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Overview of this Tutorial
An introduction to UCLID5, a system for formal modeling, verification 
and synthesis of computational systems

Motivation – Verification of Trusted Computing Platforms
Multi-Modal Modeling with UCLID5
• Verification by Reduction to Synthesis
• Syntax-Guided Synthesis
• Formal Inductive Synthesis & Oracle-Guided Inductive Synthesis
• Satisfiability and Synthesis Modulo Oracles
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Formal Synthesis
 Given:

– Class of Artifacts C
– Formal (mathematical) Specification φ

 Find f ∈ C that satisfies φ

 Example 1: 
– C: all affine functions f of x ∈ R
– φ:  ∀x. f(x) ≥ x + 42

 Example 2: SyGuS
 Example 3: Reactive synthesis (from LTL)
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Induction vs. Deduction
 Induction: Inferring general rules (functions) from specific 

examples (observations)
– Generalization

 Deduction: Applying general rules to derive conclusions about 
specific instances
– (generally) Specialization

 Synthesis can be Inductive or Deductive or a combination of the 
two
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Inductive Synthesis
 Given

– Class of Artifacts C
– Set of (labeled) Examples E (or source of E)
– A stopping criterion Ψ

 May or may not be formally described

 Find, using only E, an f ∈ C that meets Ψ

 Example:
– C: all affine functions f of x ∈ R
– E = {(0,42), (1, 43), (2, 44)}
– Ψ -- find consistent f 
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Inductive Synthesis for Formal Methods

 Modeling / Specification
– Generating environment/component models
– Inferring (likely) specifications/requirements

 Verification
– Synthesizing verification/proof artifacts such as inductive invariants, 

abstractions, interpolants, environment assumptions, etc.

 Synthesis (of programs/designs/controllers, etc.)



Verification by Reduction to Synthesis
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Artifacts Synthesized in Verification

 Inductive invariants
 Abstraction functions / abstract models
 Auxiliary specifications (e.g., pre/post-conditions, function summaries)
 Environment assumptions / Env model / interface specifications
 Interpolants, Frames in IC3/PDR
 Ranking functions (for proofs of termination)
 Intermediate lemmas for compositional proofs 
 Simulation/Bisimulation Relations
 Theory lemma instances in SMT solving
 Patterns for Quantifier Instantiation in SMT solving
 …
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One Reduction from Verification to Synthesis

SYNTHESIS PROBLEM
Synthesize φ s.t.

I ⇒ φ ∧ ψ
φ ∧ ψ ∧ δ ⇒ φ’ ∧ ψ’ 

VERIFICATION PROBLEM
Does M satisfy Ψ?

NOTATION
Transition system M = (I, δ) 
Safety property Ψ =  G(ψ)
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Two Reductions from Verification to Synthesis

NOTATION
Transition system M = (I, δ),  S = set of states 
Safety property Ψ =  G(ψ)

SYNTHESIS PROBLEM #1
Synthesize φ s.t.

I ⇒ φ ∧ ψ
φ ∧ ψ ∧ δ ⇒ φ’ ∧ ψ’ 

VERIFICATION PROBLEM
Does M satisfy Ψ?

SYNTHESIS PROBLEM #2
Synthesize α : S → Ŝ where

α(M) = (I, δ) 
s.t.

α(M) satisfies Ψ
iff

M satisfies Ψ

ˆ ˆ
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Common Approach for both: Inductive Synthesis
Synthesis of:-

 Inductive Invariants
– Choose templates for invariants
– Infer likely invariants from tests (examples)
– Check if any are true inductive invariants, possibly iterate

 Abstraction Functions
– Choose an abstract domain
– Use Counter-Example Guided Abstraction Refinement 

(CEGAR)
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Counterexample-Guided Abstraction Refinement 
(CEGAR) is Inductive Synthesis/Learning

Invoke 
Model 

Checker
Done

Valid

Counter-
example

Check
Counterexample: 

Spurious?
Spurious 

Counterexample
YES

Abstract 
Domain

System 
+Property

Initial 
Abstraction 

Function

Done
NO

Generate 
Abstraction

Abstract Model        
+ Property

Refine 
Abstraction 

Function

New Abstraction Function

Fail

SYNTHESIS VERIFICATION

[Anubhav Gupta, ‘06]



– 13 –

CEGAR = Counterexample-Guided 
Inductive Synthesis (of Abstractions)

INITIALIZE

SYNTHESIZE VERIFY

Candidate
Artifact

Counterexample

Verification SucceedsSynthesis Fails

Structure Hypothesis (“Syntax-Guidance”), 
Initial Examples



Syntax-Guided Synthesis
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Definition
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Example
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Specification: (x ≤ f(x,y)) & (y ≤ f(x,y)) & (f(x,y) = x | f(x,y) = y)

Set E: All expressions built from x,y,0,1, Comparison, +, If-Then-Else

(slide adapted from one by R. Alur)



SyGuS solved through Counterexample-Guided Inductive Synthesis 
(Counterexample-Guided Learning)

17

Learning 
Algorithm

Verification
Oracle

Initial examples I

Fail Success

Candidate
Expression

Counterexample

Concept class: Set E of expressions

Examples: Concrete input values 
(slide adapted from one by R. Alur)



CEGIS Example

 Specification: (x ≤ f(x,y)) & (y ≤ f(x,y)) & (f(x,y) = x | f(x,y) = y)

 Set E: All expressions built from x,y,0,1, Comparison, +, If-Then-Else

Learning
Algorithm

Verification
Oracle

Examples = { }

Candidate
f(x,y) = x

Example
(x=0, y=1)
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CEGIS Example

 Specification: (x ≤ f(x,y)) & (y ≤ f(x,y)) & (f(x,y) = x | f(x,y) = y)

 Set E: All expressions built from x,y,0,1, Comparison, +, If-Then-Else

Learning
Algorithm

Verification
Oracle

Examples = 
{(x=0, y=1) } Candidate

f(x,y) = y

Example
(x=1, y=0)
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CEGIS Example

 Specification: (x ≤ f(x,y)) & (y ≤ f(x,y)) & (f(x,y) = x | f(x,y) = y)

 Set E: All expressions built from x,y,0,1, Comparison, +, If-Then-Else

Learning
Algorithm

Verification
Oracle

Examples = 
{(x=0, y=1) 
(x=1, y=0)
(x=0, y=0)
(x=1, y=1)}

Candidate
ITE (x ≤ y, y, x)

Success

(slide adapted from one by R. Alur) 20



Formal Inductive Synthesis &                                       
Oracle-Guided Inductive Synthesis
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Formal Inductive Synthesis 
 Given:

– Class of Artifacts C     -- Formal specification φ
– Domain of examples D
– Oracle Interface O

 Set of (query, response) types
 Find using only O an f ∈ C that satisfies φ

– i.e. no direct access to D or φ
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Oracle Interface
 Generalizes the simple model of sampling 

positive/negative examples from a corpus of data

 Specifies WHAT the learner and oracle do
 Does not specify HOW the oracle/learner is implemented

LEARNER ORACLE
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CEGIS = Learning from Examples & 
Counterexamples

INITIALIZE

LEARNING
ALGORITHM

VERIFICATION
ORACLE

Candidate
Concept

Counterexample

Learning SucceedsLearning Fails

“Concept Class”, Initial Examples
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Common Oracle Query Types      (for trace property φ)

LEARNER ORACLE

Positive Witness
x ∈ φ, if one exists, else ⊥

Negative Witness
x ∉ φ, if one exists, else ⊥

Membership: Is x ∈ φ?
Yes / No

Equivalence: Is f = φ?
Yes / No + x ∈ φ⊕f

Subsumption/Subset: Is f ⊆ φ?
Yes / No + x ∈ f \ φ

Distinguishing Input: f, X ⊆ f
f’ s.t. f’ ≠f ∧ X ⊆ f’, if it exists;

o.w. ⊥
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Formal Inductive Synthesis 
 Given:

– Class of Artifacts C     -- Formal specification φ
– Domain of examples D
– Oracle Interface O

 Set of (query, response) types
 Find using only O an f ∈ C that satisfies φ

– i.e. no direct access to D or φ

 How do we solve this?

Design/Select:
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Oracle-Guided Inductive Synthesis (OGIS)
 A dialogue is a sequence of (query, response) conforming to an 

oracle interface O
 An OGIS engine is a pair <L, T> where

– L is a learner, a non-deterministic algorithm mapping a dialogue 
to a concept c and query q

– T is an oracle/teacher, a non-deterministic algorithm mapping a 
dialogue and query to a response r

 An OGIS engine <L,T> solves an FIS problem if there exists a 
dialogue between L and T that converges in a concept f ∈ C 
that satisfies φ

[See Jha & Seshia, Acta Informatica 2017 for details]
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Examples of OGIS
 L* algorithm to learn DFAs: counterexample-guided

– Membership + Equivalence queries
 CEGIS used in SyGuS solvers

– (positive) Witness + Counterexample/Verification queries
 CEGIS for Hybrid Systems

– Requirement Mining [Jin et al., HSCC 2013]
– Reactive Model Predictive Control [Raman et al., HSCC 2015]

 Two different examples:
– Learning Programs from Distinguishing Inputs [Jha et al., ICSE 

2010]
– Learning LTL Properties for Synthesis from Counterstrategies [Li 

et al., MEMOCODE 2011]
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More Examples

(slide due to E. Polgreen)



Satisfiability and Synthesis Modulo Oracles
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(some slide material due to E. Polgreen)



Logic Constraint Solvers  Oracle-Based Solvers

• Current SMT solvers require all constraints to be encoded as logical 
formulas

• Limiting for complex components, or those that may only be available 
as executables or via interaction with humans

• Our Contribution: [Polgreen et al., VMCAI’22]
– Satisfiability Modulo Theories and Oracles (SMTO)
– Synthesis Modulo Oracles (SMO)
– Key idea: Oracle Interface expanded by oracle using “assumption generator” and 

“constraint generators”
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Formalized Oracle Interface
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Oracle Function Symbols
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Satisfiability Modulo Theories and Oracles (SMTO)
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Satisfiability Modulo Theories and Oracles (SMTO)
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Restrict to Definitional SMTO



Satisfiability Modulo Theories and Oracles (SMTO)
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Synthesis Modulo Oracles (SyMO)
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Generalizes SyGuS
with richer oracle 

interfaces



Synthesis Modulo Oracles  (SyMO)

• Synthesis solver calls SMTO 
solver to check correctness of 
the synthesized functions

• It can additionally invoke 
other oracles to guide the 
search 
– E.g. answering membership 

queries, provide labeled 
examples, demonstrations, 
preferences, etc.

38



Some Experimental Results with SyMO/SMTO

39



Oracle-Guided Reasoning with UCLID5

Latest version of UCLID5 has 
support for Satisfiability and 
Synthesis Modulo Oracles

Used it for several tasks including 
algorithmically synthesizing a 
stabilizing controller 
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Summary 

 Formal Synthesis 
 Verification by Reduction to Synthesis
 Syntax-Guided Synthesis
 Formal Inductive Synthesis

– Counterexample-guided inductive synthesis (CEGIS)
– General framework for solution methods: Oracle-Guided 

Inductive Synthesis (OGIS)
– Theoretical analysis (see Jha & Seshia, 2017)

 Satisfiability and Synthesis Modulo Oracles
– A generic approach to solve OGIS problems

 Lots of potential for future work!
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