
UCLID5’s Elements: Formal Modeling,
Verification, Synthesis, and Learning

Sanjit A. Seshia
Professor

EECS, UC Berkeley

SAT-SMT Winter School @ FSTTCS
December 16-17, 2022

Joint work with
Kevin Cheang, Pranav Gaddamadugu, Adwait Godbole, Federico Mora,

Kevin Lauefer, Shaokai Lin, Yatin Manerkar, Rohit Sinha, Elizabeth Polgreen,
Cameron Rasmussen, Jonathan Shi, Pramod Subramanyan

https://github.com/uclid-org/uclid

https://github.com/uclid-org/uclid

Overview of this Tutorial
An introduction to UCLID5, a system for formal modeling, verification
and synthesis of computational systems

Motivation – Verification of Trusted Computing Platforms
Multi-Modal Modeling with UCLID5
• Verification by Reduction to Synthesis
• Syntax-Guided Synthesis
• Formal Inductive Synthesis & Oracle-Guided Inductive Synthesis
• Satisfiability and Synthesis Modulo Oracles

S. A. Seshia 2

– 3 –

Formal Synthesis
 Given:

– Class of Artifacts C
– Formal (mathematical) Specification φ

 Find f ∈ C that satisfies φ

 Example 1:
– C: all affine functions f of x ∈ R
– φ: ∀x. f(x) ≥ x + 42

 Example 2: SyGuS
 Example 3: Reactive synthesis (from LTL)

– 4 –

Induction vs. Deduction
 Induction: Inferring general rules (functions) from specific

examples (observations)
– Generalization

 Deduction: Applying general rules to derive conclusions about
specific instances
– (generally) Specialization

 Synthesis can be Inductive or Deductive or a combination of the
two

– 5 –

Inductive Synthesis
 Given

– Class of Artifacts C
– Set of (labeled) Examples E (or source of E)
– A stopping criterion Ψ

 May or may not be formally described

 Find, using only E, an f ∈ C that meets Ψ

 Example:
– C: all affine functions f of x ∈ R
– E = {(0,42), (1, 43), (2, 44)}
– Ψ -- find consistent f

– 6 –

Inductive Synthesis for Formal Methods

 Modeling / Specification
– Generating environment/component models
– Inferring (likely) specifications/requirements

 Verification
– Synthesizing verification/proof artifacts such as inductive invariants,

abstractions, interpolants, environment assumptions, etc.

 Synthesis (of programs/designs/controllers, etc.)

Verification by Reduction to Synthesis

S. A. Seshia 7

– 8 –

Artifacts Synthesized in Verification

 Inductive invariants
 Abstraction functions / abstract models
 Auxiliary specifications (e.g., pre/post-conditions, function summaries)
 Environment assumptions / Env model / interface specifications
 Interpolants, Frames in IC3/PDR
 Ranking functions (for proofs of termination)
 Intermediate lemmas for compositional proofs
 Simulation/Bisimulation Relations
 Theory lemma instances in SMT solving
 Patterns for Quantifier Instantiation in SMT solving
 …

– 9 –

One Reduction from Verification to Synthesis

SYNTHESIS PROBLEM
Synthesize φ s.t.

I ⇒ φ ∧ ψ
φ ∧ ψ ∧ δ ⇒ φ’ ∧ ψ’

VERIFICATION PROBLEM
Does M satisfy Ψ?

NOTATION
Transition system M = (I, δ)
Safety property Ψ = G(ψ)

– 10 –

Two Reductions from Verification to Synthesis

NOTATION
Transition system M = (I, δ), S = set of states
Safety property Ψ = G(ψ)

SYNTHESIS PROBLEM #1
Synthesize φ s.t.

I ⇒ φ ∧ ψ
φ ∧ ψ ∧ δ ⇒ φ’ ∧ ψ’

VERIFICATION PROBLEM
Does M satisfy Ψ?

SYNTHESIS PROBLEM #2
Synthesize α : S → Ŝ where

α(M) = (I, δ)
s.t.

α(M) satisfies Ψ
iff

M satisfies Ψ

ˆ ˆ

– 11 –

Common Approach for both: Inductive Synthesis
Synthesis of:-

 Inductive Invariants
– Choose templates for invariants
– Infer likely invariants from tests (examples)
– Check if any are true inductive invariants, possibly iterate

 Abstraction Functions
– Choose an abstract domain
– Use Counter-Example Guided Abstraction Refinement

(CEGAR)

– 12 –

Counterexample-Guided Abstraction Refinement
(CEGAR) is Inductive Synthesis/Learning

Invoke
Model

Checker
Done

Valid

Counter-
example

Check
Counterexample:

Spurious?
Spurious

Counterexample
YES

Abstract
Domain

System
+Property

Initial
Abstraction

Function

Done
NO

Generate
Abstraction

Abstract Model
+ Property

Refine
Abstraction

Function

New Abstraction Function

Fail

SYNTHESIS VERIFICATION

[Anubhav Gupta, ‘06]

– 13 –

CEGAR = Counterexample-Guided
Inductive Synthesis (of Abstractions)

INITIALIZE

SYNTHESIZE VERIFY

Candidate
Artifact

Counterexample

Verification SucceedsSynthesis Fails

Structure Hypothesis (“Syntax-Guidance”),
Initial Examples

Syntax-Guided Synthesis

S. A. Seshia 14

Definition

S. A. Seshia 15

Example

S. A. Seshia 16

Specification: (x ≤ f(x,y)) & (y ≤ f(x,y)) & (f(x,y) = x | f(x,y) = y)

Set E: All expressions built from x,y,0,1, Comparison, +, If-Then-Else

(slide adapted from one by R. Alur)

SyGuS solved through Counterexample-Guided Inductive Synthesis
(Counterexample-Guided Learning)

17

Learning
Algorithm

Verification
Oracle

Initial examples I

Fail Success

Candidate
Expression

Counterexample

Concept class: Set E of expressions

Examples: Concrete input values
(slide adapted from one by R. Alur)

CEGIS Example

 Specification: (x ≤ f(x,y)) & (y ≤ f(x,y)) & (f(x,y) = x | f(x,y) = y)

 Set E: All expressions built from x,y,0,1, Comparison, +, If-Then-Else

Learning
Algorithm

Verification
Oracle

Examples = { }

Candidate
f(x,y) = x

Example
(x=0, y=1)

(slide adapted from one by R. Alur) 18

CEGIS Example

 Specification: (x ≤ f(x,y)) & (y ≤ f(x,y)) & (f(x,y) = x | f(x,y) = y)

 Set E: All expressions built from x,y,0,1, Comparison, +, If-Then-Else

Learning
Algorithm

Verification
Oracle

Examples =
{(x=0, y=1) } Candidate

f(x,y) = y

Example
(x=1, y=0)

(slide adapted from one by R. Alur) 19

CEGIS Example

 Specification: (x ≤ f(x,y)) & (y ≤ f(x,y)) & (f(x,y) = x | f(x,y) = y)

 Set E: All expressions built from x,y,0,1, Comparison, +, If-Then-Else

Learning
Algorithm

Verification
Oracle

Examples =
{(x=0, y=1)
(x=1, y=0)
(x=0, y=0)
(x=1, y=1)}

Candidate
ITE (x ≤ y, y, x)

Success

(slide adapted from one by R. Alur) 20

Formal Inductive Synthesis &
Oracle-Guided Inductive Synthesis

S. A. Seshia 21

– 22 –

Formal Inductive Synthesis
 Given:

– Class of Artifacts C -- Formal specification φ
– Domain of examples D
– Oracle Interface O

 Set of (query, response) types
 Find using only O an f ∈ C that satisfies φ

– i.e. no direct access to D or φ

– 23 –

Oracle Interface
 Generalizes the simple model of sampling

positive/negative examples from a corpus of data

 Specifies WHAT the learner and oracle do
 Does not specify HOW the oracle/learner is implemented

LEARNER ORACLE

– 24 –

CEGIS = Learning from Examples &
Counterexamples

INITIALIZE

LEARNING
ALGORITHM

VERIFICATION
ORACLE

Candidate
Concept

Counterexample

Learning SucceedsLearning Fails

“Concept Class”, Initial Examples

– 25 –

Common Oracle Query Types (for trace property φ)

LEARNER ORACLE

Positive Witness
x ∈ φ, if one exists, else ⊥

Negative Witness
x ∉ φ, if one exists, else ⊥

Membership: Is x ∈ φ?
Yes / No

Equivalence: Is f = φ?
Yes / No + x ∈ φ⊕f

Subsumption/Subset: Is f ⊆ φ?
Yes / No + x ∈ f \ φ

Distinguishing Input: f, X ⊆ f
f’ s.t. f’ ≠f ∧ X ⊆ f’, if it exists;

o.w. ⊥

– 26 –

Formal Inductive Synthesis
 Given:

– Class of Artifacts C -- Formal specification φ
– Domain of examples D
– Oracle Interface O

 Set of (query, response) types
 Find using only O an f ∈ C that satisfies φ

– i.e. no direct access to D or φ

 How do we solve this?

Design/Select:

– 27 –

Oracle-Guided Inductive Synthesis (OGIS)
 A dialogue is a sequence of (query, response) conforming to an

oracle interface O
 An OGIS engine is a pair <L, T> where

– L is a learner, a non-deterministic algorithm mapping a dialogue
to a concept c and query q

– T is an oracle/teacher, a non-deterministic algorithm mapping a
dialogue and query to a response r

 An OGIS engine <L,T> solves an FIS problem if there exists a
dialogue between L and T that converges in a concept f ∈ C
that satisfies φ

[See Jha & Seshia, Acta Informatica 2017 for details]

– 28 –

Examples of OGIS
 L* algorithm to learn DFAs: counterexample-guided

– Membership + Equivalence queries
 CEGIS used in SyGuS solvers

– (positive) Witness + Counterexample/Verification queries
 CEGIS for Hybrid Systems

– Requirement Mining [Jin et al., HSCC 2013]
– Reactive Model Predictive Control [Raman et al., HSCC 2015]

 Two different examples:
– Learning Programs from Distinguishing Inputs [Jha et al., ICSE

2010]
– Learning LTL Properties for Synthesis from Counterstrategies [Li

et al., MEMOCODE 2011]

– 29 –

More Examples

(slide due to E. Polgreen)

Satisfiability and Synthesis Modulo Oracles

S. A. Seshia 30

(some slide material due to E. Polgreen)

Logic Constraint Solvers Oracle-Based Solvers

• Current SMT solvers require all constraints to be encoded as logical
formulas

• Limiting for complex components, or those that may only be available
as executables or via interaction with humans

• Our Contribution: [Polgreen et al., VMCAI’22]
– Satisfiability Modulo Theories and Oracles (SMTO)
– Synthesis Modulo Oracles (SMO)
– Key idea: Oracle Interface expanded by oracle using “assumption generator” and

“constraint generators”

S. A. Seshia 31

Formalized Oracle Interface

S. A. Seshia 32

Oracle Function Symbols

S. A. Seshia 33

Satisfiability Modulo Theories and Oracles (SMTO)

S. A. Seshia 34

Satisfiability Modulo Theories and Oracles (SMTO)

S. A. Seshia 35

Restrict to Definitional SMTO

Satisfiability Modulo Theories and Oracles (SMTO)

S. A. Seshia 36

Synthesis Modulo Oracles (SyMO)

S. A. Seshia 37

Generalizes SyGuS
with richer oracle

interfaces

Synthesis Modulo Oracles (SyMO)

• Synthesis solver calls SMTO
solver to check correctness of
the synthesized functions

• It can additionally invoke
other oracles to guide the
search
– E.g. answering membership

queries, provide labeled
examples, demonstrations,
preferences, etc.

38

Some Experimental Results with SyMO/SMTO

39

Oracle-Guided Reasoning with UCLID5

Latest version of UCLID5 has
support for Satisfiability and
Synthesis Modulo Oracles

Used it for several tasks including
algorithmically synthesizing a
stabilizing controller

S. A. Seshia 40

– 41 –

Summary

 Formal Synthesis
 Verification by Reduction to Synthesis
 Syntax-Guided Synthesis
 Formal Inductive Synthesis

– Counterexample-guided inductive synthesis (CEGIS)
– General framework for solution methods: Oracle-Guided

Inductive Synthesis (OGIS)
– Theoretical analysis (see Jha & Seshia, 2017)

 Satisfiability and Synthesis Modulo Oracles
– A generic approach to solve OGIS problems

 Lots of potential for future work!

	UCLID5’s Elements: Formal Modeling, Verification, Synthesis, and Learning
	Overview of this Tutorial
	Formal Synthesis
	Induction vs. Deduction
	Inductive Synthesis
	Inductive Synthesis for Formal Methods
	Verification by Reduction to Synthesis
	Artifacts Synthesized in Verification
	One Reduction from Verification to Synthesis
	Two Reductions from Verification to Synthesis
	Common Approach for both: Inductive Synthesis
	Counterexample-Guided Abstraction Refinement (CEGAR) is Inductive Synthesis/Learning
	CEGAR = Counterexample-Guided Inductive Synthesis (of Abstractions)
	Syntax-Guided Synthesis
	Definition
	Example
	SyGuS solved through Counterexample-Guided Inductive Synthesis (Counterexample-Guided Learning)
	CEGIS Example
	CEGIS Example
	CEGIS Example
	Formal Inductive Synthesis & Oracle-Guided Inductive Synthesis
	Formal Inductive Synthesis
	Oracle Interface
	CEGIS = Learning from Examples & Counterexamples
	Common Oracle Query Types (for trace property)
	Formal Inductive Synthesis
	Oracle-Guided Inductive Synthesis (OGIS)
	Examples of OGIS
	More Examples
	Satisfiability and Synthesis Modulo Oracles
	Logic Constraint Solvers Oracle-Based Solvers
	Formalized Oracle Interface
	Oracle Function Symbols
	Satisfiability Modulo Theories and Oracles (SMTO)
	Satisfiability Modulo Theories and Oracles (SMTO)
	Satisfiability Modulo Theories and Oracles (SMTO)
	Synthesis Modulo Oracles (SyMO)
	Synthesis Modulo Oracles (SyMO)
	Some Experimental Results with SyMO/SMTO
	Oracle-Guided Reasoning with UCLID5
	Summary

