
Design, implementation and evaluation of congestion control
for multipath TCP

Damon Wischik, Costin Raiciu, Adam Greenhalgh, Mark Handley
University College London

ABSTRACT
Multipath TCP, as proposed by the IETF working group
mptcp, allows a single data stream to be split across
multiple paths. This has obvious benefits for reliability,
and it can also lead to more efficient use of networked
resources. We describe the design of a multipath con-
gestion control algorithm, we implement it in Linux,
and we evaluate it for multihomed servers, data centers
and mobile clients. We show that some ‘obvious’ solu-
tions for multipath congestion control can be harmful,
but that our algorithm improves throughput and fairness
compared to single-path TCP. Our algorithm is a drop-in
replacement for TCP, and we believe it is safe to deploy.

1. INTRODUCTION
Multipath TCP, as proposed by the IETF working group

mptcp [7], allows a single data stream to be split across
multiple paths. This has obvious benefits for reliability—
the connection can persist when a path fails. It can also
have benefits for load balancing at multihomed servers
and data centers, and for mobility, as we show below.

Multipath TCP also raises questions, some obvious
and some subtle, about how network capacity should be
shared efficiently and fairly between competing flows.
This paper describes the design and implementation of
a multipath congestion control algorithm that works ro-
bustly across a wide range of scenarios and that can be
used as a drop-in replacement for TCP.

In §2 we propose a mechanism for windowed con-
gestion control for multipath TCP, and then spell out
the questions that led us to it. This section is presented
as a walk through the design space signposted by perti-
nent examples and analysed by calculations and thought
experiments. It is not an exhaustive survey of the de-
sign space, and we do not claim that our algorithm is
optimal—to even define optimality would require a more
advanced theoretical underpinning than we have yet de-
veloped. Some of the issues (§2.1–§2.3) have previ-
ously been raised in the literature on multipath conges-
tion control, but not all have been solved. The others
(§2.4–§2.5) are novel.

In §3–§5 we evaluate our algorithm in three applica-
tion scenarios: multihomed Internet servers, data cen-
ters, and mobile devices. We do this by means of simu-
lations with a high-speed custom packet-level simulator,

and with testbed experiments on a Linux implementa-
tion. We show that multipath TCP is beneficial, as long
as congestion control is done right. Naive solutions can
be worse than single-path TCP.

In §6 we discuss what we learnt from implementing
the protocol in Linux. There are hard questions about
how to avoid deadlock at the receiver buffer when pack-
ets can arrive out of order, and about the datastream se-
quence space versus the subflow sequence spaces. But
careful consideration of corner cases forced us to our
specific implementation. In§7 we discuss related work
on protocol design.

In this paper we will restrict our attention to end-
to-end mechanisms for sharing capacity, specifically to
modifications to TCP’s congestion control algorithm. We
will assume that each TCP flow has access to one or
more paths, and it can control how much traffic to send
on each path, but it cannot specify the paths themselves.
For example, our Linux implementation uses multihom-
ing at one or both ends to provide path choice, but it
relies on the standard Internet routing mechanisms to
determine what those paths are. Our reasons for these
restrictions are (i) the IETF working group is working
under the same restrictions, (ii) they lead to a readily
deployable protocol, i.e. no modifications to the core of
the Internet, and (iii) theoretical results indicate that in-
efficient outcomes may arise when both the end-systems
and the core participate in balancing traffic [1].

2. THE DESIGN PROBLEM FOR MUL-
TIPATH RESOURCE ALLOCATION

The basic window-based congestion control algorithm
employed in TCP consists of additive increase behaviour
when no loss is detected, and multiplicative decrease
when a loss event is observed. In short:

ALGORITHM: REGULAR TCP
• Each ACK, increase the congestion windoww by

1/w, resulting in an increase of one packet per RTT.1

• Each loss, decreasew byw/2.

Additionally, at the start of a connection, an exponen-
tial increase is used, as it is immediately after a retrans-
mission timeout. Newer versions of TCP [24, 9] have
1For simplicity, we express windows in this paper in packets,
but real implementations usually maintain them in bytes.

1

Figure 1: A scenario which shows the importance
of weighting the aggressiveness of subflows.

faster behaviour when the network is underloaded; we
believe our multipath enhancements can be straightfor-
wardly applied to these versions, but it is a topic for fur-
ther work.

The congestion control algorithm we propose is this:

ALGORITHM: MPTCP
A connection consists of set of subflowsR, each of which
may take a different route through the Internet. Each
subflowr ∈ R maintains its own congestion window
wr. An MPTCP sender stripes packets across these sub-
flows as space in the subflow windows becomes avail-
able. The windows are adapted as follows:
• Each ACK on subflowr, for each subsetS ⊆ R that

includes pathr, compute

maxs∈S ws/RTT2s
(
∑

s∈S ws/RTTs
)2 , (1)

then find the minimum over all suchS, and increase
wr by that much. (The complexity of finding the
minimum is linear in the number of paths, as we
show in the appendix.)

• Each loss on subflowr, decrease the windowwr by
wr/2.

Here RTTr is the round trip time as measured by sub-
flow r. We use a smoothed RTT estimator, computed
similarly to TCP.

In our implementation, we compute the increase pa-
rameter only when the congestion windows grow to ac-
commodate one more packet, rather than every ACK on
every subflow.

The following subsections explain how we arrived at
this design. The basic question we set out to answer is
how precisely to adapt the subflow windows of a mul-
tipath TCP so as to get the maximum performance pos-
sible, subject to the constraint of co-existing gracefully
with existing TCP traffic.

2.1 Fairness at shared bottlenecks
The obvious question to ask is why not just run regu-

lar TCP congestion control on each subflow? Consider
the scenario in Fig. 1. If multipath TCP ran regular
TCP congestion control on both paths, then the multi-
path flow would obtain twice as much throughput as the
single path flow (assuming all RTTs are equal). This is
unfair. An obvious solution is to run a weighted version

Figure 2: A scenario to illustrate the importance
of choosing the less-congested path

of TCP on each subflow, weighted so as to take some
fixed fraction of the bandwidth that regular TCP would
take. The weighted TCP proposed by [5] is not suitable
for weights smaller than0.5, so instead [11] consider the
following algorithm, EWTCP.

ALGORITHM: EWTCP
• For each ACK on pathr, increase windowwr by

a/wr.
• For each loss on pathr, decrease windowwr by

wr/2.
Herewr is the window size on pathr, anda = 1/

√
n

wheren is the number of paths.

Each subflow gets window size proportional toa2 [11].
By choosinga = 1/

√
n, and assuming equal RTTs,

the multipath flow gets the same throughput as a reg-
ular TCP at the bottleneck link. This is an appealingly
simple mechanism in that it does not require any sort of
explicit shared-bottleneck detection.

2.2 Choosing efficient paths
Athough EWTCP can be fair to regular TCP traffic, it

would not make very efficient use of the network. Con-
sider the somewhat contrived scenario in Fig.2, and sup-
pose that the three links each have capacity 12Mb/s. If
each flow split its traffic evenly across its two paths2,
then each subflow would get 4Mb/s hence each flow
would get 8Mb/s. But if each flow used only the one-hop
shortest path, it could get 12Mb/s. (In general, however,
it is not efficient to always use only shortest paths, as the
simulations in§4 of data center topologies show.)

A solution has been devised in the theoretical litera-
ture on congestion control, independently by [15] and
[10]. The core idea is that a multipath flow should shift
all its traffic onto the least-congested path. In a situa-
tion like Fig. 2 the two-hop paths will have higher drop
probability than the one-hop paths, so applying the core
idea will yield the efficient allocation. Surprisingly it
2In this topology EWTCP wouldn’t actually split its traf-
fic evenly, since the two-hop path traverses two bottleneck
links and so experiences higher congestion. In fact, as TCP’s
throughput is inversely proportional to the square root of loss
rate, EWTCP would end up sending approximately 3.5Mb/s
on the two-hop path and 5Mb/s on the single-hop path, a total
of 8.5Mb/s—slightly more than with an even split, but much
less than with an optimal allocation.

2

turns out that this can be achieved (in theory) without
any need to explicitly measure congestion3. Consider
the following algorithm, called COUPLED4:

ALGORITHM: COUPLED

• For each ACK on pathr, increase windowwr by
1/wtotal.

• For each loss on pathr, decrease windowwr by
wtotal/2.

Herewtotal is the total window size across all subflows.
We boundwr to keep it non-negative; in our experi-
ments we bound it to be≥ 1pkt, but for the purpose
of analysis it is easier to think of it as≥ 0.

To get a feeling for the behaviour of this algorithm,
we now derive an approximate throughput formula. Con-
sider first the case that all paths have the same loss rate
p. Each windowwr is made to increase on ACKs, and
made to decrease on drops, and in equilibrium the in-
creases and decreases must balance out, i.e. rate of ACKs
× average increase per ACK must equal rate of drops×
average decrease per drop, i.e.

(wr

RTT
(1 − p)

) 1

wtotal
=

(wr

RTT
p
)wtotal

2
. (2)

Solving forwtotal giveswtotal =
√

2(1− p)/p ≈
√

2/p
(where the approximation is good ifp is small). Note
that when there is just one path then COUPLED reduces
to regular TCP, and that the formula forwtotal does not
depend on the number of paths, hence COUPLED auto-
matically solves the fairness problem in§2.1.

For the case that the loss rates are not all equal, let
pr be the loss rate on pathr and letpmin be the mini-
mum loss rate seen over all paths. The increase and de-
crease amounts are the same for all paths, but paths with
higherpr will see more decreases, hence the equilib-
rium window size on a path withpr > pmin is wr = 0.
In Fig.2, the two-hop paths go through two congested
links, hence they will have higher loss rates than the one-
hop paths, hence COUPLED makes the efficient choice
of using only the one-hop paths.

An interesting consequence of moving traffic away
from more congested paths is that loss rates across the
whole network will tend to be balanced. See§3 for ex-
periments which demonstrate this. Or consider the net-
work shown in Fig.3, and assume all RTTs are equal.
3Of course it can also be achieved by explicitly measuring
congestion as in [11], but this raises tricky measurement ques-
tions.
4COUPLED is adapted from [15, equation (21)] and [10, equa-
tion (14)], which propose a differential equation model fora
rate-based multipath version of ScalableTCP [16]. We applied
the concepts behind the equations to classic window-based
TCP rather than to a rate-based version of ScalableTCP, and
translated the differential equations into a congestion control
algorithm.

flow A

flow B

flow C

5 Mb/s

12 Mb/s

10 Mb/s

3 Mb/s

11
Mb/s

11
Mb/s

8
Mb/s

10
Mb/s

10
Mb/s

10
Mb/s

Figure 3: A scenario where EWTCP (left)
does not equalize congestion or total throughput,
whereas COUPLED (right) does.

WiFi:
RTT1 = 10ms
p1 = 4% loss

3G:
RTT2 = 100ms
p2 = 1% loss

Figure 4: A scenario in which RTT and congestion
mismatch can lead to low throughput.

Under EWTCP each link will be shared evenly between
the subflows that use it, hence flowA gets throughputs
5 and 6 Mb/s,B gets 6 and 5 Mb/s, andC gets 5 and
3 Mb/s. Since TCP throughput is inversely related to
drop probability, we deduce that the 3Mb/s link has the
highest drop probability and the 12Mb/s link the low-
est. For COUPLED, we can calculate the throughput on
each subflow by using two facts: that a flow uses a path
only if that path has the lowest loss ratepmin among its
available paths, and that a flow’s total throughput is pro-
portional to

√

2/pmin; the only outcome consistent with
these facts is for all four links to have the same loss rate,
and for all flows to get the same throughput, namely
10Mb/s.

In this scenario the rule “only use a path if that path
has lowest drop probability among available paths” leads
to balanced congestion and balanced total throughput.
In some scenarios, these may be desirable goalsper se.
Even when they are not the primary goals, they are still
useful as a test: a multipath congestion control algo-
rithm that does not balance congestion in Fig.3 is un-
likely to make the efficient path choice in Fig.2.

2.3 Problems with RTT mismatch
Both EWTCP and COUPLED have problems when

the RTTs are unequal. This is demonstrated by experi-
ments in§5. To understand the issue, consider the sce-
nario of a wireless client with two interfaces shown in
Fig.4: the 3G path typically uses large buffers, result-
ing in long delays and low drop rates, whereas the wifi
path might have smaller delays and higher drop rate. As

3

Figure 5: A scenario where multipath TCP might
get ‘trapped’ into using a less desirable path.

a simple approximation, take the drop rates to be fixed
(though in practice, e.g. in the experiments in§5, the
drop rate will also depend on the sender’s data rate).
Also, take the throughput of a single-path TCP to be
√

2/p/RTT pkt/s. Then

• A single-path WiFi flow would get 707 pkt/s, and a
single-path 3G flow would get 141 pkt/s.

• EWTCP is half as aggressive as single-path TCP
on each path, so it will get total throughput(707 +
141)/2 = 424 pkt/s.

• COUPLED will send all its traffic on the less con-
gested path, on which it will gets the same window
size as single-path TCP, so it will get total through-
put 141 pkt/s.5

Both EWTCP and COUPLED are undesirable to a user
considering whether to adopt multipath TCP.

One solution is to switch from window-based control
to rate-based control; the rate-based equations [15, 10]
that inspired COUPLED do not suffer from RTT mis-
match. But this would be a drastic change to the In-
ternet’s congestion control architecture, a change whose
time has not yet come. Instead, we have a practical sug-
gestion for window-based control, which we describe
in §2.5. First though we describe another problem with
COUPLED and our remedy.

2.4 Adapting to load changes
It turns out there is another pitfall with COUPLED,

which shows itself even when all subflows have the same
RTT. Consider the scenario in Fig. 5. Initially there are
two single-path TCPs on each link, and one multipath
TCP able to use both links. It should end up balancing
itself evenly across the two links, since if it were uneven
then one link would be more congested than the other
and COUPLED would shift some of its traffic onto the
less congested. Suppose now that one of the flows on
the top link terminates, so the top link is less congested,
hence the multipath TCP flow moves all its traffic onto
the top link. But then it is ‘trapped’: no matter how
much extra congestion there is on the top link, the the
multipath TCP flow is not using the bottom link, so it

5The ‘proportion manager’ in the multipath algorithm of [11]
will also move all the traffic onto the less congested path, with
the same outcome.

gets no ACKs on the bottom link, so COUPLED is un-
able to increase the window size on the bottom subflow.
The same problem is demonstrated in experiments in§3.

We can conclude that the simple rule “Only use the
least congested paths” needs to be balanced by an op-
posing consideration, “Always keep sufficient traffic on
other paths, as a probe, so that you can quickly discover
when they improve.” In fact, our implementation of
COUPLED keeps window sizes≥ 1pkt, so it always has
some probe traffic. And the theoretical works [15, equa-
tion (11)] and [10, equation (14)] that inspired COU-
PLED also have a parameter that controls the amount of
probing; the theory says that with infinitesimal probing
one can asymptotically (after a long enough time, and
with enough flows) achieve fair and efficient allocations.

But we found in experiments that if there is too lit-
tle probe traffic then feedback about congestion is too
infrequent for the flow to discover changes in a reason-
able time. Noisy feedback (random packet drops) makes
it even harder to get a quick reliable signal. As a com-
promise, we propose the following.

ALGORITHM: SEMICOUPLED

• For each ACK on pathr, increase windowwr by
a/wtotal.

• For each loss on pathr, decrease windowwr by
wr/2.

Herea is a constant which controls the aggressiveness,
discussed below.

SEMICOUPLED tries to keep a moderate amount of
traffic on each path while still having a bias in favour of
the less congested paths. For example, suppose a SEMI-
COUPLEDflow is using three paths, two with drop prob-
ability 1% and a third with drop probability 5%. We can
calculate equilibrium window sizes by a balance argu-
ment similar to (2); when1 − pr ≈ 1 the window sizes
are

wr ≈
√
2a

1/pr
√
∑

s 1/ps
.

In three-path example, the flow will put 45% of its weight
on each of the less congested path and 10% on the more
congested path. This is intermediate between EWTCP
(33% on each path) and COUPLED(0% on the more con-
gested path).

To achieve fairness in scenarios like Fig.1, one can
fairly simply tune thea parameter. For more compli-
cated scenarios like Fig.4, we need a more rigorous def-
inition of fairness, which we now propose.

2.5 Compensating for RTT mismatch
In order to reason about bias and fairness in a prin-

cipled way, we propose the following two requirements
for multipath congestion control:

4

ŵ1

ŵ2

ŵTCP
1

ŵTCP
2

bad

ŵ1

ŵ2

bad

badbad

Figure 6: Fairness constraints for a two-path flow.
Constraint (3) on the left, constraints (4) on the
right.

• A multipath flow should give a connection at least
as much throughput as it would get with single-path
TCP on the best of its paths. This ensures there is an
incentive for deploying multipath.

• A multipath flow should take no more capacity on
any path or collection of paths than if it was a single-
path TCP flow using the best of those paths. This
guarantees it will not unduly harm other flows at a
bottleneck link, no matter what combination of paths
passes through that link.

In mathematical notation, suppose the set of available
paths isR, let ŵr be the equilibrium window obtained
by multipath TCP on pathr, and letŵTCP

r be the equi-
librium window that would be obtained by a single-path
TCP experiencing pathr’s loss rate. We shall require

∑

r∈R

ŵr

RTTr
≥ max

r∈R

ŵTCP
r

RTTr
(3)

∑

r∈S

ŵr

RTTr
≤ max

r∈S

ŵTCP
r

RTTr
for all S ⊆ R. (4)

These constraints are illustrated, for a two-path flow, in
Fig.6. The left hand figure illustrates (3), namely that
(ŵ1, ŵ2) should lie on or above the diagonal line. The
exact slope of the diagonal is dictated by the ratio of
RTTs, and here we have chosen them so thatŵTCP

2 /RTT2 >
ŵTCP

1 /RTT1. The right hand figure illustrates the three
constraints in (4). The constraint forS = {path1} says
to pick a point on or left of the vertical line. The con-
straint forS = {path2} says to pick a point on or be-
low the horizontal line. The joint bottleneck constraint
(S = {path1, path2}) says to pick a point on or below
the diagonal line. Clearly the only way to satisfy both
(3) & (4) is to pick some point on the diagonal, inside
the box; any such point is fair. (Separately, the consid-
erations in§2.2 say we should prefer the less-congested
path, and in this figurêwTCP

1 > ŵTCP
2 hence the loss rates

satisfyp1 < p2, hence we should prefer the right hand
side of the diagonal line.)

The following algorithm, a modification of SEMICOU-
PLED, satisfies our two fairness requirements, when the
flow has two paths available. EWTCP can also be fixed
with a similar modification. The experiments in§5 show

that the modification works.

ALGORITHM

• Each ACK on subflowr, increase the windowwr by
min(a/wtotal, 1/wr).

• Each loss on subflowr, decrease the windowwr by
wr/2.

Here

a = ŵtotal
maxr ŵr/RTT2r
(
∑

r ŵr/RTTr)2
, (5)

wr is the current window size on pathr andŵr is the
equilibrium window size on pathr, and similarly for
wtotal andŵtotal.

The increase and decrease rules are similar to SEMI-
COUPLED, so the algorithm prefers less-congested paths.
The difference is that the window increase is capped at
1/wr, which ensures that the multipath flow can take
no more capacity on either path than a single-path TCP
flow would, i.e. it ensures we are inside the horizontal
and vertical constraints in Fig.6.

The parametera controls the aggressiveness. Clearly
if a is very large then the two flows act like two inde-
pendent flows hence the equilibrium windows will be at
the top right of the box in Fig.6. On the other hand ifa
is very small then the flows will be stuck at the bottom
left of the box. As we said, the two fairness goals re-
quire that we exactly hit the diagonal line. The question
is how to finda to achieve this.

We can calculatea from the balance equations. At
equilibrium, the window increases and decreases bal-
ance out on each path, hence

(1− pr)min
(a

ŵtotal
,
1

ŵr

)

= pr
ŵr

2
.

Making the approximation thatpr is small enough that
1− pr ≈ 1, and writing it in terms ofŵTCP

r =
√

2/pr,

max
(

ŵr,

√

ŵtotalŵr

a

)

= ŵTCP
r . (6)

By simultaneously solving (3) (with the inequality re-
placed by equality) and (6), we arrive at (5).

Our final MPTCP algorithm, specified at the begin-
ning of §2, is a generalization of the above algorithm to
an arbitrary number of paths. The proof that it satisfies
(3)–(4) is in the appendix. The formula (5) technically
requiresŵr , the equilibrium window size, whereas in
our final algorithm we have used the instantaneous win-
dow size instead. The experiments described below in-
dicate that this does not cause problems.

Trying too hard to be fair? Our fairness goals say
“take no more than a single-path TCP”. At first sight
this seems overly restrictive. For example, consider a
single-path user with a 14.4Mb/s WiFi access link, who

5

A

B

C

D

E

Figure 7: Torus topology. We
adjust the capacity of linkC, and
test how well congestion is bal-
anced.

Figure 8: Effect of changing the
capacity of linkC on the ratio of
loss ratespC/pA. All other links
have capacity 1000pkt/s.

Figure 9: Bursty CBR traffic on
the top link requires quick re-
sponse by the multipath flow.

then adds a 2Mb/s 3G access link. Shouldn’t this user
now get 16.4Mb/s, and doesn’t the fairness goal dictate
14.4Mb/s?

We describe tests of this scenario, and others like it,
in §5. MPTCP does in fact give throughput equal to the
sum of access link bandwidths, when there is no com-
peting traffic. When there is competing traffic on the
access links, the answer is different.

To understand what’s going on, note that our precise
fairness goals say “take no more than would be obtained
by a single-path TCPexperiencing the same loss rate”.
Suppose there is no competing traffic on either link, and
the user only takes 14.4Mb/s. Then one or other of
the two access links is underutilized, so it has no loss,
and a hypothetical single-path TCP with no loss should
get very high throughput, so the fairness goal allows
MPTCP to increase its throughput. The system will
only reach equilibrium once both access links are fully
utilized. See§5 for further experimental results, includ-
ing scenarios with competing traffic on the access links.

3. BALANCING CONGESTION AT
A MULTIHOMED SERVER

In §3–§5 we investigate the behaviour of multipath
TCP in three different scenarios: a multihomed Inter-
net server, a data center, and a mobile client. Our aim
in this paper is to produce one multipath algorithm that
works robustly across a wide range of scenarios. These
three scenarios will showcase all the design decisions
dicussed in§2—though not all the design decisions are
important in every one of the scenarios.

The first scenario is a multihomed Internet server. Mul-
tihoming of important servers has become ubiquitous
over the last decade; no company reliant on network
access for their business can afford to be dependent on
a single upstream network. However, balancing traffic
across these links is difficult, as evidenced by the hoops
operators jump through using BGP techniques such as

prefix splitting and AS prepending. Such techniques are
coarse-grained, very slow, and a stress to the global rout-
ing system. In this section we will show that multipath
transport can balance congestion, even when only a mi-
nority of flows are multipath-capable.

We will first demonstrate congestion balancing in a
simple simulation, to illustrate the design discussion in
§2 and to compare MPTCP to EWTCP and COUPLED.
In the static scenario COUPLED is better than MPTCP
is better than EWTCP, and in the dynamic scenario the
order is reversed—but in each case MPTCP is close to
the best, so it seems to be a reasonable compromise. We
will then validate our findings with a result from an ex-
perimental testbed running our Linux implementation.

Static load balancing simulation. First we shall in-
vestigate load balancing in a stable environment of long-
lived flows, testing the predictions in§2.2. Fig.7 shows
a scenario with five bottleneck links arranged in a torus,
each used by two multipath flows. All paths have equal
RTT of 100ms, and the buffers are one bandwidth-delay
product. We will adjust the capacity of linkC. When
the capacity of linkC is reduced then it will become
more congested, so the two flows using it should shift
their traffic towardsB andD, so those links become
more congested, so there is a knock-on effect and the
other flows should shift their traffic onto linksA andE.
With perfect balancing, the end result should be equal
congestion on all links.

Fig.8 plots the imbalance in congestion as a function
of the capacity of linkC. When all links have equal ca-
pacity (C = 1000pkt/s) then congestion is of course
perfectly balanced for all the algorithms. When link
C is smaller, the imbalance is greater. COUPLED is
very good at balancing congestion, EWTCP is bad, and
MPTCP is in between. We also find that balanced con-
gestion results in better fairness between total flow rates:
when linkC has capacity 100 pkt/s then Jain’s fairness
index is 0.99 for the flow rates with COUPLED, 0.986
for MPTCP and 0.92 for EWTCP.

6

Figure 10: Server load balancing with MPTCP

Dynamic load balancing simulation. Next we illus-
trate the problem with dynamic load described in§2.4.
We ran a simulation with two links as in Fig.9, both of
capacity 100Mb/s and buffer 50 packets, and one mul-
tipath flow where each path has a 10ms RTT. On the
top link there is an additional bursty CBR flow which
sends at 100Mb/s for a random duration of mean 10ms,
then is quiet for a random duration of mean 100ms. The
multipath flow ought to use only the bottom link when
the CBR flow is present, and it ought to quickly take up
both links when the CBR flow is absent. We reasoned
that COUPLED would do badly, and the throughputs we
obtain confirm this. In Mb/s, they are

top link bottom link
EWTCP 85 100
MPTCP 83 99.8
COUPLED 55 99.4

We have found similar problems in a wide range of
different scenarios. The exact numbers depend on how
quickly congestion levels change, and in this illustra-
tion we have chosen particularly abrupt changes. One
might expect similarly abrupt changes for a mobile de-
vices when coverage on one radio interface is suddenly
lost and then recovers.

Server load balancing experiment. We next give re-
sults from an experimental testbed that show our Linux
implementation of MPTCP balancing congestion, vali-
dating the simulations we have just presented.

We first ran a server dual-homed with two 100Mb/s
links and a number of client machines. We used dum-
mynet to add 10ms of latency to simulate a wide-area
scenario. We ran 5 client machines connecting to the
server on link 1 and 15 on link 2, both using long-lived
flows of Linux 2.6 NewReno TCP. The first minute of
Fig.10 shows the throughput that is achieved—clearly
there is more congestion on link 2. Then we started
10 multipath flows able to use both links. Perfect load
balancing would require these new flows to shift com-
pletely to link 1. This is not perfectly achieved, but

nonetheless multipath helps significantly to balance load,
despite constituting only1/3 the total number of flows.
The figure only shows MPTCP; COUPLED was simi-
lar and EWTCP was slightly worse as it pushed more
traffic onto link 2.

Our second experiment used the same topology. On
link 1 we generated Poisson arrivals of TCP flows with
rate alternating between 10/s (light load) and 60/s (heavy
load), with file sizes drawn from a Pareto distribution
with mean 200kB. On link 2 we ran a single long-lived
TCP flow. We also ran three multipath flows, one for
each multipath algorithm. Their average throughputs
were 61Mb/s for MPTCP, 54Mb/s for COUPLED, and
47Mb/s for EWTCP. In heavy load EWTCP did worst
because it did not move as much traffic onto the less con-
gested path. In light load COUPLED did worst because
bursts of traffic on link 1 pushed it onto link 2, where it
remained ‘trapped’ even after link 1 cleared up.

4. EFFICIENT ROUTING
IN DATA CENTERS

Growth in cloud applications from companies such
as Google, Microsoft and Amazon has resulted in huge
data centers in which significant amounts of traffic are
shifted between machines, rather than just out to the In-
ternet. To support this, researchers have proposed new
architectures with much denser interconnects than have
traditionally been implemented. Two such proposals,
FatTree [2] and BCube [8], are illustrated in Fig.11. The
density of interconnects means that there are many pos-
sible paths between any pair of machines. The challenge
is: how can we ensure that the load is efficiently dis-
tributed, no matter the traffic pattern?

One obvious benefit of any sort of multipath TCP in
data centers is that it can alleviate bottlenecks at the host
NICs. For example in BCube, Fig.11(b), if the core is
lightly loaded and a host has a single large flow then it
makes sense to use both available interfaces.

Multipath TCP is also beneficial when the network
core is the bottleneck. To show this, we compared mul-
tipath TCP to single-path TCP with Equal Cost Mul-
tipath (ECMP), which we simulated by making each
TCP source pick one of the shortest-hop paths at ran-
dom. We ran packet-level simulations of FatTree with
128 single-interface hosts and 80 eight-port switches,
and for each pair of hosts we selected 8 paths at ran-
dom to use for multipath. (Our reason for choosing 8
paths is discussed below.) We also simulated BCube
with 125 three-interface hosts and 25 five-port switches,
and for each pair of hosts we selected 3 edge-disjoint
paths according to the BCube routing algorithm, choos-
ing the intermediate nodes at random when the algo-
rithm needed a choice. All links were 100Mb/s.

We simulated three traffic patterns, all consisting of

7

(a) FatTree (b) BCube

switch

host machine

src or dst

relaying host

Figure 11: Two proposed data center topologies. The bold lines show multiple paths between the source and
destination.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

1 2 3 4 5 6 7 8

T
hr

ou
gh

pu
t (

%
 o

f o
pt

im
al

)

Paths Used

TCP
MPTCP

Figure 12: Multipath needs 8 paths
to get good utilization in FatTree

 0

 20

 40

 60

 80

 100

 20 40 60 80 100 120

T
hr

ou
gh

pu
t (

M
b/

s)

Rank of Flow

MPTCP
EWTCP

Single Path
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 50 100 150 200 250

Lo
ss

 R
at

e
(%

)

Rank of Link

Core Links

 0 50 100

Rank of Link

Access Links

MPTCP
EWTCP

Single Path

Figure 13: Distribution of throughput and loss rate, in 128-node
FatTree

long-lived flows. TP1 is a random permutation where
each host opens a flow to a single destination chosen
uniformly at random, such that each host has a single
incoming flow. For FatTree, this is the least amount of
traffic that can fully utilize the network and is a good
test for overall utilization. In TP2 each host opens 12
flows to 12 destinations; in FatTree the destinations are
chosen at random, while in BCube they are the host’s
neighbours in the three levels. This mimics the locality
of communication of writes in a distributed filesystem,
where replicas of a block may be placed close to each
other in the physical topology in order to allow higher
throughput. We are using a high number of replicas as
a stress-test of locality. Finally, TP3 is a sparse traffic
pattern: 30% of the hosts open one flow to a single des-
tination chosen uniformly at random.

FatTree simulations. The per-host throughputs ob-
tained in FatTree in Mb/s, are:

TP1 TP2 TP3
SINGLE-PATH 51 94 60
EWTCP 92 92.5 99
MPTCP 95 97 99

These figures show that for all three traffic patterns,
both EWTCP and MPTCP have enough path diversity
to ‘find’ nearly all the capacity in the network, as we can
see from the fact that they get close to full utilization
of the machine’s 100Mb/s interface card. Fig.12 shows
the throughput achieved as a function of paths used, for
MPTCP under TP1—we have found that 8 is enough

to get 90% utilization, in simulations across a range of
traffic matrices and with thousands of hosts.

Average throughput figures do not give the full pic-
ture. Fig.13 shows the distribution of throughput on
each flow, and of loss rate on each link, obtained by
the three algorithms, for traffic pattern TP1. We see that
MPTCP does a better job of allocating throughput fairly
than EWTCP, for the reasons discussed in§2.2 and§3.
Fairness matters for many datacenter distributed com-
putations that farm processing out to many nodes and
are limited by the response time of the slowest node.
We also see that MPTCP does a better job of balancing
congestion.

BCube simulations. The per-host throughputs obtained
in BCube, in Mb/s, are:

TP1 TP2 TP3
SINGLE-PATH 64.5 297 78
EWTCP 84 229 139
MPTCP 86.5 272 135

These throughput figures reflect three different phe-
nomena. First, both multipath algorithms allow a host
to use all three of its interfaces whereas single-path TCP
can use only one, so they allow higher throughput. This
is clearest in the sparse traffic pattern TP3, where the
network core is underloaded. Second, BCube paths may
have different hop counts, hence they are likely to tra-
verse different numbers of bottlenecks, so some paths
will be more congested than others. As discussed in
§2.2, an efficient multipath algorithm should shift its

8

S1

M

S2

link 1

link 2

Figure 14: A multipath
flow competing against
two single-path flows

Figure 15: Multipath TCP throughput
compared to single-path, where link 1 is
WiFi and link 2 is 3G.

12 25 50 100 200 400 800
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

RTT2

400
800

1600
3200

Figure 16: The ratio of flowM ’s
throughput to the better of flowS1

andS2, as we vary link 2 in Fig.14.

traffic away from congestion, and EWTCP does not do
this hence it tends to get worse throughput than MPTCP.
This is especially clear in TP2, and not noticeable in
TP3 where the core has little congestion. Third, even
MPTCP does not moveall its traffic away from the
most congested path, for the reasons discussed in§2.4,
so when the least-congested paths happen to all be shortest-
hop paths then shortest-hop single-path TCP will do bet-
ter. This is what happened in TP2. (Of course it is not al-
ways true that the least congested paths are all shortest-
hop paths, so shortest-hop single-path TCP does poorly
in other cases.)

In summary, MPTCP performs well across a wide
range of traffic patterns. In some cases EWTCP achieves
throughput as good as MPTCP, and in other cases it
falls short. Even when its average throughput is as good
as MPTCP it is less fair.

We have compared multipath TCP to single-path TCP,
assuming that the single path is chosen at random from
the shortest-hop paths available. Randomization goes
some way towards balancing traffic, but it is likely to
cause some congestion hotspots. An alternative solu-
tion for balancing traffic is to use a centralized scheduler
which monitors large flows and solves an optimization
problem to calculate good routes for them [3]. We have
found that, in order to get comparable performance to
MPTCP, one may need to re-run the scheduler as of-
ten as every 100ms [22] which raises serious scalability
concerns. However, the exact numbers depend on the
dynamics of the traffic matrix.

5. MULTIPATH WIRELESS CLIENT
Modern mobile phones and devices such as Nokia’s

N900 have multiple wireless interfaces such as WiFi and
3G, yet only one of them is used for data at any given
time. With more and more applications requiring Inter-
net access, from email to navigation, multipath can im-
prove mobile users’ experience by allowing simultane-
ous use of both interfaces. This shields the user from the

inherently variable connectivity of wireless networks.
3G and WiFi have quite different link characteristics.

WiFi provides much higher throughput and short RTTs,
but in our tests its performance was very variable with
quite high loss rates, because there was significant in-
terference in the 2.4GHz band. 3G tends to vary over
longer timescales, and we found it to be overbuffered
leading to RTTs of well over a second. These differ-
ences provide a good test of the fairness goals and RTT
compensation algorithm developed in§2.5. The exper-
iments we describe here show that MPTCP gives users
at least as much throughput as single-path users, and
that the other multipath algorithms we have described
do worse.

Single-flow experiment. Our first experiments use a
laptop equipped with a 3G USB interface and a 802.11
network adapter, running our Linux implementation of
MPTCP. The laptop was placed in the same room as the
WiFi basestation, and 3G reception was good. The lap-
top did not move, so the path characteristics were rea-
sonably static. We ran 15 tests of 20 seconds each: 5
with single-path TCP on WiFi, 5 with single-path TCP
on 3G, and 5 with MPTCP. The average throughputs
(with standard deviations) were 14.4 (0.2), 2.1 (0.2) and
17.3 (0.7) Mb/s respectively. As we would wish, the
MPTCP user gets bandwidth roughly equal to the sum
of the bandwidths of the access links.

Competing-flows experiment. We repeated the exper-
iment, but now with competing single-path TCP flows
on each of the paths, as in Fig.14. In order to showcase
our algorithm for RTT compensation we repeated the
experiment but replacing MPTCP first with EWTCP
and then with COUPLED. The former does not have any
RTT compensation built in, although the technique we
used for MPTCP could be adapted. For the latter, we
do not know how to build in RTT compensation.

Fig.15 shows the total throughput obtained by each
of the three flows over the course of 5 minutes, one plot
for each of the three multipath algorithms. The top half

9

of the figure shows the bandwidth achieved on the WiFi
path, the bottom half shows (inverted) the throughput
on the 3G path, and the range of the grey area extend-
ing into both halves shows the throughput the multipath
algorithms achieved on both paths.

The figure shows that only MPTCP gives the multi-
path flow a fair total throughput, i.e. approximately as
good as the better of the single-path competing flows,
which in this case is the WiFi flow. The pictures are
somewhat choppy: it seems that the WiFi basestation is
underbuffered, hence the TCP sawtooth leads to peaks
and troughs in throughput as measured at the receiver; it
also seems the 3G link has bursts of high speed, perhaps
triggered by buffer buildup. Despite these experimental
vicissitudes, the long-run averages show that MPTCP
does a much better job of getting fair total throughput.
The long-run average throughputs in Mb/s, over 5 min-
utes of each setup, are:

multipath TCP-WiFi TCP-3G
EWTCP 1.66 3.11 1.20
COUPLED 1.41 3.49 0.97
MPTCP 2.21 2.56 0.65

These numbers match the predictions in§2.3. COU-
PLED sends all its traffic on the less congested path so
it often chooses to send on the 3G path and hardly uses
the WiFi path. EWTCP splits its traffic so it gets the
average of WiFi and 3G throughput. Only MPTCP gets
close to the correct total throughput. The shortfall (2.21Mb/s
for MPTCP compared to 2.56Mb/s for the best single-
path TCP) may be due to difficulty in adapting to the
rapidly changing 3G link speed; we continue to investi-
gate how quickly multipath TCP should adapt to changes
in congestion.

Simulations. In order to test RTT compensation across
a wider range of scenarios, we simulated the topology
in Fig.14 with two wired links, with capacitiesC1 =
250pkt/s andC2 = 500pkt/s, and propagation delays
RTT1 = 500ms andRTT2 = 50ms. At first sight we
might expect each flow to get 250pkt/s. The simulation
outcome is very different: flowS1 gets 130pkt/s, flow
S2 gets 315pkt/s and flowM gets 305pkt/s; the drop
probabilities arep1 = 0.22% andp2 = 0.28%. Af-
ter some thought we realize this outcome is very nearly
what we designed the algorithm to achieve. As dis-
cussed in§2.5, flowM says ‘What would a single-path
TCP get on path 2, based on the current loss rate? I
should get at least as much!’ and decides its throughput
should be around 315pkt/s. It doesn’t say ‘What would
a single-path TCP get on path 2 if I used only path 2?’
which would give the answer 250pkt/s. The issue is that
the multipath flow does not take account of how its ac-
tions would affect drop probabilities when it decides on
its fair rate. It is difficult to see any practical alternative.

3

2

1

0

1

2

3

4

5

6

7

 2 4 6 8 10 12

T
hr

ou
gh

pu
t (

M
bp

s)

Time (min)

Multipath Subflows
Regular TCP Flows

WiFi Interface

3G Interface

Figure 17: Throughput of multipath and regular
TCP running simultaneously over 3G and WiFi.
The 3G graph is shown inverted, so the total multi-
path throughput (the grey area) can be seen clearly.

And nonetheless, the outcome in this case is still better
for bothS1 andM than if flowM used only link 1, and
it is better for bothS2 andM than if flowM used only
link 2.

We repeated the experiment, but withC1 = 400pkt/s,
RTT1 = 100ms, and a range of values ofC2 (shown as
labels in Fig.16) andRTT2 (the horizontal axis). Flow
M aims to do as well as the better of flowsS1 andS2.
Fig.16 shows it is within a few percent of this goal in all
cases except where the bandwidth delay product on link
2 is very small; in such cases there are problems due to
timeouts. Over all of these scenarios, flowM always
gets better throughput by using multipath than if it used
just the better of the two links; the average improvement
is 15%.

Mobile experiment. Having shown that our RTT com-
pensation algorithm works in a rather testing wireless
environment, we now wish to see how MPTCP performs
when the client is mobile and both 3G and WiFi con-
nectivity are intermittent. We use the same laptop and
server as in the static experiment, but now the laptop
user moves between floors of the building. The building
has reasonable WiFi coverage on most floors but not on
the staircases. 3G coverage is acceptable but is some-
times heavily congested by other users.

The experiment starts with one TCP running over the
3G interface and one over WiFi, both downloading data
from an otherwise idle university server. A multipath
flow then starts, using both interfaces, downloading data
from the same server. Fig.17 shows the throughputs over
each link (each point is a 5s average). Again, WiFi is
shown above the dashed line, 3G is shown inverted be-
low the dashed line, and the total throughput of the mul-
tipath flow can be clearly seen from the vertical range of
the gray region.

10

During the experiment the subject moves around the
building. For the first 9 minutes the 3G path has less
congestion, so MPTCP would prefer to send its traffic
on that route. But it also wants to get as much through-
put as the higher-throughput path, in this case WiFi. The
fairness algorithm prevents it from sending this much
traffic on the 3G path, so as not to out-compete other
single path TCPs that might be using 3G, and so the re-
mainder is sent on WiFi. At 9 minutes the subject walks
downstairs to go to a coffee machine. On the stairwell
there is no WiFi coverage, but 3G coverage is better, so
MPTCP adapts and takes advantage. When the subject
leaves the stairwell, a new WiFi basestation is acquired,
and multipath quickly takes advantage of it. This single
trace shows the robustness advantage of multipath TCP,
and it also shows that it does a good job of utilizing dif-
ferent links simultaneously without harming competing
traffic on those links.

6. PROTOCOL IMPLEMENTATION
Although this paper primarily focuses on the conges-

tion control dynamics of MPTCP, the protocol changes
to TCP needed to implement multipath can be quite sub-
tle. In particular, we must to be careful to avoid dead-
lock in a number of scenarios, especially relating to buffer
management and flow control. In fact we discovered
there is little choice in many aspects of the design. There
are also many tricky issues regarding middleboxes which
further constrain the design, not described here. A more
complete exposition of these constraints can be found
in [21], and our protocol is precisely described in the
currentmptcp draft [7].

Subflow establishment. Our implementation of MPTCP
requires both client and server to have multipath exten-
sions. A TCP option in the SYN packets of the first sub-
flow is used to negotiate the use of multipath if both ends
support it, otherwise they fall back to regular TCP be-
havior. After this, additional subflows can be initiated;
a TCP option in the SYN packets of the new subflows
allows the recipient to tie the subflow into the existing
connection. We rely on multiple interfaces or multiple
IP addresses to obtain different paths; we have not yet
studied the question of when additional paths should be
started.

Loss Detection and Stream Reassembly.Rgeular TCP
uses a single sequence space for both loss detection and
reassembly of the application data stream. With MPTCP,
loss is a subflow issue, but the application data stream
spans all subflows. To accomplish both goals using a
single sequence space, the sequence space would need
to be striped across the subflows. To detect loss, the
receiver would then need to use selective acknowledg-

ments and the sender would need to keep a scoreboard
of which packets were sent on each subflow. Retrans-
mitting packets on a different subflow creates an ambi-
guity, but the real problem is middleboxes that are un-
aware of MPTCP traffic. For example, thepf[19] fire-
wall can re-write TCP sequence numbers to improve the
randomness of the initial sequence number. If only one
of the subflows passes through such a firewall, the re-
ceiver cannot reliably reconstruct the data stream.

To avoid such issues, we separated the two roles of
sequence numbers. The sequence numbers and cumu-
lative ack in the TCP header are per-subflow, allowing
efficient loss detection and fast retransmission. Then to
permit reliable stream reassembly, an additional data se-
quence number is added stating where in the application
data stream the payload should be placed.

Flow Control. TCP’s flow control is implemented via
the combination of the receive window field and the ac-
knowledgment field in the TCP packet header. The re-
ceive window indicates the number of bytes beyond the
acknowledged sequence number that the receiver can
buffer. The sender is not permitted to send more than
this amount of additional data.

Multipath TCP also needs to implement flow control,
although packets now arrive over multiple subflows. Two
choices seem feasible:

• separate buffer pools are maintained at the receiver
for each subflow, and their occupancy is signalled
relative to the subflow sequence space using the re-
ceive window field.

• a single buffer pool is maintained at the receiver,
and its occupancy is signalled relative to the data se-
quence space using the receive window field.

Unfortunately the former suffers from potential dead-
lock. Suppose subflow 1 stalls due to an outage, but
subflow 2’s receive buffer fills up. The packets received
from subflow 2 cannot be passed to the application be-
cause a packet from subflow 1 is still missing, but there
is no space in subflow 2’s receive window to resend the
packet from subflow 1 that is missing. To avoid this we
use a single shared buffer; all subflows report the receive
window relative to the last consecutively received data
in the data sequence space.

Does the data cumulative ack then need to be explicit,
or can it be inferred from subflow acks by keeping track
of which data corresponds to which subflow sequence
numbers?

Consider the following scenario: a receiver has suffi-
cient buffering for two packets6. In accordance with the
receive window, the sender sends two packets; data seg-
ment 1 is sent on subflow 1 with subflow sequence num-

6The same issue occurs with larger buffers

11

ber 10, and data segment 2 is sent on subflow 2 with sub-
flow sequence number 20. The receiver acknowledges
the packets using subflow sequence numbers only; the
sender will infer which data is being acknowledged. Ini-
tially, the inferred cumulative ack is 0.
i. In the Ack for 10, the receiver acks data 1 in or-

der, but the receiving application has not yet read the
data, so relative to 1, the receive window is closed to
1 packet.

ii. In the Ack for 20, the receiver acks data 2 in order.
As the application still has not read, relative to 2 the
receive window is now zero.

iii. Unfortunately the acks are reordered simply because
the RTT on path 2 is shorter than that on path 1, a
common event. The sender receives the Ack for 20,
infers that 2 has been received but 1 has not. The
data cumulative ack is therefore still 0.

iv. When the ack for 10 arrives, the receiver infers that
1 and 2 have been received, so the data cumulative
ack is now 2. The receive window indicated is 1
packet, relative to the inferred cumulative ack of 2.
Thus the sender can send packet 3. Unfortunately,
the receiver cannot buffer 3 and must drop it.

In general, the problem is that although it is possible
to infer a data cumulative ack from the subflow acks,
it is not possible to reliably infer the trailing edge of
the receive window. The result is either missed sending
opportunities or dropped packets. This is not a corner
case; it will occur whenever RTTs differ so as to cause
the acks to arrive in a different order from that in which
they were sent.

To avoid this problem (and some others related to
middleboxes) we add an explicit data acknowledgment
field in addition to the subflow acknowledgment field in
the TCP header.

Encoding. How should be data sequence numbers and
data acknowledgments be encoded in TCP packets? Two
mechanisms seemed feasible: carry them in TCP op-
tions or embed them in the payload using an SSL-like
chunking mechanism. For data sequence numbers there
is no compelling reason to choose one or the other, but
for data acknowledgements the situation is more com-
plex.

For the sake of concreteness, let us assume that a hy-
pothetical payload encoding uses a chunked TLV struc-
ture, and that a data ack is contained in its own chunk,
interleaved with data chunks flowing in the same direc-
tion. As data acks are now part of the data stream, they
are subject to congestion control and flow control. This
can lead to potential deadlock scenarios.

Consider a scenario where A’s receive buffer is full
because the application has not read the data, but A’s ap-
plication wishes to send data to B whose receive buffer

is empty. This might occur for example when B is pipelin-
ing requests to A, and A now needs to send the response
to an earlier request to B before reading the next request.

A sends its data, B stores it locally, and wants to send
the data ACK, but can’t do so: flow control imposed by
A’s receive window stops him. Because no data acks are
received from B, A cannot free its send buffer, so this
fills up and blocks the sending application on A. The
connection is now deadlocked. A’s application will only
read when it has finished sending data to B, but it cannot
do so because his send buffer is full. The send buffer can
only empty when A receives an data ack from B, but B
cannot send a data ack until A’s application reads. This
is a classic deadlock cycle.

In general, flow control of acks seems to be danger-
ous. Our implementation conveys data acks using TCP
options to avoid this and similar issues. Given this choice,
we also encode data sequence numbers in TCP options.

7. RELATED WORK
There has been a good deal of work on building mul-

tipath transport protocols [13, 27, 18, 12, 14, 6, 23, 7].
Most of this work focuses on the protocol mechanisms
needed to implement multipath transmission, with key
goals being robustness to long term path failures and to
short term variations in conditions on the paths. The
main issues are what we discussed in§6: how to split
sequence numbers across paths (i.e. whether to use one
sequence space for all subflows or one per subflow with
an extra connection-level sequence number), how to do
flow control (subflow, connection level or both), how to
ack, and so forth. Our protocol design in§6 has drawn
on this literature.

However, the main focus of this paper is congestion
control not protocol design. In most existing proposals,
the problem of shared bottlenecks (§2.1) is considered
but the other issues in§2 are not. Let us highlight the
congestion control characteristics of these proposals.

pTCP [12], CMT over SCTP[14] and M/TCP [23] use
uncoupled congestion control on each path, and are not
fair to competing single-path traffic in the general case.

mTCP [27] also performs uncoupled congestion con-
trol on each path. In an attempt to detect shared conges-
tion at bottlenecks it computes the correlation between
fast retransmit intervals on different subflows. It is not
clear how robust this detector is.

R-MTP [18] targets wireless links: it probes the band-
width available periodically for each subflow and ad-
justs the rates accordingly. To detect congestion it uses
packet interarrival times and jitter, and infers mounting
congestion when it observes increased jitter. This only
works when wireless links are the bottleneck.

The work in [11] is based on using EWTCP with dif-
ferent weights on each path, and adapting the weights to

12

achieve the outcomes described in§2.1–§2.2. It does not
address the problems identified in§2.3–§2.5, and in par-
ticular it has problems coping with heterogenous RTTs.

Network layer multipath. ECMP[25] achieves load
balancing at the flow level, without the involvement of
end-systems. It sends all packets from a given flow
along the same route in order that end-systems should
not see any packet re-ordering. ECMP and multipath
TCP complement each other. Multipath TCP can use
ECMP to get different paths through the network with-
out having multihomed endpoints. Different subflows of
the same multipath connection will have different five-
tuples (at least one port will differ) and will likely hash
onto a different path with ECMP. This interaction can
be readily used in data centers, where multiple paths are
available and ECMP is widely used.

Horizon [20] is a system for load balancing at the net-
work layer, for wireless mesh networks. Horizon net-
work nodes maintain congestion state and estimated de-
lay for each possible path towards the destination; hop-
by-hop backpressure is applied to achieve near-optimal
throughput, and the delay estimates let it avoid re-ordering.
Theoretical work suggests that inefficient outcomes may
arise when both the end-systems and the network partic-
ipate in balancing traffic [1].

Application layer multipath. BitTorrent [4] is an ex-
ample of application layer multipath. Different chunks
of the same file are downloaded from different peers to
increase throughput. BitTorrent works at chunk granu-
larity, and only optimizes for throughput, downloading
more chunks from faster servers. Essentially BitTorrent
is behaving in a similar way to uncoupled multipath con-
gestion control, albeit with the paths having different
endpoints. While uncoupled congestion control does not
balance flow rates, it nevertheless achieves some degree
of load balancing when we take into account flow sizes
[17, 26], by virtue of the fact that the less congested sub-
flow gets higher throughput and therefore fewer bytes
are put on the more congested subflow.

8. CONCLUSIONS & FUTURE WORK
We have demonstrated a working multipath conges-

tion control algorithm. It brings immediate practical
benefits: in§5 we saw it seamlessly balance traffic over
3G and WiFi radio links, as signal strength faded in and
out. It is safe to use: the fairness mechanism from§2.5
ensures that it does not harm other traffic, and that there
is always an incentive to turn it on because its aggregate
throughput is at least as good as would be achieved on
the best of its available paths. It should be beneficial
to the operation of the Internet, since it selects efficient
paths and balances congestion, as described in§2.2 and

demonstrated in§3, at least in so far as it can given topo-
logical constraints and the requirements of fairness.

We believe our multipath congestion control algorithm
is safe to deploy, either as part of the IETF’s efforts to
standardize Multipath TCP[7] or with SCTP, and it will
perform well. This is timely, as the rise of multipath-
capable smart phones and similar devices has made it
crucial to find a good way to use multiple interfaces
more effectively. Currently such devices use heuristics
to periodically choose the best interface, terminating ex-
isting connections and re-establishing new ones each time
a switch is made. Combined with a transport protocol
such as Multipath TCP or SCTP, our congestion control
mechanism avoids the need to make such binary deci-
sions, but instead allows continuous and rapid rebalanc-
ing on short timescales as wireless conditions change.

Our congestion control scheme is designed to be com-
patible with existing TCP behavior. However, existing
TCP has well-known limitations when coping with long
high-speed paths. To this end, Microsoft incorporate
Compound TCP[24] in Vista and Windows 7, although
it is not enabled by default, and recent Linux kernels
use Cubic TCP[9]. We believe that Compound TCP
should be a very good match for our congestion con-
trol algorithm. Compound TCP kicks in when a link
is underutilized to rapidly fill the pipe, but it falls back
to NewReno-like behavior once a queue starts to build.
Such a delay-based mechanism would be complemen-
tary to the work described in this paper, but would fur-
ther improve a multipath TCP’s ability to switch to a
previously congested path that suddenly has spare ca-
pacity. We intend to investigate this in future work.

9. REFERENCES
[1] D. Acemoglu, R. Johari, and A. Ozdaglar. Partially

optimal routing.IEEE Journal of selected areas in
communications, 2007.

[2] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable,
commodity data center network architecture. InProc.
SIGCOMM, 2008.

[3] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang,
and A. Vahdat. Hedera: Dynamic flow scheduling for
data center networks. InProc. NSDI, 2010.

[4] B. Cohen. Incentives build robustness in BitTorrent. In
Workshop on econonomics of peer-to-peer systems,
2003.

[5] J. Crowcroft and P. Oechslin. Differentiated end-to-end
Internet services using a weighted proportional fair
sharing TCP.CCR, 1998.

[6] Y. Dong, D. Wang, N. Pissinou, and J. Wang. Multi-path
load balancing in transport layer. InProc. 3rd EuroNGI
Conference on Next Generation Internet Networks,
2007.

[7] A. Ford, C. Raiciu, and M. Handley. TCP extensions for
multipath operation with multiple addresses, Oct 2010.
IETF draft (work in progress).

[8] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian,
Y. Zhang, and S. Lu. Bcube: a high performance,

13

server-centric network architecture for modular data
centers. InProc. SIGCOMM, 2009.

[9] S. Ha, I. Rhee, and L. Xu. CUBIC: a new TCP-friendly
high-speed TCP variant.SIGOPS Oper. Syst. Rev.,
42(5), 2008.

[10] H. Han, S. Shakkottai, C. V. Hollot, R. Srikant, and
D. Towsley. Multi-path TCP: a joint congestion control
and routing scheme to exploit path diversity in the
Internet.IEEE/ACM Trans. Networking, 14(6), 2006.

[11] M. Honda, Y. Nishida, L. Eggert, P. Sarolahti, and
H. Tokuda. Multipath Congestion Control for Shared
Bottleneck. InProc. PFLDNeT workshop, May 2009.

[12] H.-Y. Hsieh and R. Sivakumar. A transport layer
approach for achieving aggregate bandwidths on
multi-homed mobile hosts. InProc. MobiCom ’02,
pages 83–94, New York, NY, USA, 2002. ACM.

[13] C. Huitema. Multi-homed TCP. Internet draft, IETF,
1995.

[14] J. R. Iyengar, P. D. Amer, and R. Stewart. Concurrent
multipath transfer using SCTP multihoming over
independent end-to-end paths.IEEE/ACM Trans. Netw.,
14(5):951–964, 2006.

[15] F. Kelly and T. Voice. Stability of end-to-end algorithms
for joint routing and rate control.CCR, 35(2), Apr. 2005.

[16] T. Kelly. Scalable TCP: improving performance in
highspeed wide area networks.SIGCOMM Comput.
Commun. Rev., 33(2):83–91, 2003.

[17] P. Key, L. Massoulié, and D. Towsley. Path selection and
multipath congestion control. InProc. IEEE Infocom,
May 2007. Also appeared in proceedings of IEEE
ICASSP 2007.

[18] L. Magalhaes and R. Kravets. Transport level
mechanisms for bandwidth aggregation on mobile hosts.
ICNP, page 0165, 2001.

[19] PF: the OpenBSD Packet Filter. OpenBSD 4.7,
www.openbsd.org/faq/pf, retrieved Sep 2010.

[20] B. Radunović, C. Gkantsidis, D. Gunawardena, and
P. Key. Horizon: balancing TCP over multiple paths in
wireless mesh network. InProc. MobiCom ’08, 2008.

[21] C. Raiciu, M. Handley, and A. Ford. Multipath TCP
design decisions. Work in progress,
www.cs.ucl.ac.uk/staff/C.Raiciu/
files/mtcp-design.pdf, 2009.

[22] C. Raiciu, C. Pluntke, S. Barre, A. Greenhalgh,
D. Wischik, and M. Handley. Data center networking
with multipath TCP. InHotnets, 2010.

[23] K. Rojviboonchai and H. Aida. An evaluation of
multi-path transmission control protocol (M/TCP) with
robust acknowledgement schemes.IEICE Trans.
Communications, 2004.

[24] K. Tan, J. Song, Q. Zhang, and M. Sridharan. A
Compound TCP approach for high-speed and long
distance networks. InProc. IEEE INFOCOM 2006,
pages 1–12, April 2006.

[25] D. Thaler and C. Hopps. Multipath Issues in Unicast
and Multicast Next-Hop Selection. RFC 2991
(Informational), Nov. 2000.

[26] B. Wang, W. Wei, J. Kurose, D. Towsley, K. R. Pattipati,
Z. Guo, and Z. Peng. Application-layer multipath data
transfer via TCP: schemes and performance tradeoffs.
Performance Evaluation, 64(9–12), 2007.

[27] M. Zhang, J. Lai, A. Krishnamurthy, L. Peterson, and
R. Wang. A transport layer approach for improving
end-to-end performance and robustness using redundant
paths. InProc USENIX ’04, 2004.

Appendix
We now prove that the equilibrium window sizes of MPTCP
satisfy the fairness goals in§2.5. The rough intuition is
that if we use SEMICOUPLED from §2.4, and addition-
ally ensure (4), then the set of bottlenecked paths in-
creases asa increases. The proof involves identifying
the order in which paths become bottlenecked, to permit
an analysis similar to§2.5.

First define

i(S) =
maxr∈S

√
ŵr/RTTr

∑

r∈S ŵr/RTTr

and assume for convenience that the window sizes are
kept in the order

√
ŵ1

RTT1
≤

√
ŵ2

RTT2
≤ · · ·

√
ŵn

RTTn
.

Note that with this ordering, the equilibrium window in-
crease (1) reduces to

min
S⊆R:r∈S

ŵmax(S)/RTT2max(S)
(
∑

s∈S ws/RTTs
)2

= min
r≤u≤n

ŵu/RTT2u
(
∑

t≤u wt/RTTt
)2

i.e. it can be computed with a linear search not a combi-
natorial search.

At equilibrium, assuming drop probabilities are small
so 1 − pr ≈ 1, the window sizes satisfy the balance
equations

min
S:r∈S

i(S)2 = prŵr/2 for eachr ∈ R.

Rearranging this, and writing it in terms ofŵr =
√

2/pr,

ŵTCP
r =

√

ŵr max
S:r∈S

1/i(S). (7)

Now take anyT ⊆ R. Rearranging the definition of
i(T), and applying some simple algebra, and substitut-
ing in (7),
∑

r∈T

ŵr

RTTr
= max

r∈T

1

RTTr

√

ŵr/i(T)

≤ max
r∈T

1

RTTr

√

ŵr max
S:r∈S

1/i(S) = max
r∈T

ŵTCP
r

RTTr

.

SinceT was arbitrary, this proves we satisfy (4).
To prove (3), applying (7) atr = n in conjunction

with the ordering on window sizes, we get

ŵTCP
n

RTTn
=

∑

r

ŵr

RTTr
.

One can also show that for allr, ŵTCP
r /RTTr ≤ ŵTCP

n /RTTn;
the proof is by induction onr starting atr = n, and is
omitted. These two facts imply (3).

14

