Patterson, “Latency Lags Bandwidth,” In
Communications of the ACM, Volume 47, Number 10
(2004), Pages 71-75.

[3] J. Du, J. Y. Leung, G. H. Young, ”Minimizing mean
flow time with release time constraint,” In Theoretical
Computer Science archive, Volume 75, Issue 3, October
1990.

[4] D. Katabi, M. Handley, C. Rohrs, “Internet Congestion
Control for High Bandwidth-Delay Product Networks,”
In Proceedings of ACM Sigcomm 2002, Pittsburgh,
August, 2002.

[5] N. Dukkipati, M. Kobayashi, R. Zhang-Shen, N.
McKeown, “Processor Sharing Flows in the Internet,”
In Thirteenth International Workshop on Quality of
Service (IWQoS), Passau, Germany, June 2005.

[6] N. Dukkipati, N. McKeown, “Processor Sharing Flows
in the Internet,” In http://yuba.stanford.edu/tr.html,
Stanford HPNG Technical Report
TR04-HPNG-061604, June 2004.

[7] N. Dukkipati, N. McKeown, ”Why Flow-Completion
Time is the Right metric for Congestion Control and
why this means we need new algorithms,” In
http://yuba.stanford.edu/tr.html, Stanford HPNG
Technical Report TR05-HPNG-112102, November 2005.

ACM SIGCOMM Computer Communication Review 62 Volume 36, Number 1, January 2006

