Learning Moore Machines from Input-Output Traces

Georgios Giantamidis1 and Stavros Tripakis1,2

1Aalto University, Finland
2UC Berkeley, USA
Motivation: learning models from black boxes

Many applications:
- Verify that a black-box component is safe to use
- Dynamic malware analysis
- ...

Stavros Tripakis (Aalto and Berkeley) Learning Moore Machines from Input-Output Traces SRI, Nov 14, 2016 2 / 32
Learning FSMs from input-output traces

IO-traces

\[
\begin{align*}
 aa & \rightarrow 020 \\
 baa & \rightarrow 0122 \\
 bba & \rightarrow 0122 \\
 abaa & \rightarrow 02220 \\
 abba & \rightarrow 02220
\end{align*}
\]
Outline

1. Background
2. Formal problem definition
3. Related work
4. Identification in the limit
5. Our learning algorithms
6. Results
7. Summary & future work
Outline

1 Background

2 Formal problem definition

3 Related work

4 Identification in the limit

5 Our learning algorithms

6 Results

7 Summary & future work
Moore machines

- input alphabet, $I = \{a, b\}$
- output alphabet, $O = \{0, 1, 2\}$
- set of states, $Q = \{q_0, q_1, q_2, q_3\}$
- initial state, q_0
- transition function, $\delta : Q \times I \rightarrow Q$
- output function, $\lambda : Q \rightarrow O$

By definition, our machines are deterministic and complete.
Moore machines

By definition, our machines are deterministic and complete.

- input alphabet, $I = \{a, b\}$
- output alphabet, $O = \{0, 1, 2\}$
- set of states, $Q = \{q_0, q_1, q_2, q_3\}$
- initial state, q_0
- transition function, $\delta : Q \times I \rightarrow Q$
- output function, $\lambda : Q \rightarrow O$
Input-output traces

Moore machine

Some I/O traces generated by the machine

\[
\begin{align*}
q_0 &\rightarrow a, b \\
q_1 &\rightarrow b, a, b \\
q_2 &\rightarrow a, b \\
q_3 &\rightarrow \null \\
\end{align*}
\]

\[
\begin{align*}
aa &\mapsto 020 \\
bba &\mapsto 0122 \\
abaa &\mapsto 02220 \\
abba &\mapsto 02220 \\
\end{align*}
\]
This machine is consistent with this set of traces.
This machine is inconsistent with this set of traces.

\begin{align*}
 aa & \mapsto 020 \\
 baa & \mapsto 0122 \\
 bba & \mapsto 0122 \\
 abaa & \mapsto 02220 \\
 abba & \mapsto 02220
\end{align*}
A first attempt at problem definition

Given ...

- Input alphabet, I
- Output alphabet, O
- Set of IO-traces, S (the training set)

... find a Moore machine M such that:

- M is deterministic
- M is complete
- M is consistent with S
A trivial solution

\[b \mapsto 01 \]
\[aa \mapsto 020 \]
\[ab \mapsto 022 \]

This is called the \textit{prefix-tree machine}.
A trivial solution

This is called the **prefix-tree machine**. Not quite a solution: machine incomplete ...
A trivial solution

\[b \mapsto 01 \]
\[aa \mapsto 020 \]
\[ab \mapsto 022 \]

... but easily completed with self-loops.
Problems with the trivial solution

(1) **Poor generalization,** due to trivial completion with self-loops

- The machine may be consistent with the *training* set ...
- ... but how *accurate* is it on a *test* set?
Problems with the trivial solution

(1) **Poor generalization**, due to trivial completion with self-loops
 - The machine may be consistent with the *training* set ...
 - ... but how *accurate* is it on a *test* set?

(2) Large number of states in the learned machine
 - The prefix-tree machine does not merge states at all.
Revised problem definition

The LMoMIO problem (Learning Moore Machines Input-Output Traces):

Given ...

- Input alphabet, I
- Output alphabet, O
- Set of IO-traces, S (the training set)

... find a Moore machine M such that:

- M is deterministic
- M is complete
- M is consistent with S

... and also:

- M generalizes well (good accuracy on a-priori unknown test sets)
- M is small (few states)
- M is found quickly (good learning algorithm complexity)
How to measure “accuracy”?

We define three metrics: **Strong**, **Medium**, **Weak**

<table>
<thead>
<tr>
<th>test trace</th>
<th>machine output</th>
<th>strong acc.</th>
<th>medium acc.</th>
<th>weak acc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>abc ↦ 1234</td>
<td>1234</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>abc ↦ 1234</td>
<td>4321</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>abc ↦ 1234</td>
<td>1212</td>
<td>0</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>abc ↦ 1234</td>
<td>3434</td>
<td>0</td>
<td>0</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>abc ↦ 1234</td>
<td>1324</td>
<td>0</td>
<td>$\frac{1}{4}$</td>
<td>$\frac{1}{2}$</td>
</tr>
</tbody>
</table>
Outline

1. Background
2. Formal problem definition
3. Related work
4. Identification in the limit
5. Our learning algorithms
6. Results
7. Summary & future work
Related work

- A* [Angluin, 1987]
- NP-hard [Gold, 1978]
- RPNI [Oncina & Garcia, 1992]
- K-tails [Biermann & Feldman, 1972]
- Genetic algorithms
- Ant colony optimization
- Our work

- active
- exact
- heuristic
- passive
Concept introduced in [Gold, 1967], in the context of formal language learning

- Learning is seen as an infinite process
- Training set keeps growing: \(S_0 \subseteq S_1 \subseteq S_2 \subseteq \cdots \)
- For each \(S_i \), the learner outputs machine \(M_i \)
- Identification in the limit \(:= \) learner outputs the right machine after some \(i \)
Identification in the limit

Concept introduced in [Gold, 1967], in the context of formal language learning

- Learning is seen as an infinite process
- Training set keeps growing: \(S_0 \subseteq S_1 \subseteq S_2 \subseteq \cdots \)
- For each \(S_i \), the learner outputs machine \(M_i \)
- Identification in the limit := learner outputs the right machine after some \(i \)

A good passive learning algorithm must identify in the limit.
To prove identification in the limit, we use the notion of **Characteristic Sample** [C. de la Higuera, 2010]:

- Concept existing for DFAs (deterministic finite automata) – we adapt it to Moore machines
- Intuition: set of IO-traces that “covers” the machine (covers all states, all transitions)
- For a minimal Moore machine $M = (I, O, Q, q_0, \delta, \lambda)$, there exists a CS of total length $O(|Q|^4|I|)$

Characteristic Sample Requirement (CSR):

- A learning algorithm satisfies CSR if it satisfies the following:

 If the training set S is a characteristic sample of a minimal machine M, then the algorithm learns from S a machine isomorphic to M.

- CSR can be shown to imply identification in the limit
Outline

1 Background

2 Formal problem definition

3 Related work

4 Identification in the limit

5 Our learning algorithms

6 Results

7 Summary & future work
Three learning algorithms

- PTAP - Prefix Tree Acceptor Product
- PRPNI - Product RPNI
- MooreMI - Moore Machine Inference
This is the trivial solution we discussed earlier:

\[
\begin{align*}
 b & \mapsto 01 \\
 aa & \mapsto 020 \\
 ab & \mapsto 022
\end{align*}
\]

Drawbacks:

- Large number of states in learned machine
- Poor generalization / accuracy
Observations:
- A DFA is a special case of a Moore machine with binary output (accept/reject)
- A Moore machine can be encoded as a product of \([\log_2 |O|]\) DFAs

Based on these observations, PRPNI works as follows:
- Uses the RPNI algorithm [J. Oncina and P. Garcia, 1992], which learns DFAs
- Learns several DFAs that encode the learned Moore machine
- Computes product of the learned DFAs and completes it

Drawbacks:
- DFAs are learned separately, therefore do not have same state-transition structure \(\Rightarrow\) state explosion during product computation
PRPNI - Product RPNI

Observations:
- A DFA is a special case of a Moore machine with binary output (accept/reject)
- A Moore machine can be encoded as a product of $\lceil \log_2 |O| \rceil$ DFAs

Based on these observations, PRPNI works as follows:
- Uses the RPNI algorithm [J. Oncina and P. Garcia, 1992], which learns DFAs
- Learns several DFAs that encode the learned Moore machine
- Computes product of the learned DFAs and completes it

Drawbacks:
- DFAs are learned separately, therefore do not have same state-transition structure \implies state explosion during product computation
- Invalid output codes
Invalid output codes

Output alphabet: \(O = \{0, 1, 2\} \)

Binary encoding of \(O \): \(f = \{0 \mapsto 00, 1 \mapsto 01, 2 \mapsto 10\} \)

Invalid output code: \(11 \) does not correspond to any output symbol
MooreMI - Moore Machine Inference

- Modified RPNI, tailored to Moore machine learning
- Like PRPNI, learns several DFAs that encode the learned Moore machine
- Unlike PRPNI, learned DFAs maintain same state-transition structure
- Therefore, no state explosion during product computation
- No invalid output codes either
Outline

1 Background

2 Formal problem definition

3 Related work

4 Identification in the limit

5 Our learning algorithms

6 Results

7 Summary & future work
Results

Theorem 1
All three algorithms return Moore machines consistent with the IO-traces received as input.

Theorem 2
The MooreMI algorithm satisfies the characteristic sample requirement and identifies in the limit.

Experimental evaluation result:
MooreMI is better not just in theory, but also in practice
Outline

1 Background

2 Formal problem definition

3 Related work

4 Identification in the limit

5 Our learning algorithms

6 Results

7 Summary & future work
Summary

- Learning deterministic, complete Moore machines from input-output traces
- Characteristic sample for Moore machines
- Three algorithms to solve the problem
- MooreMI algorithm identifies in the limit
Future work

- Extend to Mealy machines
- Learning symbolic machines
- Learning from traces and formal requirements (e.g. LTL formulas)
- Industrial case studies
Future work

- Extend to Mealy machines
- Learning symbolic machines
- Learning from traces and formal requirements (e.g. LTL formulas)
- Industrial case studies

Thank you! Questions?
References

