
14

A Theory of Synchronous Relational Interfaces

STAVROS TRIPAKIS and BEN LICKLY, University of California, Berkeley
THOMAS A. HENZINGER, Institute of Science and Technology, Austria
EDWARD A. LEE, University of California, Berkeley

Dedicated to the Memory of Amir Pnueli.

Compositional theories are crucial when designing large and complex systems from smaller components.
In this work we propose such a theory for synchronous concurrent systems. Our approach follows so-called
interface theories, which use game-theoretic interpretations of composition and refinement. These are
appropriate for systems with distinct inputs and outputs, and explicit conditions on inputs that must
be enforced during composition. Our interfaces model systems that execute in an infinite sequence of
synchronous rounds. At each round, a contract must be satisfied. The contract is simply a relation
specifying the set of valid input/output pairs. Interfaces can be composed by parallel, serial or feedback
composition. A refinement relation between interfaces is defined, and shown to have two main properties:
(1) it is preserved by composition, and (2) it is equivalent to substitutability, namely, the ability to replace
an interface by another one in any context. Shared refinement and abstraction operators, corresponding
to greatest lower and least upper bounds with respect to refinement, are also defined. Input-complete
interfaces, that impose no restrictions on inputs, and deterministic interfaces, that produce a unique output
for any legal input, are discussed as special cases, and an interesting duality between the two classes is
exposed. A number of illustrative examples are provided, as well as algorithms to compute compositions,
check refinement, and so on, for finite-state interfaces.

Categories and Subject Descriptors: D.2.2 [Software Engineering]: Design Tools and Techniques—
Modules and interfaces; D.2.13 [Software Engineering]: Reusable Software

General Terms: Algorithms, Design, Languages, Theory, Verification

Additional Key Words and Phrases: Compositionality, interfaces, refinement, substitutability

ACM Reference Format:
Tripakis, S., Lickly, B., Henzinger, T. A., and Lee, E. A. 2011. A theory of synchronous relational interfaces.
ACM Trans. Program. Lang. Syst., 33, 4, Article 14 (July 2011), 41 pages.
DOI = 10.1145/1985342.1985345 http://doi.acm.org/10.1145/1985342.1985345

This report is a revised version of Tripakis et al. [2009a, 2009b].
This work was supported in part by the Center for Hybrid and Embedded Software Systems (CHESS) at
UC Berkeley, which receives support from the National Science Foundation (NSF awards #CCR-0225610
(ITR), #0720882 (CSR-EHS: PRET) and #0931843 (ActionWebs)), the U. S. Army Research Office (ARO
#W911NF-07-2-0019), the U. S. Air Force Office of Scientific Research (MURI #FA9550-06-0312 and AF-
TRUST #FA9550-06-1-0244), the Air Force Research Lab (AFRL), the Multiscale Systems Center (MuSyC)
and the following companies: Bosch, National Instruments, Thales, and Toyota. This work was also sup-
ported by the COMBEST and ArtistDesign projects of the European Union, the Swiss National Science
Foundation, the ERC Advanced Grant QUAREM and the FWF NFN Grant S11402-N23 (RiSE).
Author’s address: S. Tripakis, 545Q, DOP Center, Cory Hall, EECS Department, University of California,
Berkeley, CA 94720-1772; email: {stavros, blickly, eal}@eecs.berkeley.edu, tah@ist.ac.at.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permission may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2011 ACM 0164-0925/2011/07-ART14 $10.00

DOI 10.1145/1985342.1985345 http://doi.acm.org/10.1145/1985342.1985345

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 4, Article 14, Publication date: July 2011.

14:2 S. Tripakis et al.

1. INTRODUCTION

Compositional methods, which allow one to assemble smaller components into larger
systems both efficiently and correctly, are not simply a desirable feature in system de-
sign: they are a must for designing large and complex systems. A compositional theory
provides means for reasoning formally about components and their compositions. It
also typically provides sufficient and/or necessary conditions for substitutability: when
can a certain component be replaced by another one without compromising the correct-
ness of the overall system? This property is clearly extremely important, in particular
for incremental design.

The goal of this work is to develop a compositional theory for synchronous concurrent
systems, systems where a set of components execute in an infinite sequence of global
rounds. This is a fundamental model of computation with traditionally strong appli-
cation in the hardware domain (digital circuits). Today the synchronous paradigm
is also becoming widespread in software, in particular, in the domains of embedded
and cyber-physical systems [Henzinger and Sifakis 2007; Lee 2008]. Tools such as
Simulink from The MathWorks,1 SCADE from Esterel Technologies,2 or Ptolemy from
Berkeley,3 and languages such as the synchronous languages [Benveniste et al. 2003]
are important players in this field [Miller et al. 2010]. The semantics used in these
models are synchronous.

Our work is situated in the context of interface theories [de Alfaro and Henzinger
2001a,b]. An interface can be seen as an abstraction of a component: on one hand, it
captures information that is essential in order to use the component in a given con-
text; on the other hand, it hides unnecessary information, making reasoning simpler
and more efficient. Interface theories typically define a set of composition operators
and a refinement relation on interfaces, and provide theorems of preservation of cor-
rectness by refinement and preservation of refinement by composition, from which
substitutability guarantees can be derived. These concepts are common to most com-
positional theories. What distinguishes interface theories is a game-theoretic inter-
pretation of the basic concepts, namely, composition and refinement. The need for a
game-theoretic interpretation has been argued extensively in previous works on in-
terface theories [de Alfaro 2004; de Alfaro and Henzinger 2001a, 2001b]. In order
to make this article more self-contained, we also discuss the motivations behind this
choice here, in Section 2.

The type of information about a component that is exposed in an interface varies
depending on the application. For instance, in standard programming languages such
as C or Java, the signature of a given method can be seen as an interface for that
method. This interface provides sufficient information for type checking, but usually
does not provide enough information for more detailed analysis, for instance, checking
that a method computing division never attempts a division by zero. As this simple
example illustrates, we should not expect a single “fits-all” interface theory, but mul-
tiple theories that are more or less suitable for different purposes. Suitability metrics
could include expressiveness and ease of modeling in particular application domains,
as well as tractability of the computational problems involved.

In our theory, an interface consists of a set of input variables X , a set of output
variables Y , and a set of contracts. Semantically, a contract is simply a set of assign-
ments of values to variables in X ∪ Y . Syntactically, we use a logical formalism such
as first-order logic to represent and manipulate contracts. For example, the predicate

1http://www.mathworks.com/products/simulink/
2http://www.esterel-technologies.com/products/scade-suite/
3http://ptolemy.eecs.berkeley.edu/

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 4, Article 14, Publication date: July 2011.

A Theory of Synchronous Relational Interfaces 14:3

x2 �= 0 ∧ y = x1
x2

can be used to represent the contract of a component that performs
division, with input variables x1 and x2 and output variable y. The contract here is the
set of all assignments to variables x1, x2 and y that satisfy the predicate. The assign-
ment (x1 := 6, x2 := 2, y := 3) satisfies the contract, while any assignment where x2 := 0
violates the contract. A more abstract contract for the same component, which only
gives some information about the sign of the output based on the sign of the inputs,
is x2 �= 0 ∧ (

y < 0 ≡ (x1 < 0 < x2 ∨ x2 < 0 < x1)
)
. An even more abstract contract

is x2 �= 0. The latter guarantees nothing about the output; however, it still enforces
that requirement that when performing division the denominator should be nonzero.
We should note that these contracts implicitly use the fact that variables are numbers,
symbols like = for equality, and arithmetic operations such as division. Our theory
does not depend on these, and it works with variables of any domain, without assum-
ing any properties on such domains. In practice, however, we often use such properties
implicitly for convenience.

Contracts govern the operation of a component, which evolves in a sequence of syn-
chronous rounds. Within a round, values are assigned to the input variables of the
component by its environment, and the component assigns values to its output vari-
ables. Together the two assignments form a complete assignment over all variables.
This assignment must satisfy the contract. A new assignment is found at each round.
Interfaces can be stateless or stateful. In the stateless case, there is a single contract
that must hold at every round (the assignments may still differ). In the general, state-
ful case, a different contract may be specified for each round. The contract in this case
depends on the history of assignments observed so far, which we call a state. The set
of states, as well as the set of contracts, can be infinite. When the set of contracts is
finite, we have a finite-state interface (note that the domains of variables could still
be infinite). Finite-state interfaces are represented as finite automata whose locations
are labeled by contracts.

Interfaces can be composed by connection or by feedback (see Section 6). Connection
essentially corresponds to serial (cascade) composition, however, it can also capture
parallel composition as a special case (empty connection). Composition by connection
is generally not the same as composition of relations. Section 2 discusses this choice
extensively. Feedback is allowed only for Moore interfaces, where the contract does
not depend on the current values of the input variables that are back-fed (although
it may depend on past values of such variables). A hiding operator (Section 7) can
be used to eliminate redundant or intermediate output variables. Hiding is always
possible for stateless interfaces and corresponds to existentially quantifying variables
in the contract. The situation is more subtle in the stateful case, where we need
to ensure that the “hidden” variables do not influence the evolution of the contract
from one state to the next. This is necessary to ensure preservation of refinement by
hiding.

Our theory includes explicit notions of environments, pluggability, and substi-
tutability (Section 8). An environment E for an interface I is simply an interface
whose input and output variables “mirror” those of I. I is pluggable to E (and vice
versa) iff the closed-loop system formed by connecting the two is well-formed, that
is, never reaches a state with an unsatisfiable contract. Substitutability means that
an interface I′ can replace another interface I in any environment. That is, for any
environment E, if I is pluggable to E then I′ is also pluggable to E.

Our refinement relation is similar in spirit to existing relations, such as func-
tion subtyping in type theory [Pierce 2002], behavioral subtyping [Liskov and Wing
1994], conformation in trace theory [Dill 1987], and alternating refinement [Alur
et al. 1998]. All these, roughly speaking, state that I′ refines I if I′ accepts more

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 4, Article 14, Publication date: July 2011.

14:4 S. Tripakis et al.

inputs and produces fewer outputs than I. This requirement is easy to formalize as
in → in′ ∧ out′ → out when the input assumptions, in, are separated from the out-
put guarantees, out. When the constraints on the inputs and outputs are mixed in the
same contract φ, a more careful definition is needed, namely: in(φ) → (in(φ′)∧(φ′ → φ)),
where in(φ) characterizes the set of legal input assignments specified by φ. An input
assignment is legal if there exists an output assignment such that together the two
assignments satisfy the contract. For example, if φ is x2 �= 0 ∧ y = x1

x2
then in(φ) is

x2 �= 0.
This definition of refinement applies to the stateless case where an interface has

a single contract φ. The definition can be extended to the stateful case as shown in
Section 9. Refinement is a partial order with the following main properties: (1) it
is preserved by composition and hiding; and (2) it is essentially equivalent to substi-
tutability (Theorem 9.14). It is worth noting that reasonable alternative definitions
of refinement result in sufficient but not necessary conditions for substitutability (see
discussions in Sections 2.4 and 9.2). Our notion of refinement thus is as strong as
necessary for substitutability, but not stronger.

Our theory supports shared refinement (Section 10), which is important for compo-
nent reuse as argued in Doyen et al. [2008]. Shared refinement of two interfaces I and
I′, when defined, is a new interface that refines both I and I′, in fact, it is their greatest
lower bound with respect to the refinement order, and is therefore denoted I 	 I′. In
this article we also propose shared abstraction I
 I′, which is shown to be the least
upper bound with respect to refinement.

As a special case, we discuss input-complete (sometimes also called receptive) inter-
faces, where contracts are total relations, and deterministic interfaces, where contracts
are partial functions. These two subclasses of interfaces are interesting, first, because
the theory is greatly simplified in those cases (refinement becomes language contain-
ment, composition becomes relational, etc.), and second, because there is an interesting
duality between the two subclasses, as shown in Sections 11 and 12.

Examples illustrating the concepts of the theory are provided throughout the article.
An application to the hardware domain is described in Section 13.

The main features of the theory are summarized in Table I. This table is given
merely for reference and contains only a partial view. The precise definitions and
complete set of results are given in the sections that follow.

One of the appealing features of our theory is that it allows a declarative way of
specifying contracts, and a symbolic way of manipulating them, as logical formulas.
For this reason, it is relatively straightforward to develop algorithms that implement
the theory for finite-state interfaces. Throughout the text we provide such algorithms,
for composing interfaces, checking refinement, and so on. These algorithms compute
some type of product of the automata that represent the interfaces and syntactically
manipulate their contracts. Solving problems such as quantifier elimination and sat-
isfiability checking on the formulas representing the contracts are crucial elements of
the algorithms. Decidability of these problems will of course depend on the types of
formulas used. Recent advances in SMT (Satisfiability Modulo Theory) solvers can be
leveraged for this task.

2. MOTIVATION FOR THE DESIGN CHOICES

As mentioned in the introduction, our theory uses a game-theoretic interpretation of
composition and refinement. These interpretations are by no means new and have
been motivated in previous works (see Section 3). In this section we also motivate
these choices in our setting.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 4, Article 14, Publication date: July 2011.

A Theory of Synchronous Relational Interfaces 14:5

Table I. Summary of the Main Concepts and Results of This Article

M
od

el
s

Relational Stateless: contracts (predicates) on input/output variables,
interfaces e.g., x2 �= 0 ∧ y = x1

x2
.

Legal input assignments in contract φ:
in(φ) := (∃y1, y2, ..., yn : φ),
where {y1, ..., yn} is the set of output variables,
e.g., in(x2 �= 0 ∧ y = x1

x2
) ≡ x2 �= 0.

Stateful: automata whose states are labeled with
contracts (set of states may be infinite).

Moore w.r.t. input x Contract does not depend on current value
of variable x (can still depend on previous values of x).

Input-complete All input values are legal: in(φ) ≡ true.
Deterministic Given legal inputs, outputs are unique.
Well-formed All reachable contracts are satisfiable.
Well-formable Can be made well-formed by restricting the inputs.
Environments They are interfaces.

C
om

po
si

ti
on

s

Connection Parallel: conjunction of contracts: φ := φ1 ∧ φ2.
Commutative & associative.
Serial: game, environment vs. source interface:
φ := φ1 ∧ φ2 ∧ ∀y1, ..., yn :

(
φ1 → in(φ2)

)
, where {y1, ..., yn}

is the set of output variables of the source interface.
Associative.

Feedback Interface must be Moore w.r.t. input variable x
that is connected to output y. Commutative & associative.

Pluggability: I � E Closed-loop composition of I and E must be well-formed
Substitutability: I →e I′ For any E, if I is pluggable to E then I′ is pluggable to E

C
om

po
si

ti
on

al
it

y

Refinement For stateless: φ′
 φ :=
(

in(φ) → (
in(φ′) ∧ (φ′ → φ)

))
.

Similar for stateful.
 is partial order. false is top element.
Preservation Refinement preserves well-formability.

Refinement is preserved by both connection and feedback.
Refinement sufficient for substitutability:
if I′
 I then I →e I′.
Refinement necessary for substitutability, in that:
if I′ �
 I and I is well-formed, then I �→e I′.

Special case: If φ2 is input-complete then serial composition is conjunction.
input-complete Refinement becomes: φ′
 φ ≡ (

φ′ → φ
)
.

Special case: If φ1 is deterministic then serial composition is conjunction.
deterministic Refinement becomes: φ′
 φ ≡ (

φ → φ′).

2.1 A General Model for Contracts: Relational, Nondeterministic, Non-Input-Complete

Consider a component performing division. One possible interface for this component
is the following:

Div := ({x1, x2}, {y}, φ1
Div)

φ1
Div := x2 �= 0 ∧ φsign

φsign := (y = 0 ≡ x1 = 0) ∧ (
y < 0 ≡ (x1 < 0 < x2 ∨ x2 < 0 < x1)

)
.

Div has two input variables x1, x2, one output variable y, and a contract represented
by the predicate φ1

Div. Interpreting x1 to be the dividend and x2 the divisor, and y to be

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 4, Article 14, Publication date: July 2011.

14:6 S. Tripakis et al.

the result of the division, φ1
Div states that the divisor must be nonzero and also provides

guarantees on the sign of the output depending on the sign of the inputs.
The following points are worth making about contract φ1

Div. First, it is relational,
in the sense that the value of the output depends on the values of the inputs. A non-
relational contract that could be used is, for instance, x2 �= 0, which represents only an
assumption on the input. Another nonrelational contract, for a slightly more restric-
tive component that does not accept negative inputs, would be x1 ≥ 0 ∧ x2 > 0 ∧ y ≥ 0.
This is nonrelational in the sense that the guarantee on the output does not depend on
the value of the inputs. The second point about φ1

Div is that it is nondeterministic: the
output y is not uniquely determined for a given input (unless x1 = 0). The final point
about φ1

Div is that it is non-input-complete: all inputs where x2 = 0 are illegal in the
sense that they violate the contract.

As this example illustrates, “rich” contracts, that is, relational, nondeterministic,
and non-input-complete, arise even in simple situations. The need to capture relations
between inputs and outputs should be clear: if we separate input assumptions from
output guarantees (as done in Doyen et al. [2008], for instance) then we cannot state
input-output properties about our system. The need for nondeterminism should also
be clear: nondeterminism is useful when abstracting low-level details that would be
too difficult to obtain or too expensive to use. For instance, in our example, we could
use a deterministic contract for Div:

φ2
Div := x2 �= 0 ∧ x1 = y · x2.

But we may opt for φ1
Div, since φ1

Div can be handled by an SMT solver that can only deal
with linear constraints, whereas φ2

Div cannot.
The need for non-input-completeness may be less obvious. Why can’t we replace the

non-input-complete contract φ1
Div by the input-complete contract

φ3
Div := x2 �= 0 → φsign ?

There are several reasons. First, note that φ3
Div allows inputs where x2 = 0 (since an

implication A → B is trivially satisfied when A is false) and in that case the output
y may take any value. However, the implicit assumption is that y will take some
value. In other words, a “real” component (in SW or HW) that implements φ3

Div must be
“input-complete” in the sense that it always produces some output, even when given
illegal inputs. But not all real systems have this property. For example, a program
may not terminate on illegal inputs; and a circuit may burn up if an incorrect voltage
is applied to it. These systems are not “input-complete,” thus cannot be described by
input-complete interfaces.

But even when a system is “input-complete,” we may still want to capture it with a
non-input-complete interface. Indeed, suppose we connect Div to another component
C, as shown to the left of Figure 1. Our intention is for C to output the constant 2,
so that the composition implements a division by 2. But suppose that due to a design
error C outputs zero instead. That is, the contract of C is x2 = 0. Combining the
latter with φ1

Div, by taking the conjunction of the two, gives false, which means that
two interfaces are incompatible. Catching this incompatibility early on, that is, when
attempting to compose C with Div, is useful, since it permits to localize and correct the
error easily.

Suppose we used the input-complete contract φ3
Div, instead of φ1

Div. Then, the com-
position of C and Div would result in the contract true (after hiding variable x2). How
should we interpret this result? We cannot in general interpret true as indicating in-
compatibility, since it might simply be the result of lack of information, that is, trivial
contracts. In a large system, there will generally be many components for which we

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 4, Article 14, Publication date: July 2011.

A Theory of Synchronous Relational Interfaces 14:7

Fig. 1. Connecting C to Div (left) and D to Div (right).

have no information, and others for which we do. We want a systematic (or even
automatic) method that distinguishes between “no information” and “incompatible
composition.”

We could of course perform a “local” verification task, in order to prove that the
composition of C and Div implements the intended division by 2, namely, the property
φP := (y·2 = x1). Contract true fails to imply this, which indicates an error. The problem
with this approach is that it requires φP to be specified. This may not always be an
easy task. First, formal verification may not be part of the design process. Second,
even if it is, it may be the case that only a global, end-to-end specification is available,
for the top-level component within which the composition of C and Div is embedded.
“Decomposing” such a global specification into local specifications such as φP is not
always straightforward.

With non-input-complete interfaces, such local specifications are not required. In-
stead, a compatibility check is performed to ensure that a composition such as the one
between C and Div is valid. This is a more lightweight verification process, akin to
type checking (but with types that are richer than usual).

In fact, the goal may not be verification at all, but rather synthesis of component
interfaces, in a bottom-up fashion: given interfaces for atomic components C and Div,
compute an interface for their composition. Instead of type-checking, this is akin
to type-inference. Once an interface for a complete hierarchical model is computed,
and assuming no incompatibilities have been found during the process, that interface
can be checked against a global specification, if the latter is available. But the
interface provides useful information that can be helpful even in the absence of such
a specification.

2.2 On the Definition of Serial Composition

Consider again interface Div, and suppose we connect it to another interface D, as
shown to the right of Figure 1. Suppose that the contract of D is φD := true. If D
abstracts a certain component, this may mean that we have no knowledge about this
component (e.g., our automated abstraction tool gave us a trivial answer).

What should the contract of the composition of D and Div be? Standard composition
of relations corresponds to taking the conjunction φD ∧ φ1

Div, and then eliminating x2.
This yields the formula ∃x2 : φ1

Div, which is equivalent to the predicate y = 0 ≡ x1 = 0,
asserting that y is zero iff x1 is zero. This assertion is satisfiable (there are values for
y and x1 that make it true), therefore, it would appear that the composition of D and
Div is valid.

Now, suppose that we want to replace D by E, which has the same structure as D
(i.e., same input and output variables) but a different contract φE := x2 = 0. φE provides
stronger output guarantees than φD, and in any standard framework this means that
E refines D (this is also true in our framework). But clearly the composition of E and
Div is not valid.

This means that even though E refines D, we cannot ensure that E can replace
D: indeed, even though we accepted the composition of D and Div as valid, the com-
position of E and Div is not valid. This violates one of the main properties of any

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 4, Article 14, Publication date: July 2011.

14:8 S. Tripakis et al.

compositional theory, namely substitutability, which states that a component should
be replaceable by any component that refines it.

We are therefore forced to revise our assumption that the composition of D and Div
is valid. The problem is that we interpreted the non-determinism of D as “angelic,”
or “controllable.” We should instead interpret it as “demonic,” or “uncontrollable.” We
should accept the composition as valid only if there exist input values at x3 for which
it can be guaranteed that any possible output of D satisfies x2 �= 0. Since D does not
guarantee anything, no such input at x3 can be found. Therefore, the composition of
D and Div should be considered invalid. Logically, we achieve this by adding the term
∀x2 : φD → x2 �= 0 to the conjunction φD ∧ φ1

Div, in the definition of the composite
contract. The above term reduces to ∀x2 : true → x2 �= 0, or ∀x2 : x2 �= 0, which is false.

2.3 On the Definition of Refinement

Once we accept the “demonic” interpretation of nondeterminism in composition, as
described above, the choice of refinement appears to be inevitable. Indeed, we seek a
refinement relation that is equivalent to substitutability. This means that refinement
must be both sufficient for substitutability (i.e., if interface I′ refines interface I, then
I′ can replace I in any context) as well as necessary (i.e., if I′ does not refine I, then
there is a context where I works but I′ does not). As it turns out, the definition that
has these properties is the following: contract φ′ refines contract φ, denoted φ′
 φ, iff
the condition in(φ) → (

in(φ′) ∧ (φ′ → φ)
)

is satisfied for any input/output assignment
(this is the simplified definition for stateless interfaces, the general definition is given
in Section 9). Alternative definitions can be given, which result in sufficient but not
necessary conditions for substitutability, as discussed in Sections 2.4 and 9.2.

Refinement is not the same as logical implication. As an example, consider three
possible contracts for our division component:

φ1
Div := x2 �= 0 ∧ (y = 0 ≡ x1 = 0) ∧ (

y < 0 ≡ (x1 < 0 < x2 ∨ x2 < 0 < x1)
)

φ2
Div := x2 �= 0 ∧ x1 = y · x2

φ4
Div := x2 �= 0 → x1 = y · x2.

It can be verified that φ4
Div
 φ2

Div
 φ1
Div. Yet observe that φ2

Div → φ1
Div and φ2

Div → φ4
Div.

2.4 Error-Complete Interfaces

Illegal inputs can also be captured using input-complete interfaces that have a special
Boolean output variable e, denoting an “error”. Let φ be a contract over input and
output variables X ∪ Y . Let e be a new output variable, not in Y . The error-completion
of φ can be defined as the input-complete contract EC(φ) over X ∪ Y ∪ {e}, which sets e
to false when the input is legal for φ, and to true otherwise:

EC(φ) := (φ ∧ ¬e) ∨ (¬in(φ) ∧ e). (1)

For example, the error-completion of the division interface Div1 yields:

Div1
e := ({x1, x2}, {y, e}, φe), where φe := EC(φ1

Div)
φe ≡ (x2 �= 0 ∧ φ1 ∧ ¬e) ∨ (x2 = 0 ∧ e).

We can retrieve φ from EC(φ) using the inverse transformation:

EC−1(φe) := (∃e : φe) ∧ (∀Y ∪ {e} : φe → ¬e). (2)

It can be shown that, if φe is of the form described in (1), then (∃e : φe) ≡ (φ ∨ ¬in(φ))
and (∀Y ∪ {e} : φe → ¬e) ≡ in(φ). That is, the first term is the input-completion of φ
which adds all its illegal inputs in its domain, whereas the second term isolates the

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 4, Article 14, Publication date: July 2011.

A Theory of Synchronous Relational Interfaces 14:9

legal inputs. The conjunction of these two terms gives φ. Therefore, for any contract
φ, we have:

φ ≡ EC−1(EC(φ)). (3)

On the other hand, for contracts φe over X ∪ Y ∪ {e}, EC(EC−1(φe)) is not always
equivalent to φe. For example, if φe := y ≡ e and y is an output, then EC−1(φe) ≡ false,
and EC(EC−1(φe)) ≡ e. Indeed, EC is injective but not surjective. It is unclear what is
the meaning of a contract such as y ≡ e. This contract appears to “misuse” the error
variable e which is supposed to capture validity of inputs.

It appears that game-theoretic serial composition of two contracts can be performed
as a sequence of steps: error-completion, standard relational composition, and in-
verse error-completion. We illustrate this with an example. Consider the composition
of interfaces D and Div discussed above. D is already input-complete, so its error-
completion is unnecessary (EC(φD) would still extend φD with an additional error out-
put variable, but we omit this for the sake of simplicity). Let φe := EC(φ1

Div). Let φerr be
the relational composition of φD and φe, that is: φerr := ∃x2 : (true∧φe). It can be verified
that φerr ≡ true. Then:

EC−1(φerr) ≡ (∃e : true) ∧ (∀e : true → ¬e) ≡ true ∧ false ≡ false.

This is indeed the same as the result obtained in Section 2.2 and indicating that the
composition of D and Div is invalid.

Refinement between two contracts is different from logical implication of their error-
transformed versions, that is, φ2
 φ1 is not equivalent to EC(φ2) → EC(φ1). In particu-
lar, although validity of EC(φ2) → EC(φ1) is a sufficient condition for φ2
 φ1, it is not a
necessary condition. To see why, consider two interfaces that only model assumptions
on an input variable x, and having contracts x > 0 and true, respectively. true accepts
more inputs than x > 0, therefore we have true
 x > 0. Now consider ψ1 := EC(x > 0)
and ψ2 := EC(true). We have:

ψ1 ≡ (x > 0 ∧ ¬e) ∨ (x ≤ 0 ∧ e)
ψ2 ≡ ¬e.

Clearly, ψ2 �→ ψ1. Because of Theorem 9.14, which states equivalence of refinement
and substitutability, this example also shows that EC(φ2) → EC(φ1) is a sufficient but
not necessary condition for substitutability.

In summary, it appears that: (1) Error-complete interfaces can be used to capture
the same information as that contained in relational interfaces. However, the class of
error-complete interfaces is larger, and some of these interfaces have no direct mean-
ing as relational interfaces. Thus, relational interfaces appear to be a more “canoni-
cal” representation. Moreover, relational interfaces avoid the overhead of designating
special error outputs whose semantics differ from other outputs. (2) Composition of
relational interfaces can be defined as standard relational composition of their error-
complete counterparts. However, in order to check whether such a composition is valid,
the inverse transformation needs to be computed. This inverse transformation in-
volves solving a game, therefore, the game-theoretic interpretation of composition is
not avoided. (3) Implication of their error-complete counterparts is a strictly stronger
condition than refinement/substitutability between two interfaces.

Based on these observations, it appears that our theory could be formulated essen-
tially equivalently in terms of error-complete interfaces. We do not pursue this option,
however, as relational interfaces without special error outputs seem more elegant to
us. On the other hand, error-complete interfaces are worth studying in greater depth,
since error variables can be used for additional purposes than simply indicating illegal

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 4, Article 14, Publication date: July 2011.

14:10 S. Tripakis et al.

inputs. For instance, they may be used to indicate faulty behavior of a component. An
in-depth study of these possibilities is beyond the scope of the current article and part
of future work.

3. RELATED WORK

Most of the ideas upon which this work is based, such as stepwise refinement, in-
terfaces, design-by-contract, and game semantics, are by no means new. The main
contribution of this article is the application of these ideas to the development of a
working theory for synchronous concurrent systems.

In particular, abstracting components in some mathematical framework that
offers stepwise refinement and compositionality guarantees is an idea that goes
back to the work of Floyd and Hoare on proving program correctness using pre-
and post-conditions [Floyd 1967; Hoare 1969] and the work of Dijkstra and Wirth
on stepwise refinement as a method for gradually developing programs from their
specifications [Dijkstra 1972; Wirth 1971]. A pair of pre- and postconditions can be
seen as a contract for a piece of sequential code. These ideas were further developed in
a large number of works, including the Z notation [Spivey 1989], the B method [Abrial
1996], CLU [Liskov 1979], Eiffel and the design-by-contract paradigm [Meyer 1992],
the refinement calculus [Back and Wright 1998], Larch [Cheon and Leavens 1994;
Guttag and Horning 1993; Leavens 1994], and JML [Leavens and Cheon 2006].
Viewing programs as predicates or relations is also not new; for instance, see Hoare
[1985], Parnas [1983], Frappier et al. [1998], and Kahl [2003].

The above works are primarily about sequential programs and therefore are not
directly comparable with our framework which is about synchronous concurrent sys-
tems. For instance, our model has distinct notions of input and output variables,
whereas sequential programs operate on a set of shared variables, that is, a global,
shared state. A program can be modeled as a relation between values of these global
variables before and after program execution, that is, “pre” and “post” variables. How-
ever, it seems that our composition operators cannot be directly mapped to those
aiming to capture typical constructs in sequential programs, such as “if-then-else” or
“while” statements. Consider feedback composition, for example. One might attempt
to map this to some form of while statement. But while statements operate on the
same set of global variables, which could be seen as a special case of feedback where
there is a 1-1 correspondence between inputs and outputs (i.e., pre and post variables).
In the general case, an arbitrary output variable can be connected to an arbitrary
input, which seems to make denotational approaches such as lifting to powersets in-
applicable.

In fact, many of the previous works start with a programming language in mind,
and then define the pre/postconditions, abstractions, or interfaces, for this particular
language. As is characteristically stated in Hoare [1985], programs are predicates,
but not all predicates are programs. In contrast, our framework is “implementation-
agnostic” in the sense that we are not concerned with whether components are im-
plemented in HW or in SW, or in which programming language. For this reason, as
well as the fact that nonimplementable predicates such as false may arise as a result
of composition, we do not attempt to restrict the set of predicates that we consider as
contracts.

One concern that naturally arises in sequential programs that contain “while” loops
is program termination. How can nontermination be modeled when programs are cap-
tured by relations? This question has received a lot of attention in the literature (an
excellent survey can be found in Nelson [1989]) and has also generated some contro-
versy [Hehner and Parnas 1985]. Our take on this is simple: if a component S may not
terminate on a given input value a, then the contract for S should reject a as illegal.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 4, Article 14, Publication date: July 2011.

A Theory of Synchronous Relational Interfaces 14:11

That is, the input-output relation for S is partial. In terms of Nelson’s classification,
our model can be seen as an instance of the “partial correctness model” [Nelson 1989].
This model does not distinguish a component S that never terminates on input a, from
another component S′ that may or may not terminate on a. We do not worry about
this loss of expressiveness, however, because in our context, all components must be
guaranteed to terminate and produce a value at every synchronous round. As a result,
if an input may result in nontermination, it is appropriate to consider this input as
illegal. Therefore, S′ can be safely abstracted by the same interface as S.

Despite these differences, our approach follows many of the principles advocated in
the works mentioned above. In particular, we abide to the design-by-contract para-
digm and the well-known principle of refinement by weakening the precondition and
strengthening the postcondition (although “strengthening the post condition” must be
defined carefully in the general, non-input-complete case, as discussed in Section 9.2).
Also, we use a “demonic” interpretation of nondeterminism during composition, as
some of the works above also do [Back and Wright 1998; Frappier et al. 1998]. Comput-
ing composition then amounts to finding strategies in a game, or equivalently, solving
a controller synthesis problem [de Alfaro 2004].

Interfaces can be viewed as “rich,” behavioral types, as suggested in Lee and Xiong
[2001] and de Alfaro and Henzinger [2001a]. Behavioral types have been studied
in a number of works in the context of sequential and object-oriented programming
[Dhara and Leavens 1996; Liskov and Wing 1994; Nierstrasz 1993]. Behavioral
subtyping notions defined in the above works follow the same principle of input-
contravariance/output-covariance also in our refinement, but there are subtle differ-
ences in their definitions. For instance, both the “Post-condition rule” mσ .post ⇒
mτ .post and the “Constraint rule” Cσ ⇒ Cτ , defined in Figure 4 of Liskov and Wing
[1994] as requirements for type σ to be a subtype of type τ , appear to follow the rule
φ′ → φ rather than the rule (in(φ) ∧ φ′) → φ which is used in our refinement. As
explained in Section 9.2, φ′ → φ is too strong in the sense that it is not a necessary
condition for substitutability. Dhara and Leavens [1996] weaken the subtyping re-
quirements of Liskov and Wing [1994], but maintain the φ′ → φ rule.

The works mentioned so far focus on sequential programs. In a concurrency setting,
a powerful compositional framework is FOCUS [Broy 1997; Broy and Stølen 2001].
FOCUS is a relational framework where specifications are relations on input-output
streams. The FOCUS framework is in many respects more general than ours, in that
it can capture relations that do not preserve the length of input streams. For this
reason, FOCUS is applicable also to asynchronous systems. On the other hand, FOCUS
targets mainly the input-complete case. I/O automata [Lynch and Tuttle 1989] are
also related to our work, but are input-complete by definition. Reactive modules [Alur
and Henzinger 1999] are also input-complete.

Dill’s trace theory is another compositional framework for concurrent systems, focus-
ing on asynchronous concurrency and motivated in particular by the design of asyn-
chronous circuits [Dill 1987]. In trace theory, a component is described using a pair
of sets of traces, called successes and failures, for legal and illegal behaviors, respec-
tively. A trace is a sequence of events, and an event is a change in the value of an
input or output variable. Because no synchrony is assumed, the number of input and
output events in a trace can be arbitrary. Trace theory considers prefix-closed trace
structures, where the success and failure sets are prefix-closed regular sets, aimed at
verification of safety properties, as well as complete trace structures, where these are
general sets of infinite traces, aimed at liveness properties. Our theory is currently re-
stricted to prefix-closed sets and therefore cannot handle liveness properties. However,
it is worth noting that, contrary to prefix-closed trace structures, our theory avoids the
problem of trivial implementations that achieve the specification by “doing nothing.”

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 4, Article 14, Publication date: July 2011.

14:12 S. Tripakis et al.

In trace theory, refinement is called conformation and is achieved by restricting the
set of failures as well as the global set of traces (failures can be turned into successes
during refinement). Conformation follows the “accept more inputs, produce less out-
puts” principle that has later been studied in the context of alternating refinement
relations [Alur et al. 1998]. It is worth noting that conformation induces a lattice on
prefix-closed trace structures, whereas our refinement relation is only a partial order
and in particular has no “bottom” element.

Like trace structures, the framework of interface automata [de Alfaro and
Henzinger 2001a] uses an asynchronous model of concurrency. Compared to trace
structures, interface automata are more “syntactic” in nature since the interface is
the automaton itself (as opposed to, say, a set of traces that can be represented by an
automaton). Modal interfaces [Raclet et al. 2010] also focus on asynchronous systems
and work directly with an automata representation. It is an interesting question to
what extent these automata-based models can be used to capture synchronous sys-
tems and input-output relations within a synchronous round. If possible to do so, the
result would most likely have an operational flavor, contrary to our framework, which
is of a more declarative, denotational and symbolic nature. For instance, to express
variables with infinite domains in the above formalisms, one would typically need an
infinite set of events; to express a relation such as y = x + 1 one would need an infinite
set of transitions; and so on.

Our theory can be used as a behavioral type theory for Simulink and related mod-
els, in the spirit of Roy and Shankar [2010]. In the latter work, Simulink blocks are
annotated with constraints on input and output variables much like the stateless con-
tracts considered in our work. Our framework provides an extension of such types to
the stateful case, as well as the formalization of compositions and refinement that are
not considered in Roy and Shankar [2010].

Within the domain of interface theories, de Alfaro and Henzinger [2001b] define
relational nets, which are networks of processes that nondeterministically relate in-
put values to output values. [de Alfaro and Henzinger 2001b] does not provide an
interface theory for the complete class of relational nets. Instead it provides interface
theories for subclasses, in particular: rectangular nets which have no input-output
dependencies; total nets which can have input-output dependencies but are input-
complete; and total and rectangular nets which combine both restrictions above. The
interfaces provided in de Alfaro and Henzinger [2001b] for rectangular nets are called
assume/guarantee (A/G) interfaces. A/G interfaces form a strict subclass of the rela-
tional interfaces that we consider in this article: A/G interfaces separate the assump-
tions on the inputs from the guarantees on the outputs, and as such cannot capture
input-output relations; on the other hand, every A/G contract can be trivially cap-
tured as a relational contract by taking the conjunction of the assume and guarantee
parts. [de Alfaro and Henzinger 2001b] studies stateless A/G interfaces, while Doyen
et al. [2008] study also stateful A/G interfaces, in a synchronous setting similar to the
one considered in this article. [Doyen et al. 2008] also discusses extended interfaces
which are essentially the same as the relational interfaces that we study in this arti-
cle. However, difficulties with synchronous feedback loops (see discussion that follows)
lead Doyen et al. [2008] to conclude that extended interfaces are not appropriate.

Chakrabarti et al. [2002] consider synchronous Moore interfaces, defined by two
formulas φi and φo that specify the legal values of the input and output variables,
respectively, at the next round, given the current state. This formulation does not
allow description of relations between inputs and outputs within the same round, as
our relational theory allows.

Both de Alfaro and Henzinger [2001b] and Doyen et al. [2008] can handle very
general compositions of interfaces, that can be obtained via parallel composition and

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 4, Article 14, Publication date: July 2011.

A Theory of Synchronous Relational Interfaces 14:13

arbitrary connection (similar to the denotational composition framework of Lee and
Sangiovanni-Vincentelli [1998]). This allows, in particular, arbitrary feedback loops
to be created. In a relational framework, however, synchronous feedback loops can be
problematic, as discussed in Example 9.11 (see also Section 14).

Interface theories are naturally related to work on compositional verification, where
the main purpose is to break down the task of checking correctness of a large model
into smaller tasks, that are more amenable to automation. A very large body of re-
search exists on this topic. Some of this work is based on an asynchronous, inter-
leaving based concurrency model [Jonsson 1994; Misra and Chandy 1981; Stark 1985]
some on a synchronous model [Grumberg and Long 1994; McMillan 1997], while oth-
ers are done within a temporal logic framework [Abadi and Lamport 1995; Barringer
et al. 1984]. Many of these works are based on the assume-guarantee paradigm,
and they typically use some type of trace inclusion or simulation as refinement re-
lation [Henzinger et al. 1998; Jones 1983; Shankar 1998; Stark 1985].

4. PRELIMINARIES, NOTATION

We use first-order logic (FOL) notation throughout the article. For an introduction to
FOL, see, for instance, Tourlakis [2008]. We use true and false for logical constants
true and false, ¬,∧,∨,→,≡ for logical negation, conjunction, disjunction, implication,
and equivalence, and ∃ and ∀ for existential and universal quantification, respectively.
We use := when defining concepts or introducing new notation: for instance, x0 :=
max{1,2,3} defines x0 to be the maximum of the set {1,2,3}.

Let V be a finite set of variables. A property over V is a FOL formula φ such that any
free variable of φ is in V. The set of all properties over V is denoted F (V). Let φ be a
property over V and V ′ be a finite subset of V, V ′ = {v1, v2, ..., vn}. Then, ∃V ′ : φ is short-
hand for ∃v1 : ∃v2 : ... : ∃vn : φ. Similarly, ∀V ′ : φ is shorthand for ∀v1 : ∀v2 : ... : ∀vn : φ.

We will implicitly assume that variables are typed, meaning that every variable is
associated with a certain domain. An assignment over a set of variables V is a (total)
function mapping every variable in V to a certain value in the domain of that variable.
The set of all assignments over V is denoted A(V). If a is an assignment over V1 and b
is an assignment over V2, and V1,V2 are disjoint, we use (a,b) to denote the combined
assignment over V1 ∪ V2. A formula φ is satisfiable iff there exists an assignment a
over the free variables of φ such that a satisfies φ, denoted a |= φ. A formula φ is valid
iff it is satisfied by every assignment.

There is a natural mapping from formulas to sets of assignments, that is, from F (V)
to 2A(V). In particular, a formula φ ∈ F (V) can be interpreted as the set of all assign-
ments over V that satisfy φ. Conversely, we can map a subset of A(V) to a formula
over V, provided this subset is representable in FOL. Because of this correspondence,
we use set-theoretic or logical notation, as is more convenient. For instance, if φ and
φ′ are formulas or sets of assignments, we write φ ∧ φ′ or φ ∩ φ′ interchangeably.

If S is a set, S∗ denotes the set of all finite sequences of elements of S. S∗ includes
the empty sequence, denoted ε. If s, s′ ∈ S∗, then s · s′ is the concatenation of s and s′. |s|
denotes the length of s ∈ S∗, with |ε| = 0 and |s · a| = |s| + 1, for a ∈ S. If s = a1a2 · · · an,
then the i-th element of the sequence, ai, is denoted si, for i = 1, ...,n. A prefix of s ∈ S∗
is a sequence s′ ∈ S∗ such that there exists s′′ ∈ S∗ such that s = s′ · s′′. We write s′ ≤ s if
s′ is a prefix of s. s′ < s means s′ ≤ s and s′ �= s. A subset L ⊆ S∗ is prefix-closed if for all
s ∈ L, for all s′ ≤ s, s′ ∈ L.

5. RELATIONAL INTERFACES

Definition 5.1 (Relational interface). A relational interface (or simply interface) is a
tuple I = (X ,Y, f) where X and Y are two finite and disjoint sets of input and output
variables, respectively, and f is a nonempty, prefix-closed subset of A(X ∪ Y)∗.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 4, Article 14, Publication date: July 2011.

14:14 S. Tripakis et al.

Note that A(X ∪ Y) can be infinite. In the case variables in X and Y have finite
domains, A(X ∪ Y) is finite and can be seen as a finite alphabet. In that case, f is a
nonempty, prefix-closed language over that alphabet.

We write InVars(I) for X and f (I) for f . We allow X or Y to be empty: if X is empty
then I is a source interface; if Y is empty then I is a sink. An element of A(X ∪ Y)∗ is
called a state. That is, we identify states with observation histories. The initial state
is the empty sequence ε. The states in f are also called the reachable states of I. f
defines a total function that maps a state to a set of input-output assignments. We use
the same symbol f to refer to this function. For s ∈ A(X ∪Y)∗, f (s) is defined as follows.

f (s) := {a ∈ A(X ∪ Y) | s · a ∈ f }.
We view f (s) as a contract between a component and its environment at that state. The
contract changes dynamically, as the state evolves.

Conversely, if we are given a function f : A(X ∪ Y)∗ → 2A(X∪Y), we can define a
non-empty, prefix-closed subset of A(X ∪ Y)∗ as follows:

f := {a1 · · · ak | ∀i = 1, ...,k : ai ∈ f (a1 · · · ai−1)}
Notice that ε ∈ f because the condition above trivially holds for k = 0. Also note that
if s �∈ f then f (s) = ∅. This is because f is prefix-closed.

Because of the given 1-1 correspondence, in the sequel, we treat f either as a subset
of A(X ∪ Y)∗ or as a function that maps states to contracts, depending on what is more
convenient. We will assume that f (s) is representable by a FOL formula. Therefore,
f (s) can be seen also as an element of F (X ∪ Y).

Definition 5.2 (Input assumptions). Given a contract φ ∈ F (X ∪ Y), the input as-
sumption of φ is the formula in(φ) := ∃Y : φ. Note that in(φ) is a property over X . Also
note that φ → in(φ) is a valid formula for any φ.

A relational interface I = (X ,Y, f) can be seen as specifying a game between a
component and its environment. The game proceeds in a sequence of rounds. At
each round, an assignment a ∈ A(X ∪ Y) is chosen, and the game moves to the next
round. Therefore, the history of the game is the sequence of rounds played so far, that
is, a state s ∈ A(X ∪ Y)∗. Suppose that at the beginning of a round the state is s.
Typically, the environment plays first, by choosing aX ∈ A(X). If aX �∈ in(f (s)) then this
is not a legal input and the environment loses the game. Otherwise, the component
plays by choosing aY ∈ A(Y). If (aX ,aY) �∈ f (s) then this is not a legal output for this
input, and the component loses the game. Otherwise, the round is complete, and the
game moves to the next round, with new state s · (aX ,aY). There are cases when the
interface is Moore in the sense that its current outputs do not depend on its current
inputs (the formal definition is given in Section 6.2). In this case, the component plays
first. More general games can also be considered where the assignments of values to
input and output variables are interleaved in an arbitrary order. The study of such a
generalization is beyond the scope of the current work.

An input-complete interface is one that does not restrict its inputs.

Definition 5.3 (Input-complete interface). An interface I = (X ,Y, f) is input-
complete if for all s ∈ A(X ∪ Y)∗, in(f (s)) is valid.

It is important to note that in our framework, input assumptions (“preconditions”)
and output guarantees (“postconditions”) are not separated. It is then crucial to dis-
tinguish a non-input-complete interface with a contract of the form φpre ∧ φ and its
input-complete version with contract φpre → φ. These contracts are different (as we
will show in Section 11, the latter refines the former). As mentioned in Section 3, our
theory is mostly implementation-agnostic, and therefore does not prescribe how illegal

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 4, Article 14, Publication date: July 2011.

A Theory of Synchronous Relational Interfaces 14:15

inputs should be interpreted in the “real” component that an interface abstracts. As
stated in Section 2, an illegal input may correspond to an input that results in non-
termination of a SW component, or it may be an input that must be avoided by design,
as in a type-checking setting.

A deterministic interface is one that maps every input assignment to at most one
output assignment.

Definition 5.4 (Determinism). An interface I = (X ,Y, f) is deterministic if for all
s ∈ f , for all aX ∈ in(f (s)), there is a unique aY ∈ A(Y) such that (aX ,aY) ∈ f (s).

The specializations of our theory to input-complete and deterministic interfaces are
discussed in Sections 11 and 12, respectively.

A stateless interface is one where the contract is independent from the state.

Definition 5.5 (Stateless interface). An interface I = (X ,Y, f) is stateless if for all
s, s′ ∈ A(X ∪ Y)∗, f (s) = f (s′).

For a stateless interface, we can treat f as a subset of A(X ∪ Y) instead of a subset
of A(X ∪ Y)∗. For clarity, if I is stateless, we write I = (X ,Y, φ), where φ is a property
over X ∪ Y .

Example 5.6 (Stateless interfaces). Consider a component which is supposed to take
as input a positive number n and return n or n + 1 as output. We can capture such a
component in different ways. One way is to use the following stateless interface:

I1 := ({x}, {y}, x > 0 ∧ (y = x ∨ y = x + 1)}).
Here, x is the input variable and y is the output variable. The contract of I1 explicitly
forbids zero or negative values for x. Indeed, we have in(f (I1)) ≡ x > 0.

Another possible stateless interface for this component is:

I2 := ({x}, {y}, x > 0 → (y = x ∨ y = x + 1)}).
The contract of I2 is different from that of I1: it allows x ≤ 0, but makes no guarantees
about the output y in that case. I2 is input-complete, whereas I1 is not. Both I1 and I2
are nondeterministic.

In general, the state space of an interface is infinite. In some cases, however, only
a finite set of states is needed to specify f . In particular, f may be specified by a
finite-state automaton.

Definition 5.7 (Finite-state interface). A finite-state interface is specified by a finite-
state automaton M = (X ,Y, L, �0,C,T). X and Y are sets of input and output vari-
ables, respectively. L is a finite set of locations and �0 ∈ L is the initial location.
C : L → 2A(X∪Y) is a labeling function that labels every location with a set of as-
signments over X ∪ Y , the contract at that location. T ⊆ L × 2A(X∪Y) × L is a set of
transitions. A transition t ∈ T is a tuple t = (�, g, �′) where �, �′ are the source and
destination locations, respectively, and g ⊆ A(X ∪Y) is the guard of the transition. We
require that, for all � ∈ L:

C(�) =
⋃

(�,g,�′)∈T

g (4)

∀(�, g1, �1), (�, g2, �2) ∈ T : �1 �= �2 → g1 ∩ g2 = ∅. (5)

These conditions ensure that there is a unique outgoing transition for every assign-
ment that satisfies the contract of the location. Given a ∈ C(�), the a-successor of �
is the unique location �′ for which there exists transition (�, g, �′) such that a ∈ g. A

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 4, Article 14, Publication date: July 2011.

14:16 S. Tripakis et al.

Fig. 2. Stateless and finite-state interfaces for a buffer of size 1.

location � is called reachable if, either � = �0, or there exists a reachable location �′, a
transition (�′, g, �), and an assignment a such that � is the a-successor of �′.

M defines interface I = (X ,Y, f) where f is the set of all sequences a1 · · · ak ∈ A(X ∪
Y)∗, such that for all i = 1, ...,k, ai ∈ C(�i−1), where �i is the ai-successor of �i−1.

Note that a finite-state interface can still have variables with infinite domains. If
the domains of variables are finite, however, then a finite-state interface can be seen
as a prefix-closed regular language. Also notice that we allow C(�), the contract at
location �, to be empty. This simply means that the interface is not well-formed (see
Definition 5.9 that follows). Finally, although the guard of an outgoing transition from
a certain location must be a subset of the contract of that location, we will often abuse
notation and violate this constraint in the examples that follow, for the sake of sim-
plicity. Implicitly, all guards should be understood in conjunction with the contracts of
their source locations.

It is also worth noting that although the finite-state automaton defining a finite-
state interface is deterministic, this does not mean that the interface itself is deter-
ministic. Indeed, in general, it is not, since contracts that label locations are still
nondeterministic input-output relations.

Example 5.8 (Stateful interface). Figure 2 shows a finite-state automaton defining
a finite-state interface that captures a single-place buffer. The interface has two input
variables, write and read, and two output variables, empty and full. All variables
are boolean. The automaton has two locations, q0 (the initial location) and q1. Each
location is implicitly annotated by the conjunction of a global contract, that must hold
at all locations, and a local contract, specific to a location. The global contract specifies
that the buffer cannot be both empty and full (this is a guarantee on the outputs)
and that a user of the buffer cannot read and write at the same round (this is an
assumption on the inputs). The global contract also specifies that if the buffer is full
then writing is not allowed, and if the buffer is empty then read is not allowed. The
local contract at q0 states that the buffer is empty and at q1 that it is full.

Definition 5.9 (Well-formedness). An interface I = (X ,Y, f) is well-formed iff for all
s ∈ f , f (s) is nonempty.

Well-formed interfaces can be seen as describing components that never “deadlock.”
If I is well-formed then for all s ∈ f there exists assignment a such that s · a ∈ f .
Moreover, f is nonempty and prefix-closed by definition, therefore, ε ∈ f . This means
that there exists at least one state in f which can be extended to arbitrary length. In a
finite-state interface, checking well-formedness amounts to checking that the contract
of every reachable location of the corresponding automaton is satisfiable. If contracts

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 4, Article 14, Publication date: July 2011.

A Theory of Synchronous Relational Interfaces 14:17

Fig. 3. A well-formable interface I and its well-formed witness I′.

are specified in a decidable logic, checking well-formedness of finite-state interfaces is
thus decidable.

Example 5.10. Let I be the finite-state interface represented by the leftmost au-
tomaton shown in Figure 3. I is assumed to have two Boolean variables, an input x,
and an output y. I is not well-formed, because it has reachable states with contract
false (all states starting with x being false). I can be transformed into a well-formed in-
terface by strengthening the contract of the initial state from true to x, thus obtaining
interface I′ shown to the right of the figure.

Example 5.10 shows that some interfaces, even though they are not well-formed,
can be turned into well-formed interfaces by appropriately restricting their inputs.
This motivates the following definition.

Definition 5.11 (Well-formability). An interface I = (X ,Y, f) is well-formable if
there exists a well-formed interface I′ = (X ,Y, f ′) such that: for all s ∈ f ′, f ′(s) ≡
f (s) ∧ φs, where φs is some property over X .

LEMMA 5.12. Let I = (X ,Y, f) be a well-formable interface and let I′ = (X ,Y, f ′) be
a witness to the well-formability of I. Then f ′ ⊆ f .

Proofs can be found in the online Appendix.
Clearly, every well-formed interface is well-formable, but the opposite is not true in

general, as Example 5.10 shows. For stateless or source interfaces, however, the two
notions coincide.

THEOREM 5.13. A stateless or source interface I is well-formed iff it is well-
formable.

For an interface that is finite-state and whose contracts are written in a logic for
which satisfiability is decidable, there is an algorithm to check whether the interface
is well-formable, and if this is the case, to transform it into a well-formed interface.
The algorithm essentially attempts to find a winning strategy in a game, and as such
is similar in spirit to algorithms proposed in de Alfaro and Henzinger [2001a]. The
algorithm starts by marking all locations with unsatisfiable contracts as illegal. Then,
a location � is chosen such that � is legal, but has an outgoing transition (�, g, �′), such
that �′ is illegal. If no such � exists, the algorithm stops. Otherwise, the contract of �
is strengthened to

C(�) := C(�) ∧ (∀Y : C(�) → ¬g). (6)

∀Y : C(�) → ¬g is a property on X . An input assignment aX satisfies this formula iff,
for any possible output assignment aY that the contract C(�) can produce given aX , the
complete assignment (aX ,aY) violates g. This means that there is a way of restricting
the inputs at �, so that �′ becomes unreachable from �. Notice that, in the special case
where g is a formula over X , (6) simplifies to C(�) := C(�) ∧ ¬g.

If, during the strengthening process, the contract of a location becomes unsat-
isfiable, this location is marked as illegal. The process is repeated until no more

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 4, Article 14, Publication date: July 2011.

14:18 S. Tripakis et al.

strengthening is possible, whereupon the algorithm stops. Termination is guaranteed
because each location has a finite number of successor locations, therefore, can only
be strengthened a finite number of times. If, when the algorithm stops, the initial
location �0 has been marked illegal, then the interface is not well-formed. Otherwise,
the modified automaton specifies a well-formed interface, which is a witness for the
original interface.

For this class of interfaces there is also an algorithm to check equality, that is, given
two interfaces I1, I2, check whether I1 = I2. Let Mi = (X ,Y, Li, �0,i,Ci,Ti) be finite-
state automata representing Ii, for i = 1,2, respectively. We first build a synchronous
product M := (X ,Y, L1 × L2 ∪ {�bad}, (�0,1, �0,2),C,T), where C(�1, �2) := C1(�1) ∨ C2(�2)
for all (�1, �2) ∈ L1 × L2, C(�bad) := false, and:

T := {((�1, �2), (C1(�1) ≡ C2(�2)) ∧ g1 ∧ g2, (�′
1, �

′
2)) | (�i, gi, �

′
i) ∈ Ti, for i = 1,2}

∪ {((�1, �2),C1(�1) �≡ C2(�2), �bad)} (7)

It can be checked that I1 = I2 iff location �bad is unreachable.

6. COMPOSITION

We define two types of composition: by connection and by feedback.

6.1 Composition by Connection

First, we can compose two interfaces I1 and I2 “in sequence,” by connecting some of the
output variables of I1 to some of the input variables of I2. One output can be connected
to many inputs, but an input can be connected to at most one output. Parallel composi-
tion is a special case of composition by connection, where the connection is empty. The
connections define a new interface. Thus, the composition process can be repeated to
yield arbitrary (for the moment, acyclic) interface diagrams. Composition by connec-
tion is associative (Theorem 6.6), so the order in which interfaces are composed does
not matter.

Two interfaces I = (X ,Y, f) and I′ = (X ′,Y ′, f ′) are called disjoint if they have
disjoint sets of input and output variables: (X ∪ Y) ∩ (X ′ ∪ Y ′) = ∅.

Definition 6.1 (Composition by connection). Let Ii = (Xi,Yi, fi), for i = 1,2, be two
disjoint interfaces. A connection θ between I1, I2, is a finite set of pairs of variables,
θ = {(yi, xi) | i = 1, ...,m}, such that: (1) ∀(y, x) ∈ θ : y ∈ Y1 ∧ x ∈ X2, and (2) there do not
exist (y, x), (y′, x) ∈ θ such that y and y′ are distinct. Define:

InVars(θ) := {x | ∃y : (y, x) ∈ θ} (8)
Xθ (I1,I2) := (X1 ∪ X2) \ InVars(θ) (9)
Yθ (I1,I2) := Y1 ∪ Y2 ∪ InVars(θ). (10)

The connection θ defines the composite interface θ (I1, I2) := (Xθ (I1,I2),Yθ (I1,I2), f), where,
for every s ∈ A(Xθ (I1,I2) ∪ Yθ (I1,I2))∗:

f (s) := f1(s1) ∧ f2(s2) ∧ ρθ ∧ ∀Yθ (I1,I2) :

 := (f1(s1) ∧ ρθ) → in(f2(s2)) (11)

ρθ :=
∧

(y,x)∈θ
y = x

and, for i = 1,2, si is defined to be the projection of s to variables in Xi ∪ Yi.

Note that Xθ (I1,I2) ∪Yθ (I1,I2) = X1 ∪Y1 ∪ X2 ∪Y2. Also notice that InVars(θ) ⊆ X2. This
implies that X1 ⊆ Xθ (I1,I2), that is, every input variable of I1 is also an input variable
of θ (I1, I2). Also note that ∀Yθ (I1,I2) :
 is equivalent to ∀Y1 ∪ InVars(θ) :
 because

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 4, Article 14, Publication date: July 2011.

A Theory of Synchronous Relational Interfaces 14:19

does not contain any Y2 variables. The term ∀Yθ (I1,I2) :
 is a condition on Xθ (I1,I2), the
free inputs of the composite interface. This term states that, no matter which outputs
I1 chooses to produce for a given input, all such outputs are legal inputs for I2. This
condition is essential for preservation of compatibility by refinement as discussed
in Section 2.2, and more generally, for preservation of refinement by composition
(Theorem 9.8).

Example 6.2. We repeat the example in Section 2.2 while being more pedantic.
Let Div be the interface defined in Section 2.1 and let D be the interface D :=
({x3}, {y2}, true). Let θ := {(y2, x2)}. Then the term ∀Yθ (D,Div) :
 instantiates to
∀y2, y : (true ∧ y2 = x2) → x2 �= 0, or equivalently, ∀y2 : y2 �= 0, which is false, meaning
that D and Div are “incompatible.” This notion is formalized next.

Contrary to other works [de Alfaro and Henzinger 2001a,b; Doyen et al. 2008], we
do not impose an a-priori compatibility condition on connections. Not doing so allows
us to state more general results (Theorem 9.8). Having said that, compatibility is a
useful concept; therefore, we define it explicitly.

Definition 6.3 (Compatibility). Let I1, I2 be two disjoint interfaces and θ a connec-
tion between them. I1, I2 are said to be compatible with respect to θ iff θ (I1, I2) is
well-formable.

For finite-state interfaces, connection is computable. Let Mi = (Xi,Yi, Li, �0,i,Ci,Ti)
be finite-state automata representing Ii, for i = 1,2, respectively. The composite in-
terface θ (I1, I2) can be represented as M := (Xθ (I1,I2),Yθ (I1,I2), L1 × L2, (�0,1, �0,2),C,T),
where C(�1, �2) is defined as f (s) is defined in (11), replacing fi(�i) by Ci(�i), and T is
defined as follows:

T := {((�1, �2), g1 ∧ g2, (�′
1, �

′
2)) | (�i, gi, �

′
i) ∈ Ti, for i = 1,2}. (12)

That is, M is essentially a synchronous product of M1,M2.
Checking compatibility of two finite-state interfaces can be effectively done by first

computing an automaton representing the composite interface θ (I1, I2) and then check-
ing well-formability of the latter, using the algorithms described earlier.

A connection θ is allowed to be empty. In that case, ρθ ≡ true, and the composition
can be viewed as the parallel composition of two interfaces. If θ is empty, we write
I1‖I2 instead of θ (I1, I2). As may be expected, the contract of the parallel composition
at a given global state is the conjunction of the original contracts at the corresponding
local states, which implies that parallel composition is commutative.

LEMMA 6.4. Consider two disjoint interfaces, Ii = (Xi,Yi, fi), i = 1,2. Then I1‖I2 =
(X1 ∪ X2,Y1 ∪ Y2, f), where f is such that for all s ∈ A(X1 ∪ X2 ∪ Y1 ∪ Y2)∗, f (s) ≡
f1(s1) ∧ f2(s2), where, for i = 1,2, si is the projection of s to Xi ∪ Yi.

A corollary of Lemma 6.4 is Theorem 6.5:

THEOREM 6.5 (COMMUTATIVITY OF PARALLEL COMPOSITION). Let I1 and I2 be
two disjoint interfaces. Then:

I1‖I2 = I2‖I1.

THEOREM 6.6 (ASSOCIATIVITY OF CONNECTION). Let I1, I2, I3 be pairwise disjoint
interfaces. Let θ12 be a connection between I1, I2, θ13 a connection between I1, I3, and θ23
a connection between I2, I3. Then:

(θ12 ∪ θ13)
(
I1, θ23(I2, I3)

)
= (θ13 ∪ θ23)

(
θ12(I1, I2), I3

)
.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 4, Article 14, Publication date: July 2011.

14:20 S. Tripakis et al.

Fig. 4. The interface diagram of Example 6.7.

Example 6.7. Consider the diagram of stateless interfaces shown in Figure 4,
where:

Iid := ({x1}, {y1}, y1 = x1)
I+1,2 := ({x2}, {y2}, x2 + 1 ≤ y2 ≤ x2 + 2)

I≤ := ({z1, z2}, {}, z1 ≤ z2).

This diagram can be modeled as any of the two following equivalent compositions:

θ2
(
I+1,2, θ1(Iid, I≤)

)
= (θ1 ∪ θ2)

(
(Iid‖I+1,2), I≤

)
,

where θ1 := {(y1, z1)} and θ2 := {(y2, z2)}.
We proceed to compute the contract of the interface defined by the diagram. It is

easier to consider the composition (θ1 ∪ θ2)((Iid‖I+1,2), I≤). Define θ3 := θ1 ∪ θ2. From
Lemma 6.4 we get:

Iid‖I+1,2 = ({x1, x2}, {y1, y2}, y1 = x1 ∧ x2 + 1 ≤ y2 ≤ x2 + 2).

Then, for θ3((Iid‖I+1,2), I≤), Formula (11) gives:

 := (y1 = x1 ∧ x2 + 1 ≤ y2 ≤ x2 + 2 ∧ y1 = z1 ∧ y2 = z2) → z1 ≤ z2.

By quantifier elimination, we get

∀y1, y2, z1, z2 :
 ≡ x1 ≤ x2 + 1.

Therefore,

θ3((Iid‖I+1), I≤) = ({x1, x2}, {y1, y2, z1, z2},
y1 = x1 ∧ x2 + 1 ≤ y2 ≤ x2 + 2 ∧ z1 ≤ z2

∧y1 = z1 ∧ y2 = z2 ∧ x1 ≤ x2 + 1).

Notice that in(θ3((Iid‖I+1), I≤)) ≡ x1 ≤ x2 + 1. That is, because of the connection θ , new
assumptions have been generated for the external inputs x1, x2. These assumptions
are stronger than those generated by simple composition of relations, which are x1 ≤
x2 + 2 in this case.

A composite interface is not guaranteed to be well-formed, neither well-formable,
even if all its components are well-formed.

Example 6.8. Consider the composite interface θ3((Iid‖I+1,2), I≤) from Example 6.7,
and suppose we connect its open inputs x1, x2 to outputs v1, v2, respectively, of some
other interface that guarantees v1 > v2 + 1. Clearly, the result is false, since the
constraint x1 > x2 + 1 ∧ x1 ≤ x2 + 1 is unsatisfiable.

6.2 Composition by Feedback

Our second type of composition is feedback composition, where an output variable
of an interface I is connected to one of its input variables x. For feedback, I is re-
quired to be Moore with respect to x. The term “Moore interfaces” has been introduced

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 4, Article 14, Publication date: July 2011.

A Theory of Synchronous Relational Interfaces 14:21

in Chakrabarti et al. [2002]. Our definition is similar in spirit, but less restrictive
than the one in Chakrabarti et al. [2002]. Both definitions are inspired by Moore ma-
chines, where the outputs are determined by the current state alone and do not depend
directly on the input.

In our version, an interface is Moore with respect to a given input variable x, mean-
ing that the contract may depend on the current state as well as on input variables
other than x. This allows to connect an output to x to form a feedback loop without
creating causality cycles.

Definition 6.9 (Moore interfaces). An interface I = (X ,Y, f) is called Moore with re-
spect to x ∈ X iff for all s ∈ f , f (s) is a property over (X ∪ Y) \ {x}. I is called simply
Moore when it is Moore with respect to every x ∈ X .

Note that a source interface is by definition Moore, since it has no input variables.
Note also that although the contract of a Moore interface should not depend on the
current value of an input variable, it may very well depend on past values of such a
variable, which influence the state s. An example where this occurs is the unit delay.

Example 6.10 (Unit delay). A unit delay is a basic building block in many modeling
languages (including Simulink and SCADE). Its specification is roughly: “output at
time k the value of the input at time k − 1; at time k = 0 (initial time), output some
initial value v0.” We can capture this specification as an interface:

Iud := ({x}, {y}, fud),

where fud is defined as follows:

fud(ε) := (y = v0)
fud(s · a) := (y = a(x)).

That is, initially the contract guarantees y = v0. Then, when the state is some sequence
s · a, the contract guarantees y = a(x), where a(x) is the last value assigned to input
x. Iud is Moore (with respect to its unique input variable) since all its contracts are
properties over y only.

Definition 6.11 (Composition by feedback). Let I = (X ,Y, f) be an interface. A feed-
back connection κ on I is a pair (y, x) ∈ Y × X . κ is valid if I is Moore with respect to
x. Define ρκ := (x = y). A valid feedback connection κ defines the interface:

κ(I) := (X \ {x},Y ∪ {x}, fκ) (13)
fκ (s) := f (s) ∧ ρκ, for all s ∈ A(X ∪ Y)∗. (14)

In the sequel, when we talk about feedback connections we implicitly assume they
are valid.

For finite-state interfaces, feedback is computable. Let M = (X ,Y, L, �0,C,T) be a
finite-state automaton representing I. First, to check whether M represents a Moore
interface w.r.t. a given input variable x ∈ X , it suffices to make sure that for every
location � ∈ L, C(�) does not refer to x. Then, if κ = (y, x), the interface κ(I) can be

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 4, Article 14, Publication date: July 2011.

14:22 S. Tripakis et al.

Fig. 5. An interface diagram with feedback.

represented as M′ := (X \ {x},Y ∪ {x}, L, �0,C′,T), where C′(�) := C(�) ∧ x = y, for all
� ∈ L.

THEOREM 6.12 (COMMUTATIVITY OF FEEDBACK). Let I = (X ,Y, f) be an interface
which is Moore with respect to both x1, x2 ∈ X , where x1 �= x2. Let κ1 = (y1, x1) and
κ2 = (y2, x2) be feedback connections. Then κ1 is valid for both I and κ2(I), κ2 is valid for
both I and κ1(I), and

κ1(κ2(I)) = κ2(κ1(I)).

Let K be a set of feedback connections, K = {κ1, ..., κn}, such that κi = (yi, xi), and all
xi are pairwise distinct, for i = 1, ...,n. Let I be an interface that is Moore with respect
to all x1, ..., xn. We denote by K(I) the interface κ1(κ2(· · · κn(I) · · ·)). By commutativity
of feedback composition, the resulting interface is independent from the order of appli-
cation of feedback connections. We will use the notation InVars(K) := {xi | (yi, xi) ∈ K},
for the set of input variables connected in K.

THEOREM 6.13 (COMMUTATIVITY BETWEEN CONNECTION AND FEEDBACK). Let
I1, I2 be disjoint interfaces and let θ be a connection between I1, I2. Let κ1, κ2 be valid
feedback connections on I1, I2, respectively. Suppose that InVars(κ2) ∩ InVars(θ) = ∅.
Then:

κ1(θ (I1, I2) = θ (κ1(I1), I2) and κ2(θ (I1, I2) = θ (I1, κ2(I2)).

THEOREM 6.14 (PRESERVATION OF MOORENESS BY CONNECTION). Let I1, I2 be
disjoint interfaces such that Ii = (Xi,Yi, fi), for i = 1,2. Let θ be a connection between
I1, I2.

(1) If I1 is Moore w.r.t. x1 ∈ X1, then θ (I1, I2) is Moore w.r.t. x1.
(2) If I1 is Moore and InVars(θ) = X2, then θ (I1, I2) is Moore.
(3) If I2 is Moore w.r.t. x2 ∈ X2 and x2 �∈ InVars(θ), then θ (I1, I2) is Moore w.r.t. x2.

An interesting question is to what extent and how to transform a given diagram of
interfaces, such as the one shown in Figure 5, to a valid expression of interface com-
positions. This cannot be done for arbitrary diagrams, due to restrictions on feedback,
but it can be done for diagrams that satisfy the following condition: every dependency
cycle in the diagram, formed by block connections, must visit at least one input vari-
able x of some interface I, such that I is Moore w.r.t. x. If this condition holds, then we
say that the diagram is causal. For example, the diagram in Figure 5 is causal iff I1 is
Moore w.r.t. x2 or I2 is Moore w.r.t. x4.

We can systematically transform causal interface diagrams into expressions of in-
terface compositions as follows. First, we remove from the diagram any Moore connec-
tions. A connection from output variable y to input variable x is a Moore connection if
the interface I where x belongs to is Moore w.r.t. x. Because the original diagram is by
hypothesis causal, the diagram obtained after removing Moore connections is guaran-
teed to have no dependency cycles. This acyclic diagram can be easily transformed into

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 4, Article 14, Publication date: July 2011.

A Theory of Synchronous Relational Interfaces 14:23

an expression involving only interface compositions by connection. By associativity of
connection (Theorem 6.6), the order in which these connections are applied does not
matter. Call the resulting interface Ic. Then, the removed Moore connections can be
turned into feedback compositions, and applied to Ic. Because Mooreness is preserved
by connection (Theorem 6.14), Ic is guaranteed to be Moore w.r.t. any input variable x
that is the destination of a Moore connection. Therefore, the above feedback composi-
tions are valid for Ic. Moreover, because of commutativity of feedback (Theorem 6.12),
the resulting interface is again uniquely defined.

Example 6.15. Consider the diagram of interfaces shown in Figure 5. Suppose that
I1 is Moore with respect to x2. Then, the diagram can be expressed as any of the two
compositions

κ
(
θ1

(
I1, (I2‖I3)

))
= θ3

(
κ
(
θ2(I1, I2)

)
, I3

)
,

where θ1 := {(y1, x4), (y2, x3)}, θ2 := {(y1, x4)}, θ3 := {(y2, x3)}, and κ := (y4, x2).
The two expressions are equivalent, since, by Theorem 6.13, θ3

(
κ
(
θ2(I1, I2)

)
, I3

)
=

κ
(
θ3

(
θ2(I1, I2), I3

))
, and by Theorem 6.6, θ3

(
θ2(I1, I2), I3

)
= θ1

(
I1, (I2‖I3)

)
.

LEMMA 6.16. Let I = (X ,Y, f) be a Moore interface with respect to x ∈ X . Let
κ = (y, x) be a feedback connection on I. Let κ(I) = (X \ {x},Y ∪ {y}, fκ). Then:

(1) fκ ⊆ f .
(2) For any s ∈ fκ , in(fκ (s)) ≡ in(f (s)).

THEOREM 6.17 (FEEDBACK PRESERVES WELL-FORMEDNESS). Let I be a Moore
interface with respect to some of its input variables, and let κ be a valid feedback con-
nection on I. If I is well-formed, then κ(I) is well-formed.

Feedback does not preserve well-formability.

Example 6.18. Consider a finite-state interface I f with two states, s0 (the initial
state) and s1, one input variable x and one output variable y. I f remains at state s0
when x �= 0 and moves from s0 to s1 when x = 0. Let φ0 := y = 0 be the contract at
state s0 and let φ1 := false be the contract at state s1. I f is not well-formed because
φ1 is unsatisfiable while state s1 is reachable. I f is well-formable, however: it suffices
to restrict φ0 to φ′

0 := y = 0 ∧ x �= 0. Denote the resulting (well-formed) interface by
I′

f . Note that I f is Moore with respect to x, whereas I′
f is not. Let κ be the feedback

connection (y, x). Because I f is Moore, κ(I f) is defined, and is such that its contract at
state s0 is y = 0 ∧ x = y, and its contract at state s1 is false ∧ x = y ≡ false. κ(I f) is not
well-formable: indeed, y = 0∧ x = y implies x = 0, therefore, state s1 cannot be avoided.

7. HIDING

As can be seen in Example 6.7, composition often creates redundant output variables,
in the sense that some of these variables are equal to each other. This happens because
input variables that get connected become output variables. To remove redundant
output variables, we propose a hiding operator. Hiding may also be used to remove
other output variables that may not be redundant, provided they do not influence the
evolution of contracts, as we shall see below.

For a stateless interface I = (X ,Y, φ), the (stateless) interface resulting from hiding
an output variable y ∈ Y can simply be defined as:

hide(y, I) := (X ,Y \ {y},∃y : φ).

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 4, Article 14, Publication date: July 2011.

14:24 S. Tripakis et al.

This definition does not directly extend to the general case of stateful interfaces,
however. The reason is that the contract of a stateful interface I may depend on the
history of y. Then, hiding y is problematic because it results in the environment not
being able to uniquely determine the contract based on the history of observations.
This results in particular in refinement not being preserved by hiding, as we show
later in Example 9.13. To avoid these problems, we allow hiding only for those outputs
which do not influence the evolution of the contract.

Given s, s′ ∈ A(X ∪ Y)∗ such that |s| = |s′| (i.e., s, s′ have same length), and given
Z ⊆ X ∪ Y , we say that s and s′ agree on Z , denoted s =Z s′, when for all i ∈ {1, ..., |s|},
and all z ∈ Z , si(z) = s′

i(z). Given interface I = (X ,Y, f), we say that f is independent
from z if for every s, s′ ∈ f , s =(X∪Y)\{z} s′ implies f (s) = f (s′). That is, the evolution of z
does not affect the evolution of f .

Notice that f being independent from z does not imply that f cannot refer to vari-
able z. Indeed, all stateless interfaces trivially satisfy the independence condition:
their contracts are invariant in time, that is, they do not depend on the evolution of
variables. Clearly, the contract of a stateless interface can refer to any of its variables.
Conversely, even if the contracts specified by f do not refer to z, f may still depend
on z, because the evolution of contracts may depend on z. For example, suppose that
f (ε) ≡ true, and that f (z = 0) is different from f (z = 1), although no contract refers to
z. Here, f (z = k) denotes the contract at a state where z = k. In this case, f depends
on z since the value z assumes at the first round determines the contract to be used in
the second round.

The above notion of independence is weaker than redundancy in variables, as we
show next. First, we formalize redundancy in variables. Given z ∈ X ∪ Y , we say that
z is redundant in f if there exists z′ ∈ X ∪ Y such that z′ �= z, and for all s ∈ f , for all
i ∈ {1, ..., |s|}, si(z) = si(z′). It should be clear that all outputs in InVars(θ) in an interface
obtained by connection θ are redundant (see Definition 6.1). Similarly, in an interface
obtained by feedback κ = (y, x), newly introduced output variable x is redundant (see
Definition 6.11).

LEMMA 7.1. If z is redundant in f , then f is independent from z.

When f is independent from z, f can be viewed as a function from A((X ∪ Y) \ {z})∗
to F (X ∪ Y) instead of a function from A(X ∪ Y)∗ to F (X ∪ Y). We use this when we
write f (s) for s ∈ A((X ∪ Y) \ {z})∗ in the following definition.

Definition 7.2 (Hiding). Let I = (X ,Y, f) be an interface and let y ∈ Y , such that f
is independent from y. Then hide(y, I) is defined to be the interface

hide(y, I) := (X ,Y \ {y}, f ′), (15)

such that for any s ∈ A(X ∪ Y \ {y})∗, f ′(s) := ∃y : f (s).

For finite-state interfaces, hiding is computable. Let M = (X ,Y, L, �0,C,T) be a
finite-state automaton representing I. We first need to ensure that the contract of
I is independent from y. A simple way to do this is to check that no guard of M
refers to y. This condition is sufficient, but not necessary. Consider, for example,
two complementary guards y < 1 and y ≥ 1 whose transitions lead to locations with
identical contracts. Then the two locations may be merged to a single one, and the
two transitions to a single transition with guard true. Another situation where the
above condition may be too strict is when a guard refers to y but y is redundant. In
that case, all occurrences of y in guards of M can be replaced by its equal variable y′.
Once independence from y is ensured, hide(y, I) can be represented as M′ := (X ,Y \
{y}, L, �0,C′,T), where C′(�) := ∃y : C(�), for all � ∈ L.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 4, Article 14, Publication date: July 2011.

A Theory of Synchronous Relational Interfaces 14:25

Fig. 6. Illustration of pluggability.

8. ENVIRONMENTS, PLUGGABILITY AND SUBSTITUTABILITY

We wish to formalize the notion of interface contexts and substitutability, and we in-
troduce environments for that purpose. Environments are interfaces. An interface I
can be connected to an environment E to form a closed-loop system, as illustrated in
Figure 6. E acts both as a controller and an observer for I. It is a controller in the
sense that it “steers” I by providing inputs to it, depending on the outputs it receives.
At the same time, E acts as an observer, that monitors the inputs consumed and out-
puts produced by I, and checks whether a given property is satisfied. These notions
are formalized in Definition 8.1 that follows.

Before giving the definition, however, a remark is in order. Interfaces and environ-
ments are to be connected in a closed loop, as illustrated in Figure 6. In order to do
this in our setting, every dependency cycle must be “broken” by a Moore connection,
as prescribed by the transformation of interface diagrams to composition expressions,
given in Section 6.2. It can be seen that, in the case of two interfaces connected in
closed-loop, the above requirement implies that one of the two interfaces is Moore. For
instance, consider Figure 6. If I is not Moore w.r.t. x2, then E must be Moore w.r.t. to
both ŷ1 and ŷ2, so that both feedback connections can be formed. Similarly, if E is not
Moore w.r.t. ŷ2, say, then I must be Moore w.r.t. both x1, x2. This remark justifies the
following definition.

Definition 8.1 (Environments and pluggability). Consider interfaces I = (X ,Y, f)
and E = (Ŷ , X̂ , fe). E is said to be an environment for I if there exist bijections be-
tween X and X̂ , and between Y and Ŷ . X̂ are called the mirror variables of X , and
similarly for Ŷ and Y . For x ∈ X , we denote by x̂ the corresponding (by the bijection)
variable in X̂ , and similarly with y and ŷ. I is said to be pluggable to E, denoted
I � E, iff the following conditions hold.

— I is Moore or E is Moore.
— If E is Moore, then the interface K(θ (E, I)) is well-formed, where θ := {(x̂, x) | x ∈ X }

and K := {(y, ŷ) | y ∈ Y}. Notice that, because E is Moore and InVars(θ) = X , part 2
of Theorem 6.14 applies, and guarantees that θ (E, I) is Moore. Therefore, K(θ (E, I))
is well-defined.

— If I is Moore, then the interface K(θ (I, E)) is well-formed, where θ := {(y, ŷ) | y ∈ Y}
and K := {(x̂, x) | x ∈ X }.
Note that, by definition, I is pluggable to E iff E is pluggable to I.

Example 8.2. Consider interfaces I1 and I2 from Example 5.6 and environments
E1, E2, E3 of Figure 7 (implicitly, transitions without guards are assumed to have
guard true). It can be checked that both I1 and I2 are pluggable to E1. I1 is not
pluggable to neither E2 nor E3: indeed, the output guarantee x̂ ≥ 0 of these two
environments is not strong enough to meet the input assumption x > 0 of I1. I2
is not pluggable to E2: although the input assumption of I2 is true, I2 guarantees
y > 0 only when x > 0. Therefore, the guard ŷ ≤ 0 of E2 is enabled in some cases,

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 4, Article 14, Publication date: July 2011.

14:26 S. Tripakis et al.

Fig. 7. Three environments.

Fig. 8. A Moore interface I and a non-Moore environment E.

leading to location with contract false, which means that the closed-loop interface is
not well-formed. On the other hand, I2 is pluggable to E3.

THEOREM 8.3 (PLUGGABILITY AND WELL-FORMABILITY).

— If an interface I is well-formable, then there exists an environment E for I such that
I � E.

— If there exists an environment E for interface I such that I � E and I is not Moore,
then I is well-formable.

Example 8.4. Consider interfaces I and E shown in Figure 8. Observe that I is
Moore and I � E. However, I is not well-formable.

Example 8.4 shows that the non-Mooreness assumption on I is indeed necessary
in part 2 of Theorem 8.3. This example also illustrates an aspect of our definition
of well-formability, which may appear inappropriate for Moore interfaces: indeed, in-
terface I of Figure 8 is non-well-formable, yet there is clearly an environment that
can be plugged to I so that false location is avoided. An alternative definition of well-
formability for an interface I would have been existence of an environment that can
be plugged to I. This would make Theorem 8.3 a tautology. Nevertheless, we opt for
Definition 5.11, which allows to transform interfaces into a “canonical form” where all
contracts are satisfiable.

Definition 8.5 (Substitutability). We say that interface I′ may replace interface I (or
I′ may be substituted for I), denoted I →e I′, iff for any environment E, if I is pluggable
to E then I′ is pluggable to E. We say that I and I′ are mutually substitutable, denoted
I ≡e I′, iff both I →e I′ and I′ →e I hold.

As we shall show in Theorem 9.16, for well-formed interfaces, mutual substitutabil-
ity coincides with interface equality.

9. REFINEMENT

Definition 9.1 (Refinement). Consider two interfaces I = (X ,Y, f) and I′ =
(X ′,Y ′, f ′). We say that I′ refines I, written I′
 I, iff X ′ = X , Y ′ = Y , and for any
s ∈ f ∩ f ′, the following formula is valid:

in(f (s)) →
(
in(f ′(s)) ∧ (

f ′(s) → f (s)
))

(16)

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 4, Article 14, Publication date: July 2011.

A Theory of Synchronous Relational Interfaces 14:27

Condition 16 can be rewritten equivalently as the conjunction of the following two
conditions:

in(f (s)) → in(f ′(s)) (17)(
in(f (s)) ∧ f ′(s)

) → f (s) (18)

Condition (17) states that every input assignment that is legal in I is also legal in
I′. This guarantees that, for any possible input assignment that can be provided to
I by a context C, if this assignment is accepted by I then it is also accepted by I′.
Condition (18) states that, for every input assignment that is legal in I, all output
assignments that can be possibly produced by I′ from that input, can also be produced
by I. This guarantees that if C accepts the assignments produced by I then it also
accepts those produced by I′.

It should be noted that the refinement conditions are required only for states that
belong in both f and f ′. The intuition for this choice is as follows. The initial state is
ε and by definition ε ∈ f ∩ f ′. At this state, we only wish to consider legal inputs for
I, that is, aX ∈ in(f (ε)). Otherwise, I′ is free to behave as it wishes since the behavior
is not possible in I. Condition (17) then implies that aX ∈ in(f ′(ε)). Next, we wish to
consider only outputs that I′ may produce given aX , that is, aY such that (aX ,aY) ∈
f ′(ε). Otherwise, I is free to behave as it wishes, since the behavior is not possible
in I′. Condition (18) then implies that (aX ,aY) ∈ f (ε). Therefore, (aX ,aY) ∈ f ∩ f ′,
that is, the requirements should be applied only to states of length one that belong in
both f and f ′. Reasoning inductively, the same can be derived for states of arbitrary
length.

A remark is in order regarding the constraint X ′ = X and Y ′ = Y imposed during
refinement. This constraint may appear as too strict, but we argue that it is not. To
begin, recall that I′
 I should imply that I′ can replace I in any context. In our
setting, contexts are formalized as environments. Consider such an environment with
controller C. C provides values to the input variables of I, and requires values from
the output variables of I. Suppose I′ has an input variable x that I does not have, that
is, there exists x ∈ X ′ \ X . In general, C may not provide x. In that case, I′ cannot
replace I, because by doing so, input x would remain free. Therefore, X ′ ⊆ X must
hold. Similarly, suppose that there exists y ∈ Y \ Y ′. In general, C may require y, that
is, y may be a free input for C. In that case, I′ cannot replace I, because by doing so, y
would remain free. Therefore, Y ⊆ Y ′ must hold.

Now, suppose that X ′ is a strict subset of X or Y ′ is a strict superset of Y (or both).
Then, we can easily modify I and I′ as follows: we add to X ′ all the input variables
missing from I′, so that X ′ = X , and we add to Y all the output variables missing
from I, so that Y = Y ′. While doing so, we do not change the contracts of either I
or I′: the contracts simply ignore the additional variables, that is, do not impose any
constraints on their values. It can be seen that this transformation preserves the
validity of refinement Condition 16. Indeed, in(φ) → (in(φ′) ∧ (φ′ → φ)) holds when φ is
over X ∪ Y and φ′ is over X ′ ∪ Y ′ iff it holds when both φ and φ′ are taken to be over
X ∪ Y ′, provided X ′ ⊆ X and Y ′ ⊇ Y . Therefore, without loss of generality, we require
X = X ′ and Y = Y ′.

Example 9.2 (Buffer interface refinements). This example builds on Example 5.8.
Consider Figure 9. It depicts a variant of the single-place buffer interface, where the
buffer may fail to complete a read or write operation. This interface has one more
boolean output variable, namely, ack, in addition to those of Example 5.8, and two
more locations, after read and after write. Its global contract is identical to that of
Example 5.8. So are local contracts at locations q0 and q1. After a write operation, the

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 4, Article 14, Publication date: July 2011.

14:28 S. Tripakis et al.

Fig. 9. Interface for a buffer of size 1 that may fail to do a read or write.

Fig. 10. Buffer interface of Figure 2 with additional output variable ack.

interface moves to location after write, where it non-deterministically chooses to set
ack to true or false: setting it to true means the write was successful, false means the
write failed. The meaning is symmetric for read. This particular interface does not
allow read or write operations in the two intermediate locations.

It is natural to expect that a buffer that never fails can replace a buffer that
may fail. We would like to have a formal guarantee of this, in terms of refinement
of their corresponding interfaces. That is, we would like the interface of Figure 2
to refine the one of Figure 9. This does not immediately hold, since ack is not a
variable of the former. We can easily add it however, obtaining the interface shown
in Figure 10. This buffer never fails, therefore, ack is always true. With this modifi-
cation, the interface of Figure 10 refines the one of Figure 9. On the other hand, the
converse is not true: the interface of Figure 9 does not refine the one of Figure 10,
because in the latter output ack is always true, whereas in the former in can also be
false.

With respect to the above discussion on the X = X ′ and Y = Y ′ requirements, note
that in this example the condition X ′ ⊆ X and Y ⊆ Y ′ does not hold: indeed, Y (the
outputs of Figure 9) includes ack whereas Y ′ (the outputs of Figure 2) does not. For
this reason, ack is not simply a “dummy” variable in this case, and we need to specify
a contract for it, as done in the revised interface of Figure 10.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 4, Article 14, Publication date: July 2011.

A Theory of Synchronous Relational Interfaces 14:29

This example also illustrates the fact that our notion of refinement is different from
language inclusion. For instance, the sequence

(empty, ¬full, ack, write, ¬read) · (¬empty, full, ack, ¬write, read)

belongs in the language (i.e., contract) of the interface of Figure 10, but not in the
language of the interface of Figure 9. This is because the latter does not allow a “read”
to happen at state “after write”.

For finite-state interfaces, refinement can be checked as follows. Let Mi =
(X ,Y, Li, �0,i,Ci,Ti) be finite-state automata representing Ii, for i = 1,2, respectively.
We first build a synchronous product

M := (X ,Y, L1 × L2 ∪ {�good, �bad}, (�0,1, �0,2),C,T),

where C(�1, �2) := in(C1(�1)) for all (�1, �2) ∈ L1 × L2, C(�good) := true, C(�bad) := false,
and:

T := {((�1, �2), gboth ∧ g1 ∧ g2, (�′
1, �

′
2)) | (�i, gi, �

′
i) ∈ Ti, for i = 1,2}

∪ {((�1, �2), gbad, �bad), ((�1, �2), ggood, �good), (�good, true, �good)} (19)
gboth := C1(�1) ∧ C2(�2) (20)
ggood := in(C1(�1)) ∧ in(C2(�2)) ∧ ¬C2(�2) (21)

gbad := in(C1(�1)) ∧
(
¬in(C2(�2)) ∨ (

C2(�2) ∧ ¬C1(�1)
))
. (22)

Notice that guard gbad encodes the negation of the refinement Condition (16). Also note
that gboth, ggood, gbad are pairwise disjoint, and such that gboth ∨ ggood ∨ gbad ≡ in(C1(�1)),
for all (�1, �2) ∈ L1 × L2. This ensures determinism of M. It can be checked that I2
 I1
iff location �bad is unreachable.

9.1 Properties of the Refinement Relation

We proceed to state the main properties of refinement. First, observe that, perhaps
surprisingly, interfaces with false contracts (i.e., f = {ε}) are “top” elements with re-
spect to the
 order, that is, they are refined by any interface that has the same input
and output variables. This is in accordance with the spirit of refinement as a condition
for substitutability. The false interface is not pluggable to any environment; therefore,
it can be replaced by any interface.

We next provide a result used in the proof of the theorems that follow.

LEMMA 9.3. Let I = (X ,Y, f), I′ = (X ,Y, f ′), I′′ = (X ,Y, f ′′) be interfaces such that
I′′
 I′ and I′
 I. Then f ∩ f ′′ ⊆ f ′.

An illustration of the preceding lemma can be found in the division example in
Section 2.3, where φ1 ∧ φ4 ≡ φ2.

THEOREM 9.4 (PARTIAL ORDER).
 is a partial order, that is, a reflexive, antisym-
metric, and transitive relation.

THEOREM 9.5. Let I, I′ be stateless interfaces such that I′
 I. If I is well-formed,
then I′ is well-formed.

Theorem 9.5 does not generally hold for stateful interfaces: the reason is that, be-
cause I′ may accept more inputs than I, there may be states that are reachable in I′
but not in I, and the contract of I′ in these states may be unsatisfiable. When this sit-
uation does not occur, refinement preserves well-formedness also in the stateful case.
Moreover, refinement always preserves well-formability.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 4, Article 14, Publication date: July 2011.

14:30 S. Tripakis et al.

THEOREM 9.6 (REFINEMENT AND WELL-FORMEDNESS/-FORMABILITY). Let I, I′
be interfaces such that I′
 I.

(1) If I is well-formed and f (I′) ⊆ f (I), then I′ is well-formed.
(2) If I, I′ are sources and I is well-formed, then I′ is also well-formed.
(3) If I is well-formable, then I′ is well-formable.

The following lemma is used in the proof of Theorem 9.8.

LEMMA 9.7. Consider two disjoint interfaces I1 and I2, and a connection θ between
I1, I2. Let f1 and f2 be the projections of f (θ (I1, I2)) to states over the variables of I1
and I2, respectively. Then f1 ⊆ f (I1) and f2 ⊆ f (I2).

Theorems 9.8 and 9.9 that follow state a major property of our theory, namely, that
refinement is preserved by composition.

THEOREM 9.8 (CONNECTION PRESERVES REFINEMENT). Consider two disjoint in-
terfaces I1 and I2, and a connection θ between I1, I2. Let I′

1, I′
2 be interfaces such that

I′
1
 I1 and I′

2
 I2. Then θ (I′
1, I′

2)
 θ (I1, I2).

Notice that Theorem 9.8 holds independently of whether the connection yields a
well-formed interface or not, that is, independently of whether the composed interfaces
are compatible. This is a reason why we do not impose compatibility as a condition
for composition, as we mentioned earlier. Together with Theorems 9.5 and 9.6, The-
orem 9.8 guarantees that if the refined composite interface is well-formed/formable,
then so is the refining one. In particular, if I1 and I2 are compatible with respect to θ ,
then so are I′

1 and I′
2.

THEOREM 9.9 (FEEDBACK PRESERVES REFINEMENT). Let I, I′ be interfaces such
that I′
 I. Suppose both I and I′ are Moore interfaces with respect to one of their
input variables, x. Let κ = (y, x) be a feedback connection. Then κ(I′)
 κ(I).

Note that the assumption that I′ be Moore w.r.t. x in Theorem 9.9 is essential.
Indeed, Mooreness is not generally preserved by refinement.

Example 9.10. Consider the stateless interfaces Ieven := ({x}, {y}, y ÷ 2 = 0), where
÷ denotes the modulo operator, and I×2 := ({x}, {y}, y = 2x). Ieven is Moore. I×2 is not
Moore. Yet I×2
 Ieven.

It is instructive at this point to justify our restrictions regarding feedback compo-
sition, by illustrating some of the problems that would arise if we allowed arbitrary
feedback.

Example 9.11. This example is borrowed from Doyen et al. [2008]. Suppose Itrue is
an interface on input x and output y, with trivial contract true, making no assump-
tions on the inputs and no guarantees on the outputs. Suppose Iy�=x is another inter-
face on x and y, with contract y �= x, meaning that it guarantees that the value of
the output will be different from the value of the input. As expected, Iy�=x refines Itrue:
because Iy�=x is “more deterministic” than Itrue, that is, the output guarantees of Iy�=x
are stronger. Now, consider the feedback connection x = y. This could be considered
an allowed connection for Itrue, since it does not contradict its contract: the result-
ing interface would be Ix=y with contract x = y. But the same feedback connection
contradicts the contract of Iy�=x: the resulting interface would be Ifalse with contract
false. Although Iy�=x refines Itrue, Ifalse does not refine Ix=y, therefore, allowing arbitrary
feedback would violate preservation of refinement by feedback. Notice that both Itrue

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 4, Article 14, Publication date: July 2011.

A Theory of Synchronous Relational Interfaces 14:31

Fig. 11. Example illustrating the need for independence from hidden variables.

and Iy�=x are input-complete, which means that this problem is present also in that
special case.

THEOREM 9.12 (HIDING PRESERVES REFINEMENT). Let I1 = (X ,Y, f1) and I2 =
(X ,Y, f2) be two interfaces such that I2
 I1. Let y ∈ Y be such that both f1 and f2 are
independent from y. Then hide(y, I2)
 hide(y, I1).

It is worth noting that Theorem 9.12 would not hold if we were to define hiding
without requiring independence of contracts from hidden variables. The example that
follows illustrates this.

Example 9.13. Consider the interfaces shown in Figure 11. I1 and I2 have a single
input variable x and a single output y. It can be verified that I2
 I1. I2 is independent
from y, whereas I1 is not. Therefore, hide(y, I2) is defined (and shown in the figure),
whereas hide(y, I1) is not defined. Suppose we were to define the latter as interface
I′
1 shown in the figure, which corresponds to existentially quantifying away y from all

contracts, as is usually done. Then hiding would not preserve refinement. Indeed,
hide(y, I2) �
 I′

1, because x · ¬x is a legal input sequence in I′
1 but not in hide(y, I2).

THEOREM 9.14 (REFINEMENT AND SUBSTITUTABILITY). Let I, I′ be two interfaces.

(1) If I′
 I, then I′ can replace I.
(2) If I′ �
 I, and I is well-formed, then I′ cannot replace I.

The requirement that I be well-formed in part 2 of Theorem 9.14 is necessary, as
the following example shows.

Example 9.15. Consider the finite-state interfaces I and I′ defined by the automata
shown in Figure 3. Both have a single boolean input variable x. I′ is well-formed but
I is not (I is well-formable, however, and I′ is a witness). I′ �
 I, because at the initial
state the input x = false is legal for I but not for I′. But there is no environment E
such that I |= E but I′ �|= E.

We next state a result that is not about refinement, but follows from properties of
refinement.

THEOREM 9.16. Let I, I′ be well-formed interfaces. Then I ≡e I′ iff I = I′.

PROOF. By Theorem 9.14, I ≡e I′ implies I′
 I and I
 I′. The result follows by
antisymmetry of refinement (Theorem 9.4).

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 4, Article 14, Publication date: July 2011.

14:32 S. Tripakis et al.

9.2 Discussion: Alternative Definition of Refinement

The reader may wonder why Condition (18) could not be replaced with the simpler
condition:

f ′(s′) → f (s). (23)

Indeed, for input-complete interfaces, Condition (16) reduces to Condition (23); see
Theorem 11.8 in Section 11. In general, however, Condition (16) is too strong in the
sense that it results in a refinement condition that is sufficient but not necessary for
substitutability, as the following example demonstrates.

Example 9.17. Consider interface Iid := ({x}, {y}, x = y), and interface I1 from Ex-
ample 5.6. It can be checked that Iid
 I1. If we used Condition (23) instead of Con-
dition (18) in the definition of refinement, then Iid would not refine I1: this is because
x = y �→ x > 0. Yet, by Theorem 9.14, Iid can replace I1, that is, there is no environment
E such that I1 |= E but Iid �|= E.

10. SHARED REFINEMENT AND SHARED ABSTRACTION

A shared refinement operator 	 is introduced in Doyen et al. [2008] for A/G interfaces,
as a mechanism to combine two such interfaces I and I′ into a single interface I 	 I′
that refines both I and I′: I 	 I′ is able to accept inputs that are legal in either I or I′,
and provide outputs that are legal in both I and I′. Because of this, I 	 I′ can replace
both I and I′, which, as argued in Doyen et al. [2008], is important for component
reuse. A similar mechanism called fusion has also been proposed in Benveniste et al.
[2008].

Doyen et al. [2008] also discuss shared refinement for extended (i.e., relational)
interfaces and conjectures that it represents the greatest lower bound with respect
to refinement. We show that this holds only if a certain condition is imposed. We
call this condition shared refinability. It states that for every inputs that is legal in
both I and I′, the corresponding sets of outputs of I and I′ must have a nonempty
intersection. Otherwise, it is impossible to provide an output that is legal in both
I and I′.

Definition 10.1 (Shared refinement). Two interfaces I = (X ,Y, f) and I′ =
(X ′,Y ′, f ′) are shared-refinable if X = X ′, Y = Y ′ and the following formula is true
for all s ∈ f ∩ f ′:

∀X :
(
in(f (s)) ∧ in(f ′(s))

) → ∃Y : (f (s) ∧ f ′(s)). (24)

In that case, the shared refinement of I and I′, denoted I 	 I′, is the interface defined
as follows:

I 	 I′ := (X ,Y, f)
f	(s) :=

(
in(f (s)) ∨ in(f ′(s))

) ∧ (
in(f (s)) → f (s)

) ∧ (
in(f ′(s)) → f ′(s)

)
. (25)

Example 10.2. Consider interfaces I00 := ({x}, {y}, x = 0 → y = 0) and I01 :=
({x}, {y}, x = 0 → y = 1). I00 and I01 are not shared-refinable because there is no
way to satisfy y = 0 ∧ y = 1 when x = 0.

For finite-state interfaces, shared refinement is computable. Let Mi =
(X ,Y, Li, �0,i,Ci,Ti) be finite-state automata representing Ii, for i = 1,2, respectively.
Suppose I1, I2 are shared-refinable. Then, I1 	 I2 can be represented as the automaton

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 4, Article 14, Publication date: July 2011.

A Theory of Synchronous Relational Interfaces 14:33

Fig. 12. Two interfaces that are not shared-refinable.

M := (X ,Y, L1 × L2 ∪ L1 ∪ L2, (�0,1, �0,2),C,T), where C and T are defined as follows
(guard gboth is defined as in (20)):

C(�) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
in(C1(�1)) ∨ in(C2(�2))

) ∧ (
in(C1(�1)) → C1(�1)

) ∧ (
in(C2(�2)) → C2(�2)

)
,

if � = (�1, �2) ∈ L1 × L2

C1(�), if � ∈ L1

C2(�), if � ∈ L2

(26)

T := {((�1, �2), gboth ∧ g1 ∧ g2, (�′
1, �

′
2)) | (�i, gi, �

′
i) ∈ Ti, for i = 1,2}

∪ {((�1, �2),¬C2(�2) ∧ g1, �
′
1) | (�1, g1, �

′
1) ∈ T1} ∪ T1

∪ {((�1, �2),¬C1(�1) ∧ g2, �
′
2) | (�2, g2, �

′
2) ∈ T2} ∪ T2.

As long as the contracts of both M1 and M2 are satisfied, M behaves as a synchronous
product. If the contract of one automaton is violated, then M continues with the other.

LEMMA 10.3. If I and I′ are shared-refinable interfaces, then

f (I) ∩ f (I′) ⊆ f (I 	 I′) ⊆ f (I) ∪ f (I′).

LEMMA 10.4. Let I and I′ be shared-refinable interfaces such that I = (X ,Y, f),
I′ = (X ,Y, f ′) and I 	 I′ = (X ,Y, f). Then for all s ∈ f ∩ f ′:

in(f	(s)) ≡ in(f (s)) ∨ in(f ′(s)).

THEOREM 10.5 (GREATEST LOWER BOUND). If I and I′ are shared-refinable inter-
faces, then (I 	 I′)
 I, (I 	 I′)
 I′, and for any interface I′′ such that I′′
 I and I′′
 I′,
we have I′′
 (I 	 I′).

Shared-refinability is a sufficient, but not necessary condition to existence of an
interface I′′ that refines both I and I′. The following example illustrates this fact.

Example 10.6. Consider interfaces I and I′ shown in Figure 12. They have a single
output variable y, and no inputs. I and I′ are not shared-refinable. Indeed, y = 1 is
initially possible in both interfaces, but after that, I requires y = 0 whereas I′ requires
y = 1, and there is no way of satisfying both. Nevertheless, an interface I′′ exists that
refines both I and I′: I′′ is the stateless interface with contract y = 0.

THEOREM 10.7. If I and I′ are shared-refinable interfaces and both are well-formed,
then I 	 I′ is well-formed.

It is useful to consider the dual operator to 	, that we call shared abstraction and
denote
. Contrary to 	,
 is always defined, provided the interfaces have the same
input and output variables.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 4, Article 14, Publication date: July 2011.

14:34 S. Tripakis et al.

Definition 10.8 (Shared abstraction). Two interfaces I = (X ,Y, f) and I′ =
(X ′,Y ′, f ′) are shared-abstractable if X = X ′ and Y = Y ′. In that case, the shared
abstraction of I and I′, denoted I
 I′, is the interface:

I
 I′ := (X ,Y, f
)

f
(s) :=

⎧⎪⎨
⎪⎩

in(f (s)) ∧ in(f ′(s)) ∧ (
f (s) ∨ f ′(s)

)
if s ∈ f ∩ f ′

f (s) if s ∈ f \ f ′.
f ′(s) if s ∈ f ′ \ f

(27)

Notice that it suffices to define f
(s) for s ∈ f ∪ f ′. Indeed, the above definition induc-
tively implies f
 ⊆ f ∪ f ′.

LEMMA 10.9. If I and I′ are shared-abstractable interfaces, then

f (I) ∩ f (I′) ⊆ f (I
 I′) ⊆ f (I) ∪ f (I′).

For finite-state interfaces, shared abstraction is computable. Let Mi =
(X ,Y, Li, �0,i,Ci,Ti) be finite-state automata representing Ii, for i = 1,2, respectively.
Suppose I1, I2 are shared-abstractable. Then, I1
 I2 can be represented as the au-
tomaton M := (X ,Y, L1 × L2 ∪ L1 ∪ L2, (�0,1, �0,2),C,T), where C and T are defined as
follows (guard gboth is defined as in (20)):

C(�) :=

⎧⎪⎨
⎪⎩

in(C1(�1)) ∧ in(C2(�2)) ∧ (
L1(�1) ∨ C2(�2)

)
, if � = (�1, �2) ∈ L1 × L2

C1(�), if � ∈ L1

C2(�), if � ∈ L2

(28)

T := {((�1, �2), gboth ∧ g1 ∧ g2, (�′
1, �

′
2)) | (�i, gi, �

′
i) ∈ Ti, for i = 1,2}

∪ {((�1, �2), in(C1(�1)) ∧ in(C2(�2)) ∧ ¬C2(�2) ∧ g1, �
′
1) | (�1, g1, �

′
1) ∈ T1} ∪ T1

∪ {((�1, �2), in(C1(�1)) ∧ in(C2(�2)) ∧ ¬C1(�1) ∧ g2, �
′
2) | (�2, g2, �

′
2) ∈ T2} ∪ T2.

Like the automaton for I 	 I′, M behaves as the synchronous product of M1 and M2, as
long as the contracts of both are satisfied. When the contract of one is violated, then
M continues with the other.

THEOREM 10.10 (LEAST UPPER BOUND). If I and I′ are shared-abstractable inter-
faces, then I
 (I
 I′), I′
 (I
 I′), and for any interface I′′ such that I
 I′′ and I′
 I′′,
we have (I
 I′)
 I′′.

Notice that, even when I, I′ are both well-formed, I
 I′ may be non-well-formed, or
even non-well-formable. This occurs, for instance, when I and I′ are stateless with con-
tracts φ and φ′ such that in(φ) ∧ in(φ′) is false. This does not contradict Theorem 10.10
since false is refined by any contract, as observed earlier.

11. THE INPUT-COMPLETE CASE

Input-complete interfaces do not restrict the set of input values, although they may
provide no guarantees when the input values are illegal. Although input-complete
interfaces are a special case of general interfaces, it is instructive to study them
separately for two reasons: first, input-completeness makes things much simpler,
thus easier to understand and implement; second, some interesting properties hold
for input-complete interfaces but not in general.

THEOREM 11.1. Every well-formed Moore interface is input-complete.

Note that source interfaces are Moore by definition, therefore every well-formed
source interface is also input-complete.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 4, Article 14, Publication date: July 2011.

A Theory of Synchronous Relational Interfaces 14:35

THEOREM 11.2. Every input-complete interface is well-formed.

Every interface I can be transformed into an input-complete interface IC(I). The
illegal inputs of I become legal in IC(I), but IC(I) guarantees nothing about the value
of the outputs when given such inputs. This transformation idea is well-known, for
instance, it is called chaotic closure in Broy and Stølen [2001].

Definition 11.3 (Input-completion). Consider an interface I = (X ,Y, f). The input-
completion of I, denoted IC(I), is the interface IC(I) := (X ,Y, fic), where fic(s) := f (s) ∨
¬in(f (s)), for all s ∈ A(X ∪ Y)∗.

THEOREM 11.4 (INPUT-COMPLETION REFINES ORIGINAL). If I is an interface,
then:

(1) IC(I) is an input-complete interface.
(2) IC(I)
 I.

Theorems 11.4 and 9.14 imply that for any environment E, if I |= E then IC(I) |= E.
The converse does not hold in general (see Examples 5.6 and 8.2, and observe that I2
is the input-complete version of I1).

Composition by connection reduces to conjunction of contracts for input-complete
interfaces, and preserves input-completeness.

THEOREM 11.5. Let Ii = (Xi,Yi, fi), i = 1,2, be disjoint input-complete interfaces,
and let θ be a connection between I1, I2. Then the contract f of the composite interface
θ (I1, I2) is such that for all s ∈ A(Xθ (I1,I2) ∪ Yθ (I1,I2))∗

f (s) ≡ f1(s) ∧ f2(s) ∧ ρθ .
Moreover, θ (I1, I2) is input-complete.

Input-complete interfaces alone do not help in avoiding problems with arbitrary
feedback compositions: indeed, in the example given in the introduction both inter-
faces Itrue and Iy�=x are input-complete.4 This means that in order to add a feedback
connection (y, x) in an input-complete interface, we must still ensure that this inter-
face is Moore w.r.t. input x. In that case, feedback preserves input-completeness.

THEOREM 11.6. Let I = (X ,Y, f) be an input-complete interface which is also Moore
with respect to some x ∈ X . Let κ = (y, x) be a feedback connection on I. Then, κ(I) is
input-complete.

THEOREM 11.7. Let I = (X ,Y, f) be an input-complete interface and let y ∈ Y, such
that f is independent from y. Then hide(y, I) is input-complete.

Theorem 11.8 follows directly from Definitions 9.1 and 5.3.

THEOREM 11.8 REFINEMENT FOR INPUT-COMPLETE INTERFACES. Let I and I′ be
input-complete interfaces. Then I′
 I iff f (I′) ⊆ f (I).

For input-complete interfaces, the shared-refinability condition, that is, Condi-
tion (24), simplifies to

∀X : ∃Y : f (s) ∧ f ′(s).

4It is not surprising that input-complete interfaces alone cannot solve the problems with arbitrary feedback
compositions, since these are general problems of causality, not particular to interfaces.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 4, Article 14, Publication date: July 2011.

14:36 S. Tripakis et al.

Clearly, this condition does not always hold. Indeed, the interfaces of Example 10.2 are
not shared-refinable, even though they are input-complete. For shared-refinable input-
complete interfaces, shared refinement reduces to intersection. Dually, for shared-
abstractable input-complete interfaces, shared abstraction reduces to union.

Theorem 11.9 follows directly from Definitions 10.1, 10.8 and 5.3.

THEOREM 11.9. Let I and I′ be input-complete interfaces.

(1) If I and I′ are shared-refinable, then f (I 	 I′) = f (I) ∩ f (I′).
(2) If I and I′ are shared-abstractable, then f (I
 I′) = f (I) ∪ f (I′).

12. THE DETERMINISTIC CASE

Deterministic interfaces produce a unique output for each legal input. As in the case of
input-complete interfaces, it is instructive to study this sub-class of deterministic in-
terfaces because the theory becomes simpler. Moreover, there is an interesting duality
between the deterministic and input-complete case.

To begin, note that sink interfaces are by definition deterministic.

THEOREM 12.1. All sink interfaces are deterministic.

Composition by connection reduces to composition of relations when the source in-
terface is deterministic.

THEOREM 12.2. Consider two disjoint interfaces, Ii = (Xi,Yi, fi), i = 1,2, and a
connection θ between I1, I2. Let θ (I1, I2) = (X ,Y, f). If I1 is deterministic, then f (s) ≡
f1(s1) ∧ f2(s2) ∧ ρθ for all states s.

THEOREM 12.3 (HIDING PRESERVES DETERMINISM). Let I = (X ,Y, f) be a deter-
ministic interface and let y ∈ Y, such that f is independent from y. Then hide(y, I) is
deterministic.

THEOREM 12.4 (REFINEMENT FOR DETERMINISTIC INTERFACES). Let I and I′ be
deterministic interfaces. Then I′
 I iff f (I′) ⊇ f (I).

A corollary of Theorems 11.8 and 12.4 is that refinement for input-complete and
deterministic interfaces is equality.

For deterministic interfaces, the shared-refinability condition, that is, Condi-
tion (24), simplifies to

∀X ,Y :
(
in(f (s)) ∧ in(f ′(s))

) → (
f (s) ∧ f ′(s)

)

Again, this condition does not always hold. For shared-refinable deterministic inter-
faces, shared refinement reduces to union. Dually, for shared-abstractable determinis-
tic interfaces, shared abstraction reduces to intersection.

THEOREM 12.5. Let I and I′ be deterministic interfaces.

(1) If I and I′ are shared-refinable, then f (I 	 I′) = f (I) ∪ f (I′).
(2) If I and I′ are shared-abstractable, then f (I
 I′) = f (I) ∩ f (I′).

Notice that Theorems 12.4 and 12.5 are duals of Theorems 11.8 and 11.9.

13. APPLICATION: NONDEFENSIVE HARDWARE DESIGN

The theory developed in the previous sections is directly applicable to the domain of
synchronous systems, which covers a broad class of applications, both in software and
hardware. In particular, it applies to the class of applications captured in synchronous
embedded software environments, as mentioned in the introduction. For instance, it

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 4, Article 14, Publication date: July 2011.

A Theory of Synchronous Relational Interfaces 14:37

Fig. 13. Connecting a producer and a consumer.

Fig. 14. Stateful interfaces for a producer and a consumer.

can be used as a behavioral type theory for Simulink and other related models, in the
spirit of Roy and Shankar [2010].

Synchronous hardware is another important application domain for our work. To
illustrate this, we consider nondefensive hardware design, which is an application
of Meyer’s ideas of nondefensive programming in the HW setting. To paraphrase
Meyer, defensive programming consists in making SW modules input-complete, to
guard against all possible inputs, including undesirable inputs that should not arise
in principle [Meyer 1992]. Meyer argues that this is bad SW design practice, and we
agree. Meyer proposes design-by-contract as an alternative. In a HW setting, the same
defensive design practice is often encountered. Important benefits are to be obtained
by abandoning this practice and by following the design-by-contract paradigm instead,
to which our theory subscribes. We illustrate these points through an example.

Consider two HW components, Prod and Cons, having the input and output vari-
ables shown in Figure 13. Prod models a producer and Cons a consumer. Suppose
that Cons requires that, once data starts being delivered at its input (i.e., once validin
becomes true), data continues to be delivered for 8 consecutive clock cycles. This is
a typical requirement in HW “IP” (“intellectual property”) blocks that perform signal
processing [Ravindran and Yang 2010].

We would like to connect Prod and Cons directly, as shown to the left of Figure 13.
If we have no knowledge about Prod, however, we cannot do that, because Prod may
produce data only intermittently, in which case the requirement of Cons is violated.
Instead, we can insert a third component, Buff, to act as a mediator, as shown to the
right of Figure 13. Buff acts as a temporary buffer that stores 8 values produced by
Prod, and once 8 values become available, it signals and delivers them to Cons. The
implementation details of Buff are not needed in this discussion. What is important is
that Buff is an extra component that results in additional cost, both in terms of circuit
size and performance (Cons must wait for Buff to accumulate 8 values before it starts
processing them). We would like to avoid this cost. We can do this if we know that Prod
conforms to the requirements of Cons: namely, that once Prod starts outputting data
(i.e., once it sets validout to true) it will continue to do so for 8 consecutive cycles. In
that case, the direct connection of Prod to Cons is valid, and Buff becomes redundant.

The given situations can all be formally captured in our framework. Stateful inter-
faces can be used to model Prod and Cons, as shown in Figure 14. Interface Prod1
models a producer for which we have no knowledge, as in the first scenario described
above. Interface Prod2 captures a different scenario where the producer is guaranteed

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 4, Article 14, Publication date: July 2011.

14:38 S. Tripakis et al.

to produce 16 consecutive outputs once it starts producing data. Prod2 is captured as
an automaton extended with an integer counter i ranging between 1 and 15. Since the
domain of i is finite, Prod2 is a finite-state interface.5

The interface Cons for the consumer is also shown in Figure 14. The structure of
Cons is similar to that of Prod2. Cons requires that validin remains true for 8 consec-
utive rounds once it has been set to true. At the end of this period, the output ready
of Cons is set to true in order to signal that a batch of 8 consecutive inputs have been
processed. Typically, Cons would also produce a value, but data values are completely
abstracted in these interfaces. This results in simpler interfaces (with only a few states
each), that can still be quite useful as this example illustrates.

Having these interfaces, we can formally state the fact that the unknown producer
cannot be directly connected to our consumer. This is formalized by the fact that Prod1
and Cons are incompatible, that is, their serial composition is not well-formed (it is not
well-formable either, since Prod1 has no inputs). On the other hand, we can formally
state that Prod2 and Cons are compatible, therefore, an intermediate buffer is redun-
dant in this case.

Note that the standard synchronous parallel composition of automata Prod1 and
Cons does not reveal their incompatibility, since the conjunction of contracts true of
Prod1 and validin of Cons at its rightmost state, results in a satisfiable contract for the
product state. On the other hand, a “demonic” interpretation of the nondeterminism
of contract true of Prod1 reveals the error. In this simple example, where Prod1 has
no inputs, this demonic interpretation can be easily captured by transforming Cons
to an automaton Cons’ with an additional error location. This is similar to the error-
completion transformation discussed in Section 2.4. Cons’ moves to the error location
when an illegal input is received, that is, when validin becomes false before 8 con-
secutive rounds have elapsed. Then, compatibility of Prod1 and Cons can be stated
as a simple safety property on the standard parallel composition of Prod1 and Cons’,
namely, that the error location of Cons’ is unreachable. This can be checked using a
standard finite-state model-checker. In the general case, where Prod1 has inputs, com-
patibility cannot be stated as reachability and controller-synthesis algorithms must be
used instead.

14. CONCLUSION AND PERSPECTIVES

We have proposed an interface theory that allows to reason formally about components
and offers guarantees of substitutability. The framework we propose is general, and
can be applied to a wide spectrum of cases, in particular within the synchronous model
of computation. We are currently implementing our theory on the open-source Ptolemy
software, and experimenting with different kinds of applications.

One major avenue for future work is to examine the current limitations on feedback
compositions. Requiring feedback loops to contain Moore interfaces that “break” poten-
tial causality cycles is arguably a reasonable restriction in practice. After all, arbitrary
feedback loops in synchronous models generally result in ambiguous semantics [Berry
1999; Malik 1994]. In many languages and tools these problems are avoided by mak-
ing restrictions similar to (and often stricter than) ours. For example, Simulink and
SCADE generally require a unit-delay to be present in every feedback loop. Similar
restrictions are used in the synchronous language Lustre [Caspi et al. 1987].

Still, it would be interesting to study to what extent the current restrictions can
be weakened. One possibility could be to refine the definition of Moore interfaces to

5Note that i is initialized to 1 and not to 0 when Prod2 switches from the initial location (with contract true)
to the location with contract validout. This is because at this point one round where validout was true already
elapsed, namely, the round that triggered this transition when the automaton was at the initial location.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 4, Article 14, Publication date: July 2011.

A Theory of Synchronous Relational Interfaces 14:39

include dependencies between specific pairs of input and output variables. For ex-
ample, this would allow one to express the fact that in the parallel composition of
({x1}, {y1}, x1 = y1) and ({x2}, {y2}, x2 = y2), y1 does not depend on x2 and y2 does not de-
pend on x1 (and therefore one of the feedbacks (y1, x2) or (y2, x1) can be allowed). Such
an extension could perhaps be achieved by combining our relational interfaces with
the causality interfaces of Zhou and Lee [2008], input-output dependency informa-
tion such as that used in reactive modules [Alur and Henzinger 1999], or the coarser
profiles of Lublinerman and Tripakis [2008]. A more general solution could involve
studying fixpoints in a relational context, as is done, for instance, in Desharnais and
Möller [2005].

In the current version of our theory contracts are prefix-closed sets, and therefore
cannot express liveness properties. For instance, in the example of the buffer that
may fail (Figure 9), we cannot express the requirement that if writes are attempted
infinitely often then they must eventually succeed. In the future we plan to study
extensions of the theory to handle liveness properties. It is worth noting, however,
that the current theory already avoids the problem of trivial implementations that
achieve the specification by “doing nothing.” An interface that “does nothing” is false,
but false refines no other interface but itself. More generally, if an interface I is well-
formed, then any refinement of I is well-formable, which means it can be executed
forever without deadlocks.

Other directions of future work include examining canonical/minimal finite-state
interfaces, as well as how nondeterministic automata can be used as representations
of interfaces.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Library.

ACKNOWLEDGMENTS

We are grateful to Jan Reineke, for helpful discussions on environments and error-complete interfaces, to
Marc Geilen, who observed that the deterministic case is a dual of the input-complete case, and to Kaushik
Ravindran and Guang Yang, for motivating the buffer examples. We would also like to thank Manfred Broy,
Albert Benveniste, Rupak Majumdar and Slobodan Matic for their valuable feedback. We finally would
like to thank the anonymous reviewers for their careful reading and comments that have greatly helped to
improve this article.

REFERENCES
ABADI, M. AND LAMPORT, L. 1995. Conjoining specifications. ACM Trans. Program. Lang. Syst. 17, 3,

507–535.
ABRIAL, J.-R. 1996. The B-book: Assigning Programs to Meanings. Cambridge University Press,

New York, NY.
ALUR, R. AND HENZINGER, T. 1999. Reactive modules. Form. Meth. Syst. Des. 15, 7–48.
ALUR, R., HENZINGER, T., KUPFERMAN, O., AND VARDI, M. 1998. Alternating refinement relations. In

Proceedings of the International Conference on Concurrency Theory (CONCUR’98). Lecture Notes in
Computer Science, vol. 1466. Springer.

BACK, R.-J. AND WRIGHT, J. 1998. Refinement Calculus. Springer.
BARRINGER, H., KUIPER, R., AND PNUELI, A. 1984. Now you may compose temporal logic specifications.

In Proceedings of the 16th ACM Symposium on Theory of Computing (STOC’84). ACM, New York, NY,
51–63.

BENVENISTE, A., CASPI, P., EDWARDS, S., HALBWACHS, N., LE GUERNIC, P., AND DE SIMONE, R. 2003.
The synchronous languages 12 years later. Proc. IEEE 91, 1, 64–83.

BENVENISTE, A., CAILLAUD, B., FERRARI, A., MANGERUCA, L., PASSERONE, R., AND SOFRONIS, C. 2008.
Multiple viewpoint contract-based specification and design. In Proceedings of the 6th International
Symposium on Formal Methods for Components and Objects (FMCO’07). Springer, 200–225.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 4, Article 14, Publication date: July 2011.

14:40 S. Tripakis et al.

BERRY, G. 1999. The constructive semantics of Pure Esterel. http://www-sop.inria.fr/esterel.org/.
BROY, M. 1997. Compositional refinement of interactive systems. J. ACM 44, 6, 850–891.
BROY, M. AND STØLEN, K. 2001. Specification and Development of Interactive Systems: Focus on Streams,

Interfaces, and Refinement. Springer.
CASPI, P., PILAUD, D., HALBWACHS, N., AND PLAICE, J. 1987. Lustre: A declarative language for program-

ming synchronous systems. In Proceedings of the 14th ACM Symposium on Principles of Programming
Languages (POPL’87). ACM.

CHAKRABARTI, A., DE ALFARO, L., HENZINGER, T., AND MANG, F. 2002. Synchronous and bidirectional
component interfaces. In Proceedings of the International Conference on Computer Aided Verification.
Lecture Notes in Computer Science vol. 2404, Springer, 414–427.

CHEON, Y. AND LEAVENS, G. 1994. The Larch/Smalltalk interface specification language. ACM Trans.
Softw. Eng. Methodol. 3, 3, 221–153.

DE ALFARO, L. 2004. Game models for open systems. In Verification: Theory and Practice, N. Dershowitz
Ed., Lecture Notes in Computer Science Series, vol. 2772, Springer, 192–213.

DE ALFARO, L. AND HENZINGER, T. 2001a. Interface automata. In Foundations of Software Engineering
(FSE). ACM Press.

DE ALFARO, L. AND HENZINGER, T. 2001b. Interface theories for component-based design. In Proceedings
of the International Workshop on Embedded Software (EMSOFT’01). Lecture Notes in Computer
Science, vol. 2211, Springer.

DESHARNAIS, J. AND MÖLLER, B. 2005. Least reflexive points of relations. Higher Order Symbol. Comput.
18, 1–2, 51–77.

DHARA, K. AND LEAVENS, G. 1996. Forcing behavioral subtyping through specification inheritance. In
Proceedings of the 18th International Conference on Software Engineering (ICSE’96). IEEE Computer
Society, 258–267.

DIJKSTRA, E. 1972. Notes on structured programming. In Structured Programming, O. Dahl, E. Dijkstra,
and C. Hoare Eds., Academic Press, London, UK, 1–82.

DILL, D. 1987. Trace Theory for Automatic Hierarchical Verification of Speed-Independent Circuits. MIT
Press, Cambridge, MA.

DOYEN, L., HENZINGER, T., JOBSTMANN, B., AND PETROV, T. 2008. Interface theories with component
reuse. In Proceedings of the 8th ACM & IEEE International Conference on Embedded Software. 79–88.

FLOYD, R. 1967. Assigning meanings to programs. In Proceedings of the Symposium on Applied Mathemat-
ics. American Mathematical Society, 19–32.

FRAPPIER, M., MILI, A., AND DESHARNAIS, J. 1998. Unifying program construction and modification.
Logic J. IGPL 6, 317–340.

GRUMBERG, O. AND LONG, D. 1994. Model checking and modular verification. ACM Trans. Program. Lang.
Syst. 16, 3, 843–871.

GUTTAG, J. AND HORNING, J. 1993. Larch: Languages and Tools for Formal Specification. Springer.
HEHNER, E. AND PARNAS, D. 1985. Technical correspondence. Comm. ACM 28, 5, 534–538.
HENZINGER, T. AND SIFAKIS, J. 2007. The discipline of embedded systems design. IEEE Computer 40, 10,

32–40.
HENZINGER, T., QADEER, S., AND RAJAMANI, S. 1998. You assume, we guarantee: Methodology and case

studies. In Proceedings of the International Conference on Computer-Aided Verification. Lecture Notes
in Computer Science, vol. 1427, Springer-Verlag.

HOARE, C. A. R. 1969. An axiomatic basis for computer programming. Comm. ACM 12, 10, 576–580.
HOARE, C. A. R. 1985. Programs are predicates. In Proceedings of a Discussion Meeting of the Royal Society

of London on Mathematical Logic and Programming Languages. Prentice-Hall, Inc., Upper Saddle
River, NJ, 141–155.

JONES, C. B. 1983. Tentative steps toward a development method for interfering programs. ACM Trans.
Program. Lang. Syst. 5, 4.

JONSSON, B. 1994. Compositional specification and verification of distributed systems. ACM Trans.
Program. Lang. Syst. 16, 2, 259–303.

KAHL, W. 2003. Refinement and development of programs from relational specifications. Electron. Notes
Theor. Comput. Sci. 44, 3, 51–93.

LEAVENS, G. 1994. Inheritance of interface specifications. SIGPLAN Notes 29, 8, 129–138.
LEAVENS, G. AND CHEON, Y. 2006. Design by contract with JML. http://www.jmlspecs.org/jmldbc.pdf.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 4, Article 14, Publication date: July 2011.

A Theory of Synchronous Relational Interfaces 14:41

LEE, E. 2008. Cyber physical systems: Design challenges. Tech. rep. UCBIEECS-2008-8, EECS Department,
University of California, Berkeley.

LEE, E. AND SANGIOVANNI-VINCENTELLI, A. 1998. A unified framework for comparing models of
computation. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst. 17, 12, 1217–1229.

LEE, E. AND XIONG, Y. 2001. System-level types for component-based design. In Proceedings of the
International Workshop on Embedded Software (EMSOFT’01). Springer, 237–253.

LISKOV, B. 1979. Modular program construction using abstractions. In Abstract Software Specifications.
Lecture Notes in Computer Science Series, vol. 86., Springer, 354–389.

LISKOV, B. AND WING, J. 1994. A behavioral notion of subtyping. ACM Trans. Program. Lang. Syst. 16, 6,
1811–1841.

LUBLINERMAN, R. AND TRIPAKIS, S. 2008. Modularity vs. Reusability: Code Generation from Synchronous
Block Diagrams. In Proceedings of the Conference and Exhibition on Design, Automation, and Test in
Europe (DATE’08). ACM.

LYNCH, N. AND TUTTLE, M. 1989. An introduction to input/output automata. CWI Quart. 2, 219–246.
MALIK, S. 1994. Analysis of cyclic combinational circuits. IEEE Trans. Comput.-Aid. Des. 13, 7, 950–956.
MCMILLAN, K. 1997. A compositional rule for hardware design refinement. In Proceedings of the Interna-

tional Conference on Computer Aided Verification (CAV’97). Lecture Notes in Computer Science, vol.
1254, SpringerVerlag.

MEYER, B. 1992. Applying “design by contract.” Comput. 25, 10, 40–51.
MILLER, S., WHALEN, M., AND COFER, D. 2010. Software model checking takes off. Comm. ACM 53, 2,

58–64.
MISRA, J. AND CHANDY, K. 1981. Proofs of networks of processes. IEEE Trans. Softw. Engin. 7, 4, 417–426.
NELSON, G. 1989. A generalization of Dijkstra’s calculus. ACM Trans. Program. Lang. Syst. 11, 4, 517–561.
NIERSTRASZ, O. 1993. Regular types for active objects. SIGPLAN Notes 28, 10, 1–15.
PARNAS, D. 1983. A generalized control structure and its formal definition. Comm. ACM 26, 8, 572–581.
PIERCE, B. 2002. Types and Programming Languages. MIT Press.
RACLET, J.-B., BADOUEL, E., BENVENISTE, A., CAILLAUD, B., LEGAY, A., AND PASSERONE, R. 2010. A

modal interface theory for component-based design.
http://www.irisa.fr/distribcom/benveniste/pub/Fundamenta2010.htm1.

RAVINDRAN, K. AND YANG, G. 2010. Personal communication.
ROY, P. AND SHANKAR, N. 2010. An expressive type system for Simulink. In Proceedings of the 2nd NASA

Formal Methods Symposium (NFM’10). 149–160.
SHANKAR, N. 1998. Lazy compositional verification. In Compositionality: The Significant Difference.

Springer, 541–564.
SPIVEY, J. M. 1989. The Z Notation: A Reference Manual. Prentice-Hall, Inc., Upper Saddle River, NJ.
STARK, E. 1985. A proof technique for rely/guarantee properties. In Proceedings of the 5th Conference on

Foundations of Software Technology and Theoretical Computer Science. Springer-Verlag.
TOURLAKIS, G. 2008. Mathematical Logic. Wiley.
TRIPAKIS, S., LICKLY, B., HENZINGER, T., AND LEE, E. 2009a. On relational interfaces. Tech. rep.

UCBIEECS-2009-60, EECS Department, University of California, Berkeley.
TRIPAKIS, S., LICKLY, B., HENZINGER, T., AND LEE, E. 2009b. On relational interfaces. In Proceedings of

the 7th ACM International Conference on Embedded Software (EMSOFT’09). ACM, 67–76.
WIRTH, N. 1971. Program development by stepwise refinement. Comm. ACM 14, 4, 221–227.
ZHOU, Y. AND LEE, E. 2008. Causality interfaces for actor networks. ACM Trans. Embed. Comput. Syst. 7,

3, 1–35.

Received May 2010; revised November 2010; accepted March 2011

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 4, Article 14, Publication date: July 2011.

